Inline ASM with OnBoardC/Asm

©2003, 2004, 2005 by John Wilund

E-Mail: orlando@runbox.com
With a lot support and valuable help from

Rev Rend

E-Mail: revrendi@yahoo.com
Version: 0.17b

Creation date: april-2-2003

Last Altered date: januari-12-2005

Motorola is a registered trademark and DragonBall a trademark of Motorola, Inc.

Palm OS and HotSync are a registered trademarks, and Palm is a trademark, of

Palm, Inc. CodeWarrior..Metrowerks....... FalchStudio............Quartus…. All other product and brand names mentioned in this paper may be trademarks or registered trademarks of their respective owners.

51. Introduction

1.1 Disclaimer
5
1.2 But I don't know C!
5
1.2.1 I know C but not the PalmOS API?
5
1.3 General differences between OnBoardC, gcc, FalchStudio and CodeWarrior
5
1.3.1 OnBoardC
5
1.3.2 gcc
6
1.3.3 FalchStudio
6
1.3.4 CodeWarrior
6
1.4 But I don't know m68kAsm?
6
1.5 Why use inline Asm?
6
1.6 Inline Asm with OnBoardC/Asm
6
1.7
6
2. Inline Asm an introduction
7
3. Before you start
7
3.1 The Motorola Processors
7
3.1.1 mc68000
7
3.2 Processors found in PalmHandhelds (running OS 4.x or lower)
7
3.2.1 mc68328
7
3.2.2 mc68ez328
7
3.2.3 mc68vz328
7
3.3 OnBoardAsm Syntax
7
3.3.1 the Use of UPPER case or lower case code
7
3.3.2 Source to Destination
7
3.3.3 .b, .w and .l
8
3.3.4 Parenthesis
8
3.3.4.1 direct
8
3.3.4.2 indirect
8
3.4 Terminology
8
3.4.1 “Opcode”
8
3.4.2 “Token”
8
3.4.3 “Operand”
8
3.4.3.1 “Immediate operand”
9
3.4.4 “Symbol”
9
3.4.4.1 “Symbol name”
9
3.4.5 “Label”
9
3.4.5.1 code label
9
3.4.5.2 data label
9
3.4.5.3 local label
9
3.4.5.4 global label
9
3.4.6 “Effective Address”
9
3.4.7 “Register List”
9
3.4.8 “Displacement”
9
3.4.9 “Initializer”
9
3.4.10 “References”
9
3.4.11 “Local name”
9
3.4.12
10
3.5 Assembler directives (pseudo opcodes)
10
3.5.1 dc
10
3.5.2 data
10
3.5.3 res
10
3.5.4 proc
10
3.5.4.1 beginproc
10
3.5.4.2 endproc
10
3.5.5 local
10
3.5.6 include
10
3.5.7 get
10
3.5.8 code
10
3.5.9 creator
10
3.5.10 systrap
11
3.5.11
11
3.6 Ignored Assembler directives (legal with Pila)
11
3.6.1 ds
11
3.6.2 dcb
11
3.6.3 org
11
3.6.4 set
11
3.6.5 end
11
3.6.6 equ
11
3.6.7 struct
11
3.6.8
11
4. Inline Asm with OnBoardC/Asm
11
4.1 the "asm" C keyword
11
4.2 Valid OnBoardAsm mnemonicis
11
4.3 Comments
12
4.4 The format of all m68k asm
12
4.5 Numbers and values in OnBoardAsm
12
4.5.1 Decimal values
12
4.5.2 Hexadecimal values
12
4.5.3 Binary values
12
4.5.4 Octal values
12
4.5.5 BCD (Binary Coded Decimal) values
13
4.6 the CPU registers
13
4.6.1 the Data registers (d0-d7)
13
4.6.2 the Address registers (a0-a7)
13
4.6.2.1 a0 as address return register
13
4.6.2.2 the Frame Pointer (a6 and/or a5)
13
4.6.2.3 the User Stack Pointer register
13
4.6.2.4 the Supervisor Stack Pointer (ssp)
14
4.6.2.5 the Condition Code register (ccr)
14
4.6.3 the Program Counter (pc)
14
4.6.3.1 "pc" or "PC"?
14
4.6.4 the Status register (sr)
14
4.6.4.1 sr in User mode
14
4.6.4.2 sr in Supervisor mode
14
4.7
14
5.
14
5.1 Calling a C function
14
5.2 Calling a Label (within the Asm code)
14
6. Return value
15
6.1 d0
15
6.2 a0
15
6.3
15
7. Passing values to a asm inline function
15
7.1 Passing one value a6 (and a5)
15
7.2 Passing many values to a asm inline function
16
7.3 Passing a pointer
16
7.4
16
8. Global C variables
16
8.1 Using, Manipulating and Passing global Values
16
8.2 Using, Manipulating and Passing global Pointers
17
9. Local data labels (Asm variables)
17
9.1 variables
17
9.2 strings
17
9.3 structs
17
9.4
17
10. Systraps
18
11. Error feedback generated by OnBoardAsm
18
11.1 “Bad form for immediate operand”
18
11.2 [instruction] xxxx xxxx
18
11.3 “Invalid combination of opcode and operands”
18
11.4 “Expected (a5) or (a6) or (pc) following symbol name”
18
11.5 “Undefined global data label nnn”
18
11.6 “Global fixup to unknown data label”
18
11.7 “Global fixup from xxx(x)xxxx d to unknown code label n_a”
18
11.8 “Branch to unknown local label”
19
11.9 “Expected operand”
19
11.10 “Expected An or PC in operand”
19
11.11 “Expected comma or right parenthesis in operand for move”
19
11.12 “Duplicate local code label”
19
11.13 “Unexpected token”
19
11.14 “Unexpected token in operand”
19
11.15 “Unknown local symbol”
20
11.16 “invalid size specification”
20
11.17 “Global fixup from x(y)vv d to unknown code label string”
20
11.18 “initializer expected”
20
11.19 “Duplicate local code label”
20
11.20 “Can only initialize global data with references”
20
11.21 “Can't have a proc in a data seg”
20
11.22 “Proc already in progress”
20
11.23 “Expected register in register set”
20
11.24 “Local name expected”
20
11.25 “No matching beginproc”
20
11.26 “identifier expected after systrap”
21
11.27 “Creator name-string expected”
21
11.28 “expected right paranthesis following register”
21
11.29 “expected digit or hexdigit following '+'”
21
11.30 “include name expected”
21
11.31 “Clouldn't open include file”
21
11.32
22
11.33 “Expected number after locale symbol bytecode”
22
11.34 “Invalid register range”
22
11.35 "Can only Jsr or Jmp to global code labels (pc)”
22
11.36 "String constant must be specified with dc.b”
22
11.37 “Reference initializion must be dc.l”
22
11.38 “proc not completed”
22
11.39
22
11.37
22
11.38
22
11.39
22
11.40 “Output incomplete”
22
11.41 “Assembly abended”
22
12. OnBoardAsm Bugs
22
12.1 invalid size specification error hung bug
23
12.2 "pc" or "PC" bug
23
12.3 systrap WinDrawChars crash
23
12.4
23
13. Applications you need or might find useful (for your Palm Handheld)
23
13.1 The OnBoardSuite
23
13.1.1 OnBoardC
23
13.1.2 OnBoardAsm
23
13.1.3 SrcEdit
23
13.2 OBDebug
23
13.3 DisAssemblers
23
13.3.1 RsrcEdit
24
13.3.1.1 Possible Rsrc Edit BUG when disassembling mulu
24
13.3.2 BIRD
24
13.3.3 DisAsm
24
13.3.4 Insider
24
13.3.4.1 Insider
24
13.3.4.2 InsiderASM
24
13.3.5 Code68Dis
24
13.4 Other useful applications
24
13.4.1 FileZ
24
13.4.2 PilotHack
24
13.4.3 DragonRegs
24
14. Sources of further information
25
14.1 Processor specific
25
14.2 68000 Assembler tutorials
25
14.2.1 Printed (out of print)
25
14.2.2 Printed (avalible)
25
14.2.3 On the Web
25
14.2.3.1 Aimed for Amiga
26
14.2.3.2 Aimed for Atari
26
14.2.3.3 Aimed for Fargo (and others)
26
14.3 Assembler tutorials for the Palm Handheld specific
26
14.3.1 Pila tutorials
26
14.3.2 EzAsm and tutoraials
27
14.3.3 OnBoardAsm tutorials
27
14.4 Asm Source Code
27
14.4.1 Pila Source Code
27
14.4.3 OnBoardAsm Source Code
27
14.5 News groups
27
15. My Questions
27
16. Future wishes....
28
17. People
28
17.1 OnBoardC coders
28
17.2 OnBoard Inline Asm coders
28
17.3 OnBoard pure Asm coders
28
17.4 Known PalmPilot ASM (Pila) coders
28
18. A small collection of workable OnBC/OnBA Inline ASM code
28
18.1 Example of an inline ASM function returning a value
28
18.2 Example of passing a single variable to an inline ASM function
29
18.3 Example of passing multiple values to an inline ASM function
29
18.4 Example of passing a pointer to an inline ASM function
30
18.5 Example of passing a user defined structure or an array to an inline ASM function
30
18.6 AsmBlitBall
31
18.7 FastBlit_8
31
APPENDIX A: 68000 MICROPROCESSOR Instruction Set Summary
32
APPENDIX B: CrossFire Assembler, By Mark Parry
36
APPENDIX C: 68000 Instruction Set (a description)
91
APPENDIX D: Number systems
102

1. Introduction

All my thanks goes to Roger Lawrence who coded OnBoardC, OnBoardAsm, OBDebug, RsrcEdit and SrcEdit (aka LED) and through all these excellent applications got me started to code for my Palm Handhelds.

And to Paul McKee for his excellent work with the m68k assembler together with the great tutorial “68000 Assembler (User's manual)” from witch I learnt a lot.

1.1 Disclaimer

This document covers...

This is NOT a C programming "How-To", and it's NOT even a "How-To" on how to code in C with OnBoardC. You will learn nothing on how inline asm works withh gcc, CodeWarrior and other PC based compilers by reading this document. This document tries to explain what I've learned so far when doing inline Asm together with OnBoardC only. I'm not full of information (writing this paper is also a learning experience for me) so please, forgive my bad pedagogic, and if you doesn't learn anything at all by reading this document....

1.2 But I don't know C!

Sorry can't help here! But there are many good docs out there.

Try http://www.strath.ac.uk/IT/Docs/Ccourse/

or http://kbs.cs.tu-berlin.de/~jutta/c/c-www.html
or make a search for "C tutorial".

1.2.1 I know C but not the PalmOS API?

Sorry I can't help you here, either! Try Toni Cornelissen's tutorial http://www.ligfiets.net/toni/palm/tutorial/uk/index.htm for programming the for the PalmOS using gcc (2002). Please check out the OnBoardC Users' Guide http://groups.yahoo.com/group/OnBoardC/files/UsersManual.html and the Cookbook: http://groups.yahoo.com/group/OnBoardC/files/Documents/cookbook.html. Or download some code snippits from http://code.marginsoftware.com/ collected by Matthew Bevan.

1.3 General differences between OnBoardC, gcc, FalchStudio and CodeWarrior

1.3.1 OnBoardC

Using OnBoardC is the only way to code in C using the PalmOS API on your handheld, for your handheld. The OnBoardSuite () together with RsrcEdit, now at Quartus (). The code size produced by OnBoardC is somewhat larger compared to gcc (with FalchStudio) and CodeWarrior.

1.3.2 gcc

A free open source suite running on your host computer. It is said that gcc produces the smallest code (in size).

1.3.3 FalchStudio

A commercial shell to the free gcc.

1.3.4 CodeWarrior

A commercial program running on your host computer. CodeWarrior is the tool that Roger Lawrence used when he wrote the OnBoardSuite. CodeWarrior orginate as a Mac developing tool, but it's No longer further developed for the Mac community. Only the PC version is under further development. Mac users only versions 1x->8x. PC users can use all versions. 1.x->9.x. For more information go to the Metrowerks web site: http://www.metrowerks.com/.

1.4 But I don't know m68kAsm?

I have for a long time wanted to learn assmbler for the Palm. It hasn't been easy to find adequate free documents on the Web. Please e-mail me if you know of a topic adequate document that's not been listed. (see 13.x)

1.5 Why use inline Asm?

Assembler is the programming language most close to the machines processor. It's fast and you'll will have an opportunity to make your application smaller, faster and above all make your application do things impossible by coding in C.

1.6 Inline Asm with OnBoardC/Asm

Ever since I started using OnBoardC (spring 1998?) I've learned that OnBoardAsm (the Assembler shipped together with OnBoardC) is a non ducumented application.

This is what the html documentation that came together with OnBoardC/Asm version 1.008 (The last, before Roger Lawrence Open Sourced it) said on the topic about assembler support:

" - minimal assembler support - use the keyword 'asm'. The contents of the function body are sent straight to the assembler (not a lot of error feedback, sorry). To invoke another function, append _00 to the name at the call site:

asm int f()

{

 move.l #3,d0

 rts

}

asm int g()

{

 jsr f_00(pc)

 rts

} "

1.7

2. Inline Asm an introduction

3. Before you start

3.1 The Motorola Processors

For more information see their web site: http://www.motorola.com/.

3.1.1 mc68000

The 68000 instruction Set

3.2 Processors found in PalmHandhelds (running OS 4.x or lower)

3.2.1 mc68328

3.2.2 mc68ez328

3.2.3 mc68vz328

3.3 OnBoardAsm Syntax

 I have to say that my experience with other assemblers (both for the m68k processors and the x86 processors are NILL but I have read quite a few manuals and are ready to state that almost everything you could do with Pila you can do in a very similar manner with OnBoardC. Some assembler directives (such as res,……) are not valid with OnBoardAsm.

The only thing that took me some time to discover was the format of the Data Constant (dc). It looks like OnBoardAsm as the only existing m68k assembler doesn’t take the “label” as the constant name! If you want to Define the Constant “value” as a long-word you have to write the line in this order: [any label] dc.l value. In other words OnBoardAsm doesn’t recognize a code label as a data label.

Declare is taken from Dee Jay.

Define Constant is taken from Paul McKee.

Data Constant is taken from the Pila Users Manual (Darrin Massena).

3.3.1 the Use of UPPER case or lower case code

3.3.2 Source to Destination

label mnemonic source, destination ; comment

3.3.3 .b, .w and .l

size specification

b = "byte" = 8 bits

w = "word" = 16 bits

l = "long" = 32 bits

3.3.4 Parenthesis

3.3.4.1 direct

3.3.4.2 indirect

3.4 Terminology

The assembler accepts files with the following line layout:

 LABEL OPCODE OPERANDS COMMENTS

The LABEL field is optional, but if used it must start in the first column of the line. Fields are separated by spaces or tabs. exemple:

 ORG $2000 Start at location 2000 Hex

 START CLR.W SUM Clear variable SUM

 MOVE.W COUNT,D0 Load COUNT value

 LOOP ADD.W D0,SUM Add D0 to SUM

 SUB.W #1,D0 Decrement counter

 BNE LOOP Loop if counter not zero

 BREAK Tell the simulator to BREAK if running

 SUM DS.W 1 Reserve one word for SUM

 COUNT DC.W 25 Initial value for COUNT

3.4.1 “Opcode”

An opcode (short for operation code) specifies a type of CPU instruction. There are opcodes for reading values from memory, writing values to memory, performing arithmetic, and doing other things. A complete machine code instruction consists of an opcode and maybe some arguments. The arguments may be embedded within the same bytes that specify the opcode, or may be in following bytes. Some instructions consist of only an opcode.

When you compile a program, the compiler translates it into a sequence of instructions. When the program is run, the CPU interprets the opcodes and executes the instructions.

3.4.2 “Token”

A token is the same as a instruction. Which are given as mnemonics. Please have a look at the following exemple:

"move.l d1,d0" The "move" is the token (or the instruction).

3.4.3 “Operand”

Please have a look at the following exemple:

"move.l d1,d0"

The "move" is the instruction (or the token). The ".l" is the data size. Both "d1" and "d0" are operands.
3.4.3.1 “Immediate operand”

If you use a value as an operand (e.g "move.l #100, d0") then this value (decimal 100) is called the "immediate operand".

3.4.4 “Symbol”

3.4.4.1 “Symbol name”

3.4.5 “Label”

(Legal labels follow the rules for forming symbol names described in section 2.2)

Labels may be distinguished in one of two ways: (1) They may begin in column 1, or (2) they may end in a colon, which does not become part of the label but simply serves to mark its end.

A line may consist of a label alone. When a label is encountered in the source code, it is defined to have a value equal to the current location counter. This symbol may be used elsewhere is the program to refer to that location.

3.4.5.1 code label

3.4.5.2 data label

3.4.5.3 local label

3.4.5.4 global label

3.4.6 “Effective Address”

3.4.7 “Register List”

When using “movem” (Move Multiple) you move a “register list”.

3.4.8 “Displacement”

link

3.4.9 “Initializer”

To use a variable you have to initialise it.

dc.b string ‘Hello Word!’, #$00

Here “string” is the initializer.

3.4.10 “References”

Maybe the error message 10.34 can help me further here, Since I don’t know what a reference is.

3.4.11 “Local name”

local value.w ;

3.4.12

3.5 Assembler directives (pseudo opcodes)

3.5.1 dc

Declare term used by Dee Jay.

Define Constant term used by Paul McKee.

Data Constant term used in the Pila Users Manual (Darrin Massena).
3.5.2 data

3.5.3 res

3.5.4 proc

3.5.4.1 beginproc

The assembler directive “beginproc” (also found in Pila) is a very useful tool. When OnBoardAsm gets this directive it will make a size count of all the locals, and use that value (n) as a negative value in when inserting “link a6, #-n” in the code making a workspace for all the variables used in that function.

3.5.4.2 endproc

The assembler directive “endproc” (also found in Pila) is the corresponding directive when “beginproc” is used, “endproc” will simply insert the vital “unlk a6”.

3.5.5 local

Use the assembler directive “local” when you want to use a variable instead of the registers.

3.5.6 include

3.5.7 get

3.5.8 code

3.5.9 creator

The creator assembler directive is probably a feature you don’t need when you’re doing inline Asm with OnBoardC. It is used to define the creator ID of your application witch you normally set in OnBoardC before creation. The syntax is as follows:

creator “inlA”
; This will give your application the creator ID ‘inlA’.

3.5.10 systrap

3.5.11

3.6 Ignored Assembler directives (legal with Pila)

Since so much of the OnBoardAsm syntax is so close to Pila I’ve listed some of the assembler directives that doesn’t work with OnBoardAsm but with Pila.

3.6.1 ds

3.6.2 dcb

3.6.3 org

3.6.4 set

3.6.5 end

3.6.6 equ

3.6.7 struct

3.6.8

4. Inline Asm with OnBoardC/Asm

My first coding with inline asm for OnBoardC were made in march 2003 while coding the viewMem application. I wanted to plagiate the behaviour of PilotHack (by Darrin Massena). I tryed to find a way to read the m68k registers (d0-d7, a0-a6, sp, usp, ssp, ccr and sr) in C but found nothing that helped me. I asked, and got the answer: "You have to make use of inline asm". OK, I thought, collecting material, and started this journey.

4.1 the "asm" C keyword

With the use of the C keyword "asm" you will make the OnBoardC to leave that code part for the OnBoardAsm to handle. (see 1.6)

e.g:

asm void myInlineAsmFunc(void){

 ; this is just a comment

rts ; return subroutine. this instruction is VERY IMPORTANT

 ; without the rts instruction your appl. will cause a Fatal Error!!!

}

4.2 Valid OnBoardAsm mnemonicis

4.3 Comments

It is good to know that OnBoardAsm supports the use of a semi colon (e.g. ;) as a way to comment your Asm code. (Very important). The semi colon in OnBoardAsm workes like the // in C.

e.g:

asm void myInlineAsmFunc(void){

 ; this is just a comment

 move.l d3, d0 ; this instruction copies the hole 32 bit value in data register #4 (d3) and

; fills the data register #1 (d0) with that value.

 rts ; return subroutine

}

4.4 The format of all m68k asm

label Instruction source, destination

4.5 Numbers and values in OnBoardAsm

4.5.1 Decimal values

To make sure OnBoardAsm treats a decimal value as such use "#" as value prefix.

e.g

#100 ; equals 100

asm void myInlineAsmFunc(void){

 ; this is just a comment

 move.l #100, d0 ; give d0 value 100

 rts ; return subroutine

}

4.5.2 Hexadecimal values

To make sure OnBoardAsm treats a hexadecimal value as such use "#$" as value prefix.

e.g

#$100 ; equals 256

asm void myInlineAsmFunc(void){

 ; this is just a comment

 move.l $100, d0 ; give d0 value 256

 rts ; return subroutine

}

4.5.3 Binary values

The OnBoardAsm seams NOT to support the use of "#%" as binary prefix.

The "#%" prefix is normaly the way to tell a assembler that you are using a binary value.

Any ideas?

4.5.4 Octal values

The OnBoardAsm seams NOT to support the use of "#@" as binary prefix.

The "#@" prefix is normaly the way to tell a assembler that you are using an octal value.

Any ideas?

4.5.5 BCD (Binary Coded Decimal) values

?

4.6 the CPU registers

All the mc68xx328 processors has 32-bit registers and a 32-bit program counter, the first eight registers (d0-d7) are data registers that are uesd for byte (8-bit), word (16-bit) and long-word (32-bit) operations. When using the data registers to manipulate data, they affect the status register (sr). The next seven registers (a0-a6) and the stack pointer (sp, usp, ssp) can function as software stack pointers and base address registers. These registers can be used for word and long-word operations, and they do not affect the status register. The d0-d7 and a0-a7 can be used as index registers.

4.6.1 the Data registers (d0-d7)

The 8 CPU Data registers are used for storing different 32bit values, and is used mainly in............. (d0, d1, d2, d3, d4, d5, d6 and d7)

asm UInt32 getD0()

{

 ret ; that's all !

}

asm UInt32 getD3()

{

 move.l D3,D0

 ret

}

4.6.2 the Address registers (a0-a7)

The 8 CPU Address registers are used for storing different 32bit memory addresses (e.g. pointers), and is used mainly in............. (a0, a1, a2, a3, a4, a5, a6 and a7)

asm void *getA0()

{

 ret

}

asm void *getA1()

{

 move.l A1,A0

 ret

}

4.6.2.1 a0 as address return register

4.6.2.2 the Frame Pointer (a6 and/or a5)

The PalmOS makes use of the a6 and a5 registers as FramePointers. The a6 register will point to local data, and the a5 will point to global data. Be very careful when using a5, a6 or sp for your own purposes.

4.6.2.3 the User Stack Pointer register

This register contains the location of the first empty place on the

stack. The stack is used for temporary storage by machine language pro-

grams, and by the computer. (usp)

4.6.2.4 the Supervisor Stack Pointer (ssp)

4.6.2.5 the Condition Code register (ccr)

4.6.3 the Program Counter (pc)

The 32 bit register called Program Counter contains the address of the current machine language instruction beeing executed. (pc).

4.6.3.1 "pc" or "PC"?

4.6.4 the Status register (sr)

The status register consists of 16 bits, and is the only "half length register" (all the others are 32 bits long). This register is often used (internally) when doing comparisons (with cmp) of two values.

4.6.4.1 sr in User mode

4.6.4.2 sr in Supervisor mode

4.7

5.

5.1 Calling a C function

Upon assmebling OnBoardAsm change the function names by adding "_00"

Rev Rend:

“ The “_00” added to identifiers is representative of the "depth" of the declaration within nesting blocks of code. And I think that static declarations should have extra labels appended as well, but might currently be broken.”

(e.g. the C function label "MainFormInit" becomes the asm code label "MainFormInit_00") and gives the function a memory address. Thus it can be called like a subroutione using the Program Pointer (jsr MainFormInit_00(pc))

e.g.

asm void myInlineAsmFunc(void){

 ; this is just a comment

 ; this function is not good for anything (since it doesn't return anything) but

 ; the purpose of showing how to call an function, C or asm.

 move.l #$100, d0 ; give d0 value 256 (the hex value 0x0100)

 jsr ValueInit_00(pc)
; jump to the C (or asm inline?) function

; ValueInit(void).

 rts ; return subroutine

}

5.2 Calling a Label (within the Asm code)

This is more streigt forward. If you make a label named "loop" you could easily branch to that lablel with "bra loop".

e.g.

asm void myInlineAsmFunc(void){

 ; this function will count from 0 to 1024

 ;

 clr d0 ; clear register d0

loop
 ; this is just a label

 addi.l #1, d0 ; give d0 value 4

 cmp.l #1024, d0 ; compare 1024 to d0

 bne loop ; branch if not equal

 rts
 ; return subroutine

}

6. Return value

6.1 d0

With the use of a return value you are making the inline asm function really useful.

The return value of an inline asm function should be stored in the data register d0, since the d0 is standardized return value register.

e.g.

asm UInt16 myInlineAsmFunc(void){

 ; this function will count from 0 to 1024

 ; returning the value in d0

 clr d0 ; clear register d0

loop
 ; this is a label

 addi.l #1, d0 ; give d0 value 4

 cmp.l #1024, d0 ; compare 1024 to d0

 bne loop ; branch if not equal

 rts ; return subroutine

}

6.2 a0

6.3

7. Passing values to a asm inline function

7.1 Passing one value a6 (and a5)

I have found it very difficult to solve this in a easy manner. If you want to use the.....

A value passed to a inline asm function is stored with a reference to address register a6 (who then becomes the Frame Pointer).

You have to create a "workspace" for this label (value) with the asm instruction "link a6, #0" and this is very important: AFTER using the "link" instruction you HAVE to use "unlk". This behaviour is quite alike the MemHandleLock(h) together with the MemHandleFree(h).

e.g.

static UInt16 dummy(UInt8 addValue){}

asm UInt16 myInlineAsmFunc(UInt8 addValue){

 ; this function will count from 0 to >=1024

 ; using addValue as stepping value

 ; returning number of steps (d0)

 link a6, #0 ; creating a 0 byte size workspace.

 clr d0 ; clear register d0

 clr d1 ; clear register d1

loop

 add addValue_00(a6), d1 ; adding addValue to d1

 addi.l #1, d0 ; adding 1 to d0 (loop counter)

 cmp.l #1024, d1 ; compare 1024 to d0

 blt loop
 ; branch to label loop if less than

 unlk a6 ; collapsing the workspace

 rts ; return subroutine

}

7.2 Passing many values to a asm inline function

e.g.

asm UInt32 myInlineAsmFunc(UInt16 stepValue, UInt32 startValue){

; this function will count from 0 to >=1024

; using addValue as stepping value

; returning number of steps (d0)

 link a6, #0 ; creating a 0 byte size workspace.

 clr d0 ; clear register d0

 clr d1 ; clear register d1

 move.l startValue(a6), d1 ;

loop

 add addValue_00(a6), d1 ; adding addValue to d1

 addi.l #1, d0 ; adding 1 to d0 (loop counter)

 cmp.l #1024, d1 ; compare 1024 to d0

 blt loop ; branch to label loop if less than

 unlk a6 ; collapsing the workspace

 rts ; return subroutine

}

7.3 Passing a pointer

7.4

8. Global C variables

Global C variables are referenced in memory with a5 as Frame Pointer, adding “_00” to its name (as with C functions (see 5.1)) but since global variables is a5 relative (and pc relative as functions) you may call a global variable (gVariable) by appending the “_00” and usinging (a5) as Frame Pointer. (gVariable_00(a5)).

8.1 Using, Manipulating and Passing global Values

If you need to use a global value, declared in the C code, bewere! the C compiler 'mangles' the
name by adding _00 to the end. (It's to do with preventing name clashes).

e.g.

UInt16 gValue = 0x0800; // Global value

asm void asmChangeGlobalValue(void){

local value.w

beginproc

 move.w #1024, value(a6)

 add.w value(a6), gValue_00(a5)

endproc

rts

}

8.2 Using, Manipulating and Passing global Pointers

e.g.

char mine[30] = "static string"; // Global string

asm Char* asmGetGlobalString(void) {
local str.l
beginproc
 lea mine_00(a5),a0
 move.l a0,d0
endproc
rts
}

This will return a pointer to the string called mine
when asmGetGlobalString is invoked. So you can copy
the string by using:

StrCopy(p, asmGetGlobalString());.

9. Local data labels (Asm variables)

9.1 variables

This is how I’ve solved the issue of local data variables in a asm function.

a. “initialize” the variable, giving it a name and a size using the assembler directive “locale”.

locale val.w ; initialzing the variable val as a word (UInt16)

b. using the assembler directive “beginproc” makes OnBoardAsm do a size calculation of all local variables. OnBoardC will insert “link a6, #-n” were n is the size of the locales in bytes. Here n=2.

beginproc
; add workspace for the local variables

c. Now you can use the variable by adding (a6) to its name.

move #$8000, val(a6)
; give val the hex value 0x8000

move val(a6), d0
; move val to d0

d. Before return you have to collapse the workspace created with “beginproc”. Please use the assembler directive “endproc” to do so.

endproc

rts

9.2 strings

9.3 structs

9.4

10. Systraps

To invoke a systrap you have to

Trap #15

dc.w $a220

; WinDrawChars

OnBoardAsm also accepts ‘systrap’ as a assembler directive. Right now I don’t know how to use it…

11. Error feedback generated by OnBoardAsm

In the html documentation that came together with OnBoardC/Asm version 1.008 (see 1.6) it’s said that the assembler doesn’t generate “a lot of error feedback”. While trying to learn how inline Asm workes together with OnBoardC/Asm I got these approx. 40 messages.

11.1 “Bad form for immediate operand”

This error message is normally followed by “Assembly abended” (see 11.41)

11.2 [instruction] xxxx xxxx

andi 1000 0001

11.3 “Invalid combination of opcode and operands”

This error message is normally followed by “Assembly abended” (see 11.41)

11.4 “Expected (a5) or (a6) or (pc) following symbol name”

11.5 “Undefined global data label nnn”

Usually this means that you have do declare the inline asm function at the top of the C code.

e.g.

asm UInt16 myInlineAsmFunc(Uint8 addValue);

This error message is normally followed by “Global fixup to unknown data label” (see 11.6)
11.6 “Global fixup to unknown data label”

Check your inline asm function.

This error message is normally followed by “Output incomplete” (see 11.40)

11.7 “Global fixup from xxx(x)xxxx d to unknown code label n_a”

This error occurs when you have a call to a non excisting function.

"This error occurs when you have a function prototype but no

function." d = displacement. n = called function name, _a = extra string added by the assembler.

11.8 “Branch to unknown local label”

Check your inline asm function for branch (bxx) instructions, you have to change the label (following the bxx instrunction) to a valid (existing) one.

This error message is normally followed by “Assembly abended” (see 11.41)

11.9 “Expected operand”

This error message is normally followed by “Assembly abended” (see 11.41)

11.10 “Expected An or PC in operand”

When you are trying to do things with a memory address (e.g memory location 100 in "move.l 100, d0") the OnBoardAsm assumes you know what you're doing and it begs you to change it to something like: "move.l (100), a0 ; give a0 the contence of memory location 100." How ever it's likely that you wanted to give the value 100 to d0. Thus changing the line to to: "move.l #100, d0 ; give d0 value 100"

This error message is normally followed by “Assembly abended” (see 11.41)

11.11 “Expected comma or right parenthesis in operand for move”

Check your inline asm function for move instruction.

This error message is normally followed by “Assembly abended” (see 11.41)

11.12 “Duplicate local code label”

Check your inline asm function code labels. You have to change the name on one of them. It may look like this:

asm void asmInlineFunc(void){

start
; a code label

 move.l d1,d0

start
; should be another code label

 move.l d2,d1

 …

}

This error message is normally followed by “Assembly abended” (see 10.41)

11.13 “Unexpected token”

This error message is normally followed by “Assembly abended” (see 10.41)

11.14 “Unexpected token in operand”

You have made use of a token (an instruction) as a operand. It might look like this: "move.w add, d0". Please notice the "add" the asm token for addition. You may want to change the line to something like "move.w add_00(a6), d0".

Or you may have a line looking like this move “Hello world!”, gStr_00(a6)” The unexpected token is the “.

This error message is normally followed by “Assembly abended” (see 10.41)

11.15 “Unknown local symbol”

This error message is normally followed by “Assembly abended” (see 10.41)

11.16 “invalid size specification”

You may have used an other letter than b, w or l for size specification. It might look like this "move.d #12, d0" You may want to change this to: "move.b #12, d0". (see 11.1)

11.17 “Global fixup from x(y)vv d to unknown code label string”

... x is ?, y is ?, v is the value, d is the displacement

11.18 “initializer expected”

You may have a line looking like this:

dc.b ‘Hello world!’, #$00

OnBoardAsm needs a “initializer”. (e.g. a label).

dc.b lStr ‘Hello world!’, #$00

This error message is normally followed by “Assembly abended” (see 11.41)

11.19 “Duplicate local code label”

11.20 “Can only initialize global data with references”

This error message is normally followed by “Assembly abended” (see 11.41)

11.21 “Can't have a proc in a data seg”

11.22 “Proc already in progress”

11.23 “Expected register in register set”

11.24 “Local name expected”

This error message is normally followed by “Assembly abended” (see 10.41)

11.25 “No matching beginproc”

11.26 “identifier expected after systrap”

OnBoardAsm does except “systrap” as an assembler directive (see. 3.5.10).

This error feedback message is launched when OnBoardAsm doesn’t understand which systrap you’re trying to invoke. Your line may look something like:

systrap $a220

At the moment I haven’t figured out how exactly a valid systrap line should look like.

What I do know is that Your Handheld will crash if you try:

systrap WinDrawChars

For now, please try:

trap #$f

dc.w $a220

; WinDrawChars

This error message is normally followed by “Assembly abended” (see 11.41)

11.27 “Creator name-string expected”

Upon using the assembler directive “creator” (see 3.5.9) you have forgotten to use double quotes. Your line may look something like:

Creator ‘inlA’
; This is non valid

Please change to:

Creator “inlA”
; This will give your application Creator ID ‘inlA’

This error message is normally followed by “Assembly abended” (see 11.41)

11.28 “expected right paranthesis following register”

localString(pc+) expected right paranthesis following register

This error message is normally followed by “Assembly abended” (see 11.41)

11.29 “expected digit or hexdigit following '+'”

localString+(pc) expected digit or hexdigit following '+' Aa

This error message is normally followed by “Assembly abended” (see 11.41)

11.30 “include name expected”

include include name expected

This error message is normally followed by “Assembly abended” (see 11.41)

11.31 “Clouldn't open include file”

include "extra.asn" Clouldn't open include file

This error message is normally followed by “Assembly abended” (see 11.41)

11.32

11.33 “Expected number after locale symbol bytecode”

11.34 “Invalid register range”

11.35 "Can only Jsr or Jmp to global code labels (pc)”

11.36 "String constant must be specified with dc.b”

11.37 “Reference initializion must be dc.l”

11.38 “proc not completed”

11.39

11.37

11.38

11.39

11.40 “Output incomplete”

I have not found anything that makes the meaning of this error feedback any different from “Assembly abended” (11.41). But I’m sure there are a difference…..

11.41 “Assembly abended”

This message is telling you that OnBoardAsm could NOT assemble the code resource(s) and has stopped the assembling procedure without saving any work done. (see

12. OnBoardAsm Bugs

12.1 invalid size specification error hung bug

After showing the error message "invalid size specification" OnBoardAsm hung your handheld. The only way out of this "hung" is to reset your palmheld.

12.2 "pc" or "PC" bug

12.3 systrap WinDrawChars crash

12.4

13. Applications you need or might find useful (for your Palm Handheld)

I use all these applications daily. Please notice that they are ALL INTENDED for use with the m68k processors. They might NOT work with an ARM processor based Palm Handheld.

Not even emmulating the m68k processor....

13.1 The OnBoardSuite

After being developed by Roger Lawrence the code to OnBoardC, OnBoardAsm and SrcEdit (aka LED) was made Open Source and it's now downloadable from . you have to install at least OnBoardC.prc, OnBoardAsm.prc and one OnBoardHeader.h.pdb to be able to try inline asm with OnBoardC/Asm.

13.1.1 OnBoardC

(Open Source)

13.1.2 OnBoardAsm

(Open Source)

13.1.3 SrcEdit

The SrcEdit (Open Source) application, first coded by Roger Lawrence, then it was called "LED" is the most perfect C language code editor there is witch runs on a Palm handheld. The ability for colour high lightening is very handy. It's Open Source.

13.2 OBDebug

The OBDebug (Freeware) is the only Debugger that runs on a Palm handheld. It's "almost" undocumented and not currently developed. However this is an extra ordinary tool you should have it. As any other debugger OBDebug is good for register dump.

13.3 DisAssemblers

13.3.1 RsrcEdit

RsrcEdit (Shareware) was originally code by Roger Lawrence and later sold to Quartus.net. It's capable of doing many marvellous things besides of it's main purpose: being a resource editor for coders who likes to code for the machine, on the machine it's a hex editor and a disassembler.

13.3.1.1 Possible Rsrc Edit BUG when disassembling mulu

13.3.2 BIRD

This is a OpenSource (written in Pascal) resource Editor by Philippe Guillot.

13.3.3 DisAsm

Disassembler (Open Source) v.0.6.2.1 by Per Harald Myrvang, 1998 (based on Bill Rogers' Amiga code) http://www.palmgear.com/software/showsoftware.cfm?prodID=1836
13.3.4 Insider

Insider (Shareware) (v4.0.0r) v4.0.1 by Sylvain Beaulieu, 1998-2000

This application is no longer supported and without paying you don't get the vital InsiderASM.prc. http://pages.infinit.net/jtsb/f_pilot_insider.html
13.3.4.1 Insider

13.3.4.2 InsiderASM

13.3.5 Code68Dis

By John Wilund orlando@runbox.com It’s my own disassembler. It’s Free.

13.4 Other useful applications

13.4.1 FileZ

FileZ (Open Source) by Tom Bulatewicz (nosleep software). Among many other great things FileZ is a HexEditor. http://www.palmgear.com/software/showsoftware.cfm?prodID=9992
13.4.2 PilotHack

PilotHack (Freeware) by Darrin Massena, A lovely little tool for reading the memory contence of your Palm handheld.

Written (in Pila ASM) for use with the Pilot500 and the PalmPilot in 1996?

Also good for register dump. This software will surly crash on a ARM based handheld. http://www.massena.com/darrin/pilot/PILHACK1.ZIP
13.4.3 DragonRegs

DragonRegs (Freeware) v.1.1 by FOCUS Software Engineering, 2001, will show all values of the CPU registers (found at memory address $fffff000 and decreasing). It comes with a very good documentation. And this software is supported.

http://www.focus-sw.com/downloads/DragonRegs.zip

14. Sources of further information

I have found it very hard to get the information I needed to learn asm for programming Palm Handhelds. Since Amiga, Atari and Fargo (a TI calculator) all were equipped with the 68000 processor and due to the limited RAM space in those machines assembler language programming tutorials are quite easy to find. (see 11.2). But very few aimed at Palm Asm coding. http://www.programmersheaven.com/zone5/cat123/index.htm or http://www.codebox.8m.com/assembly.htm
14.1 Processor specific

68000.pdf

The 68000 Instruction Set

http://www.grid.unina.it/Didattica/CE/CEI/INFORMATICA/68k/68000.pdf
M68000PRM.pdf (1,6 MB)

Programmers Reference Manual (Motorola)

http://e-www.motorola.com/collateral/M68000PRM.pdf
14.2 68000 Assembler tutorials

68000 instruction set summary

http://www.concentric.net/~alxevans/68000.txt
68000 instruction set

http://www.fe.psu.edu/~ajg2/eet211_pp/Instrs/index.htm
68000 registers set

http://ironbark.bendigo.latrobe.edu.au/courses/subjects/c206/2001/68K/68K.assembler/registers.html
14.2.1 Printed (out of print)

Programming the 68000 by Steve Williams ©1985 (Sybex Inc.)

Assembly Language Programming for the 68000 by Arthur Gill ©1987 (Prentice Hall) ISBN: 0130495298

14.2.2 Printed (avalible)

The Motorola MC68000 by Jean Bacon

MC68000 Assembly Language Programming by Brian Bramer

68000 Assembly Language Programming by Lance A. Levanthal

Programming the M68000 by Tim King and Brian Knight

14.2.3 On the Web

"68000 Assembler (User's manual)", by Paul McKee, North Carolina State University

(This is the origin of Pila, see 13.3.1)

http://ti89.acz.org/archive/asm.txt
"68000 ASSEMBLER MANUAL" (Modified from the BSVC documentation, 9 Apr 2002)

http://www.cs.umanitoba.ca/~cs222/Documents/68kAssembler.html
"68000 ASSEMBLER USER'S MANUAL"

http://www.ece.iit.edu/ftp/242/Asm.doc

"NCSU 68000 Assembler, User's Manual"

http://www.ndsu.nodak.edu/instruct/tareski/373f98/notes/asm/ncsuasm.htm
14.2.3.1 Aimed for Amiga

The Amiga Assembler Page

http://amycoder.hypermart.net/amamain.html

"AMIGA MACHINE LANGUAGE" by Dee Jay

http://wuarchive.wustl.edu/aminet/dev/asm/ADisV1_3.lha

"Asm Course" by David Sjölin (Zarniwoop)

http://www.ida.his.se/~a98davsj/amigaasm.html

14.2.3.2 Aimed for Atari

"The 68000 Machine Language Course", by Mark van den Boer (1990) (part 1-6): http://mermaid.c64scene.org/download/coderscorner/amicode1.txt

"The 68000 Machine Language Course", by Mark van den Boer (1990) (part: 7-10): http://mermaid.c64scene.org/download/coderscorner/amicode2.txt

"The Atari ST M68000 tutorials", by Andreas Wahlin (Warrior Munk)

http://w3.informatik.gu.se/~a01andy/ALLTUTS.ZIP

14.2.3.3 Aimed for Fargo (and others)

"The Guide to 68000 Assembly Language" (v 1.1.1) by Jimmy Mårdell

14.3 Assembler tutorials for the Palm Handheld specific

There are really only one assembler who run at a Host computer (not on a handheld).

Pila ver 1.0 Beta 2,the original (by Darrin Massena and Wes Cherry)

http://www.massena.com/darrin/pilot/pila/pilaum.htm

Pila fluff (maintained by Mikael Klasson) the successor of Pila.

The latest version is Pila 1 Beta Fluff 7

http://mklasson.cjb.net/

Pila Rudla. I'm not sure about this one. It's said that this is an updated version of

Pila 1 Beta 3 Fluff 7. Check it out for your self:

http://www.questions.cz/development.html

Pila_st (ported to Atari by Bodo Wenzel)

http://apollo.spaceports.com/~bodo4all/atari/pila_st.htm

In addition to the different flavours of Pila there are also the C/Asm code optimizer:

EzAsm, (by Joe Siebenmann) http://www.geocities.com/ezasm/
14.3.1 Pila tutorials

Pila Usersmanual, Darrin Massena & Wes Cherry, 1996

Pila 1 Beta 2 http://www.massena.com/darrin/pilot/pila/pilaum.htm

PalmPilot software development using Pila, by Alan Jay Weiner (1998)

http://www.ajw.com/Pila.htm

Latigo a has written these three tutorials:

Hello tiny world

http://www.southernlabs.com/gameroom/Coding/Palm/palmtut1.zip

The First Form

http://www.southernlabs.com/gameroom/Coding/Palm/palmtut2.zip

Using Fields!

http://www.southernlabs.com/gameroom/Coding/Palm/palmtut3.zip

14.3.2 EzAsm and tutoraials

Since the EzAsm workes more like a code optimizer (C and Asm code) than a Assembler (it calls Pila for the final assembling) it might be a litle of topic but it's html documentation has a quite nice assembly addressing modes tutorial. http://www.geocities.com/ezasm/EZAsm.htm
14.3.3 OnBoardAsm tutorials

None.

14.4 Asm Source Code

http://www.programmersheaven.com/zone5/cat462/index.htm

14.4.1 Pila Source Code

Andrew Howlett had a page called "Pila Source Code Page" wich no longer are available.

Jaime 11 (by Jaime A. Maturana Viera) http://www.palmgear.com/software/showsoftware.cfm?sid=97CF0DC6-7527-433E-B17D395537A004AC&prodID=41928

Arcoiris 1 (by Jaime A. Maturana Viera) http://www.palmgear.com/software/showsoftware.cfm?sid=97CF0DC6-7527-433E-B17D395537A004AC&prodID=41920
14.4.3 OnBoardAsm Source Code

None.

14.5 News groups

news://news.falch.net/pilot.programmer.pila

15. My Questions

Is it possible to use Octal and Binary Values?

Is it possible to have "asm one liners" in a C function?

16. Future wishes....

I want to be able to make use of Octal and Binary Values.

I want to have the opportunity of "asm one liners" in a C function.

I do hope for a "Create error list option" or a "Back to code line" function like when working with C code errors.

Hopefully there will be a Assembler both for the ARM-processor (found in Tungsten T) as for the m68k-processors (with documentation) the runs on the handheld it self. Please, for the processors used in the differnt handhelds made by Palm, see the specificatn table at

17. People

17.1 OnBoardC coders

17.2 OnBoard Inline Asm coders

Tristan Dargay t@tristand.co.uk

Jude Nelson pda_h4x0r@yahoo.com

17.3 OnBoard pure Asm coders

Rev Rend revrendi@yahoo.com

I've started to get together a page describing use
of OnBoard Asm in general. What I would like to do eventually
is describe a technique for using OnBoard Asm to
assemble a full program, but I'm not nearly there yet.
I think that some of the info might be of interest to
you. And of course feel free to take anything from
here to use in the document about inline assembly that
you're working on. The page is at:

http://www.unrooted.net/hacking/palm/onboardasm.html
17.4 Known PalmPilot ASM (Pila) coders

Thomas Jawer

Carsten Köckritz mailto:defjam_cp@gmx.net

Jaime A. Maturana Viera mailto:jaimematurana@hotpop.com
18. A small collection of workable OnBC/OnBA Inline ASM code

18.1 Example of an inline ASM function returning a value

by Tristan Dargay

An inline ASM function always returns the data held in register d0.

So the following function returns 13245

// Begin Example

static UInt16 AsmReturnExample(void) // Function Prototype

asm UInt16 AsmReturnExample(void)

{

clr.l
d0

;clear the return register.

move.w
#13245,d0
;put in the desired return value

rts

;return

}

// End Example

18.2 Example of passing a single variable to an inline ASM function

by Tristan Dargay

When you pass a value to a function the data passed is pushed onto the top of the stack. Then the return address of the call is pushed onto the stack.

This means that the first variable you pass the function is stored in the memory location offset by 4 from the stack pointer. This can be accessed using '4(sp)'

In this example you pass the function X and the function returns X * 2

// Begin Example

static UInt16 AsmMultByTwo(UInt16 X); // Function Prototype

asm UInt16 AsmMultByTwo(UInt16 X)

{

clr.l

d0

;clear the return register

move.w
4(sp),d0

;Load X into d0

add.w

4(sp),d0

;Add X onto d0

rts

;return

}

// End Example

18.3 Example of passing multiple values to an inline ASM function

by Tristan Dargay

When you pass multiple values to a function the data passed is pushed onto the top of the stack. Then the return address of the call is pushed onto the stack.

This means that the first variable you pass the function is stored in the memory location offset by 4 from the stack pointer. This can be accessed using '4(sp)'. The second value you pass the function is offset from the previous one by the length of the previous value passed.

In this example you pass the function X, Y and Z and the function returns X + Y + Z

// Begin Example

static UInt32 AsmAddValues(UInt8 X, UInt16 Y, UInt32 Z) // Function Prototype

asm UInt32 AsmAddValues(UInt8 X, UInt16 Y, UInt32 Z)

{

clr.l
d0

;clear the return register

move.b
4(sp),d0
;Load X into d0

add.w
5(sp),d0
;Add Y to d0

;Y is at 5(sp) because X is 1 byte long

add.l
7(sp),d0
;Add Z to d0

;Z is at 7(sp) because Y is 2 bytes long

;The next variable passed would have address

;11(sp) because Z is 4 bytes long.

rts

;return

}

// End Example

18.4 Example of passing a pointer to an inline ASM function

by Tristan Dargay

Passing a pointer is very similar to passing any other value. Just remember that the pointer passed is always 4 bytes long.

When you pass a pointer to a function the address passed is pushed onto the top of the stack. Then the return address of the call is pushed onto the stack.

If you wish to pass multiple pointers or a mixture of pointers and other data to a function refer to the section on passing multiple values. Just remember that a pointer is always 4 bytes long.

In this example you pass the function a pointer to X and the function returns replaces X with X * 2.

// Begin Example

static void AsmMultPointerByTwo(UInt16 *X); // Function Prototype

UInt16 X = 28;

asm void AsmMultPointerByTwo(UInt16 *X)

{

clr.l

a0

;clear address register a0

move.l

4(sp),a0

;Load address of X into a0

add.w

(a0),(a0)

;Add X onto X

rts

;return

}

AsmMultPointerByTwo(&X);
//call the function.

// X now contains 56.

// End Example

18.5 Example of passing a user defined structure or an array to an inline ASM function

by Tristan Dargay

As should be clear from the previous sections, accessing the functions passed to a function just involves adding up the sizes of the preceding arguments and using this as an offset to 4(sp).

Passing a struct is just the same. For the following example of a structure I will just detail the offsets of each element in the structure:

typedef struct MyStruct{

UInt32
FieldOne;

UInt32
FieldTwo;

UInt16
FieldThree;

Char

FieldFour;

UInt16
FieldFive;

Char

FieldSix[3];

UInt32
FieldSeven;

}

This structure contains seven elements, one of which is an array. The addresses of each are detailed in the table below along with an example of moving their contents into register d0.

Element Name
Address
Example

FieldOne
4(sp)
move.l 4(sp),d0

FieldTwo
8(sp)
move.l 8(sp),d0

FieldThree
12(sp)
move.w 12(sp),d0

FieldFour
14(sp)
move.b 14(sp),d0

FieldFive
15(sp)
move.w 15(sp),d0

FieldSix[0]
17(sp)
move.b 17(sp),dp

FieldSix[1]
18(sp)
move.b 18(sp),do

FieldSix[2]
19(sp)
move.b 19(sp),d0

FieldSeven
20(sp)
move.l 20(sp),do

18.6 AsmBlitBall

by Tristan Dargay

// simple function to blit a 12x12 bitmap from *src (a 12x12 bitmaps data)
// to *dst at X,Y on a 320x320 bitmap

asm void AsmBlitBall(UInt8 *src, UInt8 *dst, UInt32 X, UInt32 Y)
{
move.l d0-d1/a0-a1,-(sp)

move.l 20(sp),a0 ;src address
move.l 24(sp),d0 ;dest address
add.l 28(sp),d0 ;dest address + X
move.l 32(sp),d1 ;Y
muls.w #320,d1 ;Y * 320
add.l d1,d0 ;dest address + X + 320Y
move.l d0,a1

move.l #11,d0 ;row counter

ROW_LOOP
move.l #11,d1 ;column counter

COLUMN_LOOP
move.b (a0),(a1) ;copy the data
adda.l #1,a0 ;increment src
adda.l #1,a1 ;increment dst
dbeq d1,COLUMN_LOOP ;decrement and loop until d1 == 0

adda.l #308,a1 ;set dst to next line
dbeq d0,ROW_LOOP ;decrement and loop until d0 == 0

movem.l (sp)+,d0-d1/a0-a1
rts
}
18.7 FastBlit_8

by: Jude Nelson

It seems that one cannot put a colon after a label name (this
explains why "color_loop:" returned an error). Also, global
variables need "_00" at the end of their name (this explains why
SCREENHEIGHT, src, and dest (I made them global too) didn't
assemble). Additionally, I learned that local variables need a
stack frame, so one needs to have the line "link a6,#8" (or whatever
size) at the beginning of the function and the line "unlk a6" at the
end. Finally, the function needed "rts" at the end of the block.

Now, the function looks like this:

int SCREENHEIGHT=160;
UInt8* src; //back buffer bits
UInt8* dest; //front buffer bits

asm void FastBlit_8(void)
{
move.l d0-d7/a0-a6,-(a7) ;push register contents
move.l src_00(a5),a0 ;a0 points to the source bits
move.l dest_00(a5),a1 ;a1 points to the destination bits
;for some reason, OnBA likes "move" instead of "movea" for a0-a7
move.l SCREENHEIGHT_00(a5),d0 ;d0 stores screen height
sub #1,d0 ;decrease d0 slightly--the first line is at y=0

color_loop
movem.l (a0)+,d1-d7/a2-a4 ;load 40 bytes from the back buffer to
registers
movem.l d1-d7/a2-a4,(a1) ;load those bytes to the front buffer
adda.l #40,a1 ;advance front buffer pointer by 40 bytes
;repeat...
movem.l (a0)+,d1-d7/a2-a4
movem.l d1-d7/a2-a4,(a1)
adda.l #40,a1
movem.l (a0)+,d1-d7/a2-a4
movem.l d1-d7/a2-a4,(a1)
adda.l #40,a1
movem.l (a0)+,d1-d7/a2-a4
movem.l d1-d7/a2-a4,(a1)
adda.l #40,a1
;160 bytes copied == 1 line
dbra d0,color_loop ;decrease d0, branch to color_loop if not zero

movem.l (a7)+,d0-d7/a0-a6 ;pop register contents
rts ;return
}

APPENDIX A: 68000 MICROPROCESSOR Instruction Set Summary

--

| |

| |

| Motorola |

| |

| 666 88888 000 000 000 |

| 6 8 8 0 0 0 0 0 0 |

| 6 8 8 0 0 0 0 0 0 0 0 0 |

| 666666 88888 0 0 0 0 0 0 0 0 0 |

| 6 6 8 8 0 0 0 0 0 0 0 0 0 |

| 6 6 8 8 0 0 0 0 0 0 |

| 66666 88888 000 000 000 |

| |

| 68000 MICROPROCESSOR Instruction Set Summary |

| |

| |

| |

| |

| |

| |

| |

| |

| _________ _________ |

| | __/ | |

| <--> D4 -|1 64|- D5 <--> |

| <--> D3 -|2 63|- D6 <--> |

| <--> D2 -|3 62|- D7 <--> |

| <--> D1 -|4 61|- D8 <--> |

| <--> D0 -|5 60|- D9 <--> |

| <-- ~AS -|6 59|- D10 <--> |

| <-- ~UDS -|7 58|- D11 <--> |

| <-- ~LDS -|8 57|- D12 <--> |

| <-- R/~W -|9 56|- D13 <--> |

| --> ~DTACK -|10 55|- D14 <--> |

| <-- ~BG -|11 54|- D15 <--> |

| --> ~BGACK -|12 53|- GND |

| --> ~BR -|13 52|- A23 --> |

| Vcc -|14 51|- A22 --> |

| --> CLK -|15 50|- A21 --> |

| GND -|16 68000 49|- Vcc |

| <--> ~HALT -|17 48|- A20 --> |

| <--> ~RESET -|18 47|- A19 --> |

| <-- ~VMA -|19 46|- A18 --> |

| <-- E -|20 45|- A17 --> |

| --> ~VPA -|21 44|- A16 --> |

| --> ~BERR -|22 43|- A15 --> |

| --> ~IPL2 -|23 42|- A14 --> |

| --> ~IPL1 -|24 41|- A13 --> |

| --> ~IPL0 -|25 40|- A12 --> |

| <-- FC2 -|26 39|- A11 --> |

| <-- FC1 -|27 38|- A10 --> |

| <-- FC0 -|28 37|- A9 --> |

| <-- A1 -|29 36|- A8 --> |

| <-- A2 -|30 35|- A7 --> |

| <-- A3 -|31 34|- A6 --> |

| <-- A4 -|32 33|- A5 --> |

| |______________________| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

|Written by Jonathan Bowen |

| Programming Research Group |

| Oxford University Computing Laboratory |

| 8-11 Keble Road |

| Oxford OX1 3QD |

| England |

| |

| Tel +44-865-273840 |

| |

|Created January 1983 |

|Updated April 1985 |

|Issue 1.4 Copyright (C) J.P.Bowen 1985|

--

--

|Mnemonic |XNZVC|BWL|Description |Notes |

|-----------+-----+---+----------------------+-----------------|

|ABCD s,d |*?*?*|X |Add BCD format |d=BCD{d+s+X} |

|ADD s,d |*****|XXX|Add binary |d=d+s |

|ADDA s,An |-----| XX|Add Address |An=An+s |

|ADDI #e,d |*****|XXX|Add Immediate |d=d+e |

|ADDQ #q,d |*****|XXX|Add Quick |d=d+q |

|ADDX s,d |*****|XXX|Add Extended |d=d+s+X |

|AND s,d |-**00|XXX|Logical AND |d=d&s |

|ANDI #e,d |-**00|XXX|Logical AND Immediate |d=d&e |

|ASlr d |*****|XXX|Arithmetic Shift |d=d*2 or d=d/2 |

|Bcc l |-----|XX |Branch conditionally |If cc BRA |

|BCHG s,d |--*--| XX|Bit test and Change |BTST,d=Z |

|BCLR d |--*--| XX|Bit test and Clear |BTST,d=0 |

|BRA l |-----|XX |Branch Always |PC=l |

|BSET d |--*--| XX|Bit test and Set |BTST,d=1 |

|BSR l |-----|XX |Branch to Subroutine |-[SP]=PC,PC=l |

|BTST d |--*--| XX|Bit Test |Z=~d |

|CHK s,Dn |-*???| X |Check register |If 0>Dn>s $[18H] |

|CLR d |-0100|XXX|Clear operand |d=0 |

|CMP s,Dn |-****|XXX|Compare |Dn-s |

|CMPA s,An |-****|XXX|Compare Address |An-s |

|CMPI #e,d |-****|XXX|Compare Immediate |d-e |

|CMPM s,d |-****|XXX|Compare Memory |d-s |

|DBcc Dn,l |-----| |Decrement and Branch |If~cc&Dn-1~-1 BRA|

|DIVS s,Dn |-***0| X |Signed Division |Dn={Dn%s,Dn/s} |

|DIVU s,Dn |-***0| X |Unsigned Division |Dn={Dn%s,Dn/s} |

|EOR Dn,d |-**00|XXX|Exclusive OR |d=dxDn |

|EORI #e,d |-**00|XXX|Exclusive OR Immediate|d=dxe |

|EXG r,r |-----| X|Exchange registers |r<->r |

|EXT Dn |-**00| XX|Extend sign |Dn=Dn |

|JMP d |-----| |Jump |PC=d |

|JSR d |-----| |Jump to Subroutine |-[SP]=PC,PC=d |

|LEA s,An |-----| X|Load Effective Address|An=EA{s} |

|LINK An,#nn|-----| |Link and allocate |-[SP]=An=SP=SP+nn|

|LSlr d |***0*|XXX|Logical Shift |d=->{C,d,0}<- |

|MOVE s,d |-**00|XXX|Move data |d=s |

|MOVE s,CCR|*****| X |Move to CCR |CCR=s |

|MOVE s,SR |*****| X |Move to SR |SR=s |

|MOVE SR,d |-----| X |Move from SR |d=SR |

|MOVE USP,An|-----| X|Move User SP |USP=An or An=USP |

|MOVEA s,An |-----| XX|Move Address |An=s |

|MOVEM s,d |-----| XX|Move Multiple register|rr=s or d=rr |

|MOVEP s,d |-----| XX|Move Peripheral data |d=Dn or Dn=s |

|MOVEQ #q,d |-**00| X|Move Quick |d=q |

|MULS s,Dn |-**00| X |Signed Multiply |Dn=Dn*s |

|MULU s,Dn |-**00| X |Unsigned Multiply |Dn=Dn*s |

|NBCD d |*?*?*|X |Negate BCD format |d=BCD{-d-X} |

|NEG d |*****|XXX|Negate |d=-d |

|NEGX d |*****|XXX|Negate with Extend |d=-d-X |

|NOP |-----| |No Operation | |

|NOT d |-**00|XXX|Logical NOT |d=~d |

|OR s,d |-**00|XXX|Inclusive OR |d=dvs |

|ORI #e,d |-**00|XXX|Inclusive OR Immediate|d=dve |

|PEA s |-----| X|Push Effective Address|-[SP]=EA{s} |

|RESET |-----| |Reset external devices|Reset line=0 |

|ROlr d |-**0*|XXX|Rotate |d=->{d}<- |

|ROXlr d |***0*|XXX|Rotate with Extend |d=->{d}<-,X=C |

|RTE |*****| |Return from Exception |SR=[SSP]+,RTS |

|RTR |*****| |Return and Restore |SR=[SP]+,RTS|

|RTS |-----| |Return from Subroutine|PC=[SP]+ |

|SBCD s,d |*?*?*|X |Subtract BCD format |d=BCD{d-s-X} |

|Scc d |-----|X |Set conditionally |d=0 or d=-1 |

|STOP #nn |*****| |Load status and Stop |SR=nn, wait |

|SUB s,d |*****|XXX|Subtract binary |d=d-s |

|SUBA s,An |-----| XX|Subtract Address |An=An-s |

|SUBI #e,d |*****|XXX|Subtract Immediate |d=d-e |

|SUBQ #q,d |*****|XXX|Subtract Quick |d=d-q |

|SUBX s,d |*****|XXX|Subtract with Extend |d=d-s-X |

|SWAP Dn |-**00| X |Swap register halves |Dn<->Dn |

|TAS d |-**00|X |Test And Set |d=1 |

|TRAP #n |-----| |Trap (n=0-15)|$[80H+4*n] |

|TRAPV |-----| |Trap on Overflow |If V=1 $[1CH] |

|TST d |-**00|XXX|Test |d |

|UNLK An |-----| |Unlink |SP=An,An=[SP]+ |

|-----------------+---+--|

|DC e(,...) |XXX|Define Constant |

|DS e |XXX|Define Storage |

--

--

|Mnemonic |XNZVC|BWL|Description |

|-----------+-----+---+--|

| CCR |-*01?| |Unaffected/affected/reset/set/unknown |

| T | | |Trace mode flag (Bit 15) |

| S | | |Supervisor/user mode select (Bit 13) |

| In | | |Interrupt mask flag #n (Bits 8-10,n=0-2)|

| X |X | |Extend flag (Bit 4) |

| N | N | |Negative flag (Bit 3) |

| Z | Z | |Zero flag (Bit 2) |

| V | V | |Overflow flag (Bit 1) |

| C | C| |Carry flag (Bit 0) |

|-----------------+---+--|

| .B |X |Byte attribute (8-bit, .S for branch) |

| .W | X |Word attribute (16-bit) |

| .L | X|Long word attribute (32-bit) |

|---------------------+--|

| Dn |Data register direct addressing |

| An |Address register direct addressing |

| [An] |Register indirect addressing |

| [An]+ |Post-increment register indirect addr. |

| -[An] |Pre-decrement register indirect addr. |

| n[An] |Offset register indirect addressing |

| n[An,r] |Index register indirect addressing |

| nn |Short absolute data addressing |

| nnnn |Long absolute data addressing |

| nn |Program counter relative addressing |

| nn[r] |Program counter with index addressing |

| #e |Immediate data addressing |

|---------------------+--|

|ABSOLUTE_LONG |Long Absolute addressing (or ABS_LONG)|

|ABSOLUTE_SHORT |Short Absolute addressing (or ABS_SHORT)|

|EVEN |Set program counter to Even address |

|NO_RORG |Disable Relative addressing (or PC_DEP)|

|RORG |Enable Relative addressing (or PC_INDEP)|

|---------------------+--|

| An |Address register (16/32-bit, n=0-7) |

| CCR |Condition Code Register (8-bit, low SR) |

| Dn |Data register (8/16/32-bit, n=0-7) |

| PC |Program Counter (24-bit) |

| SP |Active Stack Pointer (equivalent to A7) |

| SR |Status Register (16-bit) |

| SSP |Supervisor Stack Pointer (32-bit) |

| USP |User Stack Pointer (32-bit) |

|---------------------+--|

| BCD{ } EA{ } |Binary Coded Decimal/Effective Address |

| cc |Condition = (T/F/HI/LS/CC/CS/NE/EQ/ |

| | VC/VS/PL/MI/GE/LT/GT/LE) |

| d s |Destination/source |

| e n nn nnnn |Any/8-bit/16-bit/32-bit expression |

| l |Branch displacement label (8/16-bit) |

| lr |Left/right direction = (L/R) |

| q |Quick expression (1-8) |

| r |Any register An or Dn |

| rr |Multiple registers (-=range,/=separator)|

| + - * / % |Add/subtract/multiply/divide/remainder |

| & ~ v x |AND/NOT/inclusive OR/exclusive OR |

| ->{ }<- <-> |Rotate left or right/exchange operands |

| [] -[] []+ |Indirect/autoincrement/autodecr. address|

| < > |Bit number/bit range/high half/low half |

| { } {,} |Combination of operands |

| $ |Software trap -[SP]=PC,-[SP]=SR,PC=... |

|---------------------+--|

| 0000H to 0007H |Reset vector (initial SSP and PC) (0-1)|

| 0008H to 000BH |Bus error vector (2)|

| 000CH to 000FH |Address error vector (3)|

| 0010H to 0013H |Illegal instruction vector (4)|

| 0014H to 0017H |Zero divide vector (5)|

| 0018H to 001BH |CHK instruction vector (6)|

| 001CH to 001FH |TRAPV instruction vector (7)|

| 0020H to 0023H |Privilege violation vector (8)|

| 0024H to 0027H |Trace vector (9)|

| 0028H to 002FH |Line 1010/1111 emulator vectors (10-11)|

| 003CH to 003FH |Uninitialised interrupt vector (15)|

| 0060H to 0063H |Spurious interrupt vector (24)|

| 0064H to 007FH |Level 1-7 interrupt auto-vectors (25-31)|

| 0080H to 00BFH |TRAP #0-15 instruction vectors (32-47)|

| |Unassigned, reserved (12-14,16-23,48-63)|

| 0100H to 03FFH |User interrupt vectors (64-255)|

--

APPENDIX B: CrossFire Assembler, By Mark Parry
ÉÍÍ»

º CrossFire Assembler, By Mark Parry º

º 680x0.DOC º

ÈÍÍ¼

This document gives details of the Motorola 680x0 instruction set. You should

also look at the document "FILETYPE.DOC" to see how various output file formats

are supported, especially for types ".PRG" and ".ACC".

ÚÄÄ¿

³ Document Guide ³

ÀÄÄÙ

Flags:
XNZVC

* set according to operation

X = extend carry

U undefined

N = negative

- not affected

Z = zero

0 cleared

V = overflow

1 set

C = carry

Examples for each instruction are given. If is used, the valid effective

addresses for the instruction are listed. ext(An) and ext(PC) means the extended

addressing modes of the 68020, 68030, 68040 and CPU32 can be used.

If address register An is used, only word and long are allowed (however, byte

address register An is allowed for CHK2, CMP2 and MOVES).

{68EC000}
ô

{68010}

³

{68020}

³

{68030}

³ Specifies which processors / coprocessor

{68040}

³ the instruction will work on.

{68EC040}
³ If none are specified, the instruction

{68LC040}
³ works on the whole 680x0 family of processors.

{CPU32}

³

{68881}

³

{68882}

õ

{!!!}

instruction has been added for the alternative syntax.

{priv}

privileged instruction

{priv?}

MOVE from SR is a privileged instruction unless on 68000, 68008

Only instructions that work on the 68000 have been tested!!!

ÉÍÍ»

º 680x0 Instruction Set º

ÈÍÍ¼

 ABCD (add binary coded decimal)

Syntax:
ABCD Dx,Dy

ABCD -(Ax),-(Ay)

Flags:
*U*U*

Size:
byte

Adds the source to the destination along with the extend bit, storing

the result in the destination. Addition is performed using binary coded

decimal (BCD) arithmetic.

ABCD D4,D5

ABCD -(A4),-(A5)

--

 ADD (add)

Syntax:
ADD.? ,Dn

ADD.? Dn,

Flags:

Size:
byte, word, long

ADDs the source to the destination, storing the result in the

destination.

ADD.B ,D4 ADD.W ,D4 ADD.L ,D4

Dn An (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

ADD.B D4, ADD.W D4, ADD.L D4,

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

see also: ADDA ADDI ADDQ

--

 ADDA (add to address register)

Syntax:
ADDA.? ,An

ADD.? ,An

Flags:

Size:
word, long

ADDs the source to the destination register, storing the result in the

destination address register. Word length operands are sign-extended to

32-bits for addition.

ADDA.W ,A4 ADDA.L ,A4

Dn An (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 ADDI (add immediate)

Syntax:
ADDI.? #imm,

ADD.? #imm,

Flags:

Size:
byte, word, long

ADDs the immediate value to the destination, storing the result in the

destination.

ADDI.B #imm, ADDI.W #imm, ADDI.L #imm,

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 ADDQ (add quick)

Syntax:
ADDQ.? #imm,

Flags:
***** (----- if the destination is an address register)

Size:
byte, word, long (word, long if the destination is an address register)

ADDs the immediate value (from 1 to 8) to the destination, storing the

result in the destination. If the destination is an address register,

word length operands are sign-extended to 32-bits for addition.

ADDQ.B #imm, ADDQ.W #imm, ADDQ.L #imm,

Dn An (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 ADDX (add with extend)

Syntax:
ADDX.? Dx,Dy

ADDX.? -(Ax),-(Ay)

Flags:

Size:
byte, word, long

ADDs the source to the destination along with the extend bit, storing

the result in the destination.

ADDX.B D4,D5 ADDX.W D4,D5 ADDX.L D4,D5

ADDX.B -(A4),-(A5) ADDX.W -(A4),-(A5) ADDX.L -(A4),-(A5)

--

 AND (logical AND)

Syntax:
AND.? ,Dn

AND.? Dn,

Flags:
-**00

Size:
byte, word, long

ANDs the source with the destination, storing the result in the

destination.

AND.B ,D4 AND.W ,D4 AND.L ,D4

Dn (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

AND.B D4, AND.W D4, AND.L D4,

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 ANDI (logical AND, immediate)

Syntax:
ANDI.? #imm,

AND.? #imm,

Flags:
-**00

Size:
byte, word, long

ANDs the immediate value with the destination, storing the result in the

destination.

ANDI.B #imm, ANDI.W #imm, ANDI.L #imm,

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 ANDI to CCR (logical AND, immediate to condition codes)

Syntax:
ANDI #imm,CCR

AND #imm,CCR

Flags:
X cleared if bit 4 of #imm is zero, unchanged otherwise

N cleared if bit 3 of #imm is zero, unchanged otherwise

Z cleared if bit 2 of #imm is zero, unchanged otherwise

V cleared if bit 1 of #imm is zero, unchanged otherwise

C cleared if bit 0 of #imm is zero, unchanged otherwise

Size:
byte

ANDs the immediate value with the condition codes, storing the result in

the condition code register.

ANDI #imm,CCR

--

 ANDI to SR (logical AND, immediate to status register) {priv}

Syntax:
ANDI #imm,SR

AND #imm,SR

Flags:
X cleared if bit 4 of #imm is zero, unchanged otherwise

N cleared if bit 3 of #imm is zero, unchanged otherwise

Z cleared if bit 2 of #imm is zero, unchanged otherwise

V cleared if bit 1 of #imm is zero, unchanged otherwise

C cleared if bit 0 of #imm is zero, unchanged otherwise

Size:
word

ANDs the immediate value with the status register, storing the result in

the status register.

ANDI #imm,SR

--

 ASL (arithmetic shift left)

Syntax:
ASL.? Dx,Dy

ASL.? #count,Dy

ASL

Flags:

(-**00 if count=0)

Size:
byte, word, long
(word if ASL)

Shift the destination by the specified count (Dx modulo 64, or #count

from 1 to 8), or by 1 if using ASL . Bits shifted out of the high

order bit go to both the carry and extend flags; zeros are shifted into

the low order bit. The overflow bit indicates if any sign changes

occurred.

ASL.B D4,D5 ASL.W D4,D5 ASL.L D4,D5

ASL.B #count,D5 ASL.W #count,D5 ASL.L #count,D5

ASL

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 ASR (arithmetic shift right)

Syntax:
ASR.? Dx,Dy

ASR.? #count,Dy

ASR

Flags:
***0*
(-**00 if count=0)

Size:
byte, word, long
(word if ASR)

Shift the destination by the specified count (Dx modulo 64, or #count

from 1 to 8), or by 1 if using ASR . Bits shifted out of the low

order bit go to both the carry and extend flags; the sign bit is shifted

into the high order bit.

ASR.B D4,D5 ASR.W D4,D5 ASR.L D4,D5

ASR.B #count,D5 ASR.W #count,D5 ASR.L #count,D5

ASR

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 Bcc (branch conditionally)

Syntax:
Bcc

Flags:

Size:
short (or byte), word or long
(long is 68020, 68030, 68040 only)

If the specified condition is true, branch to the specified label.

Short branch to the following instruction is not allowed (BEQ.S *+2).

The default branch size is word.

conditions:-

BCC
BHS
branch if carry clear / higher or same (unsigned)

BCS
BLO
branch if carry set / lower (unsigned)

BEQ

branch if equal

BGE

branch if greater or equal (signed)

BGT

branch if greater than (signed)

BHI

branch if higher than (unsigned)

BLE

branch if less or equal (signed)

BLS

branch if lower or the same (unsigned)

BLT

branch if less than (signed)

BMI

branch if minus

BNE

branch if not equal

BPL

branch if plus

BVC

branch if overflow clear

BVS

branch if overflow set

BEQ.S label BEQ.B label BEQ.W label BEQ.L label

--

 BCHG (test bit and change)

Syntax:
BCHG Dn,

BCHG #bit,

Flags:
--*--

Size:
byte, long

Test the specified bit (Dn or #bit) of the destination, setting the Z

condition code. Then invert the specified bit. The bit number is modulo

32 (from 0 to 31, long) if the destination is a data register, or modulo

8 (from 0 to 7, byte) if the destination is not a data register.

BCHG D4(modulo 32),D5 BCHG #bit(0-31),D5

BCHG D4(modulo 8), BCHG #bit(0-7),

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 BCLR (test bit and clear)

Syntax:
BCLR Dn,

BCLR #bit,

Flags:
--*--

Size:
byte, long

Test the specified bit (Dn or #bit) of the destination, setting the Z

condition code. Then clear the specified bit. The bit number is modulo

32 (from 0 to 31, long) if the destination is a data register, or modulo

8 (from 0 to 7, byte) if the destination is not a data register.

BCLR D4(modulo 32),D5 BCLR #bit(0-31),D5

BCLR D4(modulo 8), BCLR #bit(0-7),

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 BFCHG (test bit field and change) {68020} {68030} {68040}

Syntax:
BFCHG {offset:width}

Flags:
-**00

Size:
unsized

Sets the condition codes according to the value in the bit field :-

N set the same as the most significant bit of the field.

Z set if all bits of the field are zero, cleared otherwise.

The bit field is then complemented (inverted).

{offset:
Dn: the range is -$80000000 to +$7FFFFFFF, which will

access memory -$10000000 to +$0FFFFFFF from .

#offset: the range is 0 to 31, which will access memory

+0 to +4 from .

:width}

:Dn the range is modulo 32, with 0=32 (width = 1 to 32).

:#width the range is 1 to 32.

Up to 5 bytes of memory can be modified by this instruction.

BFCHG {D4:D5} {D4:#width} {#offset:D5} {#offset:#width}

Dn (An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 BFCLR (test bit field and clear) {68020} {68030} {68040}

Syntax:
BFCLR {offset:width}

Flags:
-**00

Size:
unsized

Sets the condition codes according to the value in the bit field :-

N set the same as the most significant bit of the field.

Z set if all bits of the field are zero, cleared otherwise.

The bit field is then cleared.

{offset:
Dn: the range is -$80000000 to +$7FFFFFFF, which will

access memory -$10000000 to +$0FFFFFFF from .

#offset: the range is 0 to 31, which will access memory

+0 to +4 from .

:width}

:Dn the range is modulo 32, with 0=32 (width = 1 to 32).

:#width the range is 1 to 32.

Up to 5 bytes of memory can be modified by this instruction.

BFCLR {D4:D5} {D4:#width} {#offset:D5} {#offset:#width}

Dn (An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 BFEXTS (extract bit field signed) {68020} {68030} {68040}

Syntax:
BFEXTS {offset:width},Dn

Flags:
-**00

Size:
unsized

Sets the condition codes according to the value in the bit field :-

N set the same as the most significant bit of the field.

Z set if all bits of the field are zero, cleared otherwise.

Extracts a bit field from the specified extended address location, sign

extends to 32-bits, and loads the result into the destination data

register.

{offset:
Dn: the range is -$80000000 to +$7FFFFFFF, which will

access memory -$10000000 to +$0FFFFFFF from .

#offset: the range is 0 to 31, which will access memory

+0 to +4 from .

:width}

:Dn the range is modulo 32, with 0=32 (width = 1 to 32).

:#width the range is 1 to 32.

Up to 5 bytes of memory can be accessed by this instruction.

BFEXTS {D4:D5},D6 {D4:#width},D6 {#offset:D5},D6 {#offset:#width},D6

Dn (An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 BFEXTU (extract bit field unsigned) {68020} {68030} {68040}

Syntax:
BFEXTU {offset:width},Dn

Flags:
-**00

Size:
unsized

Sets the condition codes according to the value in the bit field :-

N set the same as the most significant bit of the field.

Z set if all bits of the field are zero, cleared otherwise.

Extracts a bit field from the specified extended address location, zero

extends to 32-bits, and loads the result into the destination data

register.

{offset:
Dn: the range is -$80000000 to +$7FFFFFFF, which will

access memory -$10000000 to +$0FFFFFFF from .

#offset: the range is 0 to 31, which will access memory

+0 to +4 from .

:width}

:Dn the range is modulo 32, with 0=32 (width = 1 to 32).

:#width the range is 1 to 32.

Up to 5 bytes of memory can be accessed by this instruction.

BFEXTU {D4:D5},D6 {D4:#width},D6 {#offset:D5},D6 {#offset:#width},D6

Dn (An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 BFFFO (find first one in bit field) {68020} {68030} {68040}

 BFFF1 {!!!} (find first one in bit field) {68020} {68030} {68040}

Syntax:
BFFFO {offset:width},Dn

Flags:
-**00

Size:
unsized

Sets the condition codes according to the value in the bit field :-

N set the same as the most significant bit of the field.

Z set if all bits of the field are zero, cleared otherwise.

Finds the first set bit in the bit field, and places the bit number in

destination data register Dn (the bit offset in the instruction plus the

offset of the first one bit). If all bits of the field are clear, Dn is

set to field offset+width.

{offset:
Dn: the range is -$80000000 to +$7FFFFFFF, which will

access memory -$10000000 to +$0FFFFFFF from .

#offset: the range is 0 to 31, which will access memory

+0 to +4 from .

:width}

:Dn the range is modulo 32, with 0=32 (width = 1 to 32).

:#width the range is 1 to 32.

Up to 5 bytes of memory can be accessed by this instruction.

BFFFO {D4:D5},D6 {D4:#width},D6 {#offset:D5},D6 {#offset:#width},D6

Dn (An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 BFINS (insert into bit field) {68020} {68030} {68040}

Syntax:
BFINS Dn,{offset:width}

Flags:
-**00

Size:
unsized

Inserts a bit field taken from the low order bits of the specified data

register into a bit field at the effective address location. Then the

instruction sets the condition codes according to the inserted value.

N set the same as the most significant bit of the field.

Z set if all bits of the field are zero, cleared otherwise.

{offset:
Dn: the range is -$80000000 to +$7FFFFFFF, which will

access memory -$10000000 to +$0FFFFFFF from .

#offset: the range is 0 to 31, which will access memory

+0 to +4 from .

:width}

:Dn the range is modulo 32, with 0=32 (width = 1 to 32).

:#width the range is 1 to 32.

Up to 5 bytes of memory can be modified by this instruction.

BFINS D6,{D4:D5} D6,{D4:#width} D6,{#offset:D5} D6,{#offset:#width}

Dn (An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 BFSET (test bit field and set) {68020} {68030} {68040}

Syntax:
BFSET {offset:width}

Flags:
-**00

Size:
unsized

Sets the condition codes according to the value in the bit field :-

N set the same as the most significant bit of the field.

Z set if all bits of the field are zero, cleared otherwise.

Each bit in the field is then set.

{offset:
Dn: the range is -$80000000 to +$7FFFFFFF, which will

access memory -$10000000 to +$0FFFFFFF from .

#offset: the range is 0 to 31, which will access memory

+0 to +4 from .

:width}

:Dn the range is modulo 32, with 0=32 (width = 1 to 32).

:#width the range is 1 to 32.

Up to 5 bytes of memory can be modified by this instruction.

BFSET {D4:D5} {D4:#width} {#offset:D5} {#offset:#width}

Dn (An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 BFTST (test bit field) {68020} {68030} {68040}

Syntax:
BFTST {offset:width}

Flags:
-**00

Size:
unsized

Sets the condition codes according to the value in the bit field :-

N set the same as the most significant bit of the field.

Z set if all bits of the field are zero, cleared otherwise.

{offset:
Dn: the range is -$80000000 to +$7FFFFFFF, which will

access memory -$10000000 to +$0FFFFFFF from .

#offset: the range is 0 to 31, which will access memory

+0 to +4 from .

:width}

:Dn the range is modulo 32, with 0=32 (width = 1 to 32).

:#width the range is 1 to 32.

Up to 5 bytes of memory can be accessed by this instruction.

BFTST {D4:D5} {D4:#width} {#offset:D5} {#offset:#width}

Dn (An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 BGND (enter background mode) {CPU32}

Syntax:
BGND

Flags:

Size:
unsized

The processor suspends instruction execution and enters background mode

if background mode is enabled. The freeze output is asserted to

acknowledge entrance into background mode.

If background mode is not enabled, the processor initiates illegal

instruction exception processing.

BGND

--

 BKPT (breakpoint) {68EC000} {68010} {68020} {68030} {68040} {CPU32}

Syntax:
BKPT #data

Flags:

Size:
unsized

Run breakpoint acknowledge cycle; Trap as illegal instruction.

BKPT #data(0-7)

--

 BRA (branch always)

Syntax:
BRA

Flags:

Size:
short (or byte), word or long
(long is 68020, 68030, 68040 only)

Branch to the specified label. Short branch to the following instruction

is not allowed (BRA.S *+2). The default branch size is word.

BRA.S label BRA.B label BRA.W label BRA.L label

--

 BSET (test bit and set)

Syntax:
BSET Dn,

BSET #bit,

Flags:
--*--

Size:
byte, long

Test the specified bit (Dn or #bit) of the destination, setting the Z

condition code. Then set the specified bit. The bit number is modulo 32

(from 0 to 31, long) if the destination is a data register, or modulo 8

(from 0 to 7, byte) if the destination is not a data register.

BSET D4(modulo 32),D5 BSET #bit(0-31),D5

BSET D4(modulo 8), BSET #bit(0-7),

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 BSR (branch to subroutine)

Syntax:
BSR

Flags:

Size:
short (or byte), word or long
(long is 68020, 68030, 68040 only)

Store the long word address of the next instruction on the stack, then

branch to the specified label. Short branch to the following instruction

is not allowed (BSR.S *+2). The default branch size is word.

BSR.S label BSR.B label BSR.W label BSR.L label

--

 BTST (test bit)

Syntax:
BTST Dn,

BTST #bit,

Flags:
--*--

Size:
byte, long

Test the specified bit (Dn or #bit) of the destination, setting the Z

condition code. The bit number is modulo 32 (from 0 to 31, long) if the

destination is a data register, or modulo 8 (from 0 to 7, byte) if the

destination is not a data register.

BTST D4(modulo 32),D5 BTST #bit(0-31),D5

BTST D4(modulo 8),

(An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

BTST #bit(0-7),

(An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 CALLM (call module) {68020}

Syntax:
CALLM #data,

Flags:

Size:
unsized

The effective address of the instruction is the location of an external

module descriptor. A module frame is created on the top of the stack,

and the current module state is saved in the frame. The immediate

operand specifies the number of bytes of arguments to be passed to the

called module. A new module state is loaded from the descriptor

addressed by the effective address.

CALLM #data(0-255),

(An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 CAS (compare and swap with operand) {68020} {68030} {68040}

Syntax:
CAS.? Dc,Du,

Flags:
-****

Size:
byte, word, long

CAS compares the effective address operand to the compare operand (Dc).

If the operands are equal, the instruction writes the update operand

(Du) to the effective address operand; otherwise, the instruction writes

the effective address operand to the compare operand (Dc).

Memory access uses locked or read-modify-write transfer sequences,

providing a means of synchronizing several processors.

CAS.B D4,D5, CAS.W D4,D5, CAS.L D4,D5,

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 CAS2 (compare and swap with operand) {68020} {68030} {68040}

Syntax:
CAS2.? Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)

Flags:
-****

Size:
word, long

CAS2 compares memory operand 1 (Rn1) to compare operand 1 (Dc1). If the

operands are equal, the instruction compares memory operand 2 (Rn2) to

compare operand 2 (Dc2). If these are also equal, the instruction writes

the update operands (Du1 and Du2) to the memory operands (Rn1 and Rn2).

If either comparison fails, the instruction writes the memory operands

(Rn1 and Rn2) to the compare operands (Dc1 and Dc2).

Memory access uses locked or read-modify-write transfer sequences,

providing a means of synchronizing several processors.

CAS2.W D4:D5,D6:D7,(A2):(A3) CAS2.L D4:D5,D6:D7,(A2):(A3)

--

 CHK (check register against bounds)

Syntax:
CHK ,Dn

Flags:
-*UUU

Size:
word, long

(long is 68020, 68030, 68040 only)

Compares the value in the specified data register to zero and the upper

bound (effective address operand). The upper bound is a twos complement

integer. If the register value is less than zero or greater than the

upper bound, a CHK instruction exception (vector number 6) occurs. The

default instruction size is word.

CHK.W ,D4 CHK.L ,D4

Dn (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 CHK2 (check register against bounds) {68020} {68030} {68040} {CPU32}

Syntax:
CHK2.? ,Rn

Flags:
-U*U*

Size:
byte, word, long

Compares the value in Rn to each bound. The effective address contains

the bound pair; the upper bound following the lower bound. For signed

comparisons, the arithmetically smaller value should be used as the

lower bound. For unsigned comparisons, the logically smaller value

should be the lower bound.

The size of the data and the bounds can be specified as byte, word or

long. If Rn is a data register and the operation size is byte or word,

only the byte or word part of Dn is checked. If Rn is an address

register and the operation size is byte or word, the bounds operands are

sign-extended to 32-bits, and the resultant operands are compared to the

full 32-bits of An.

If the upper bound equals the lower bound, the valid range is a single

value. If the register value is less than the lower bound or greater

than the upper bound, a CHK instruction exception (vector number 6)

occurs.

CHK2.B ,D4 CHK2.W ,D4 CHK2.L ,D4

CHK2.B ,A4 CHK2.W ,A4 CHK2.L ,A4

(An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 CINV (invalidate cache entries) {68040} {68LC040} {priv}

This instruction is not currently implemented because I am unsure of the correct

syntax.

--

 CLR (clear an operand)

Syntax:
CLR.?

Flags:
-0100

Size:
byte, word, long

Clears the destination effective address to zero.

CLR.B CLR.W CLR.L

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 CMP (compare)

Syntax:
CMP.? ,Dn

Flags:
-****

Size:
byte, word, long

Subtracts the source operand from the destination data register and sets

the condition codes according to the result; the data register is not

changed.

CMP.B ,D4 CMP.W ,D4 CMP.L ,D4

Dn An (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 CMPA (compare address)

Syntax:
CMPA.? ,An

CMP.? ,An

Flags:
-****

Size:
word, long

Subtracts the source operand from the destination address register and

sets the condition codes according to the result; the address register

is not changed. Word length operands are sign-extended to 32-bits for

comparison.

CMPA.W ,A4 CMPA.L ,A4

Dn An (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 CMPI (compare immediate)

Syntax:
CMPI.? #imm,

CMP.? #imm,

Flags:
-****

Size:
byte, word, long

Subtracts the immediate operand from the destination effective address

and sets the condition codes according to the result; the effective

address is not changed.

CMPI.B #imm, CMPI.W #imm, CMPI.L #imm,

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

d16(PC) d8(PC,Ix) ext(PC) {68020} {68030} {68040} {CPU32}

--

 CMPM (compare memory)

Syntax:
CMPM.? (Ay)+,(Ax)+

CMP.? (Ay)+,(Ax)+

Flags:
-****

Size:
byte, word, long

Subtracts the source operand from the destination operand and sets the

condition code according to the result; the destination operand is not

changed.

CMPM.B (A4)+,(A5)+ CMPM.W (A4)+,(A5)+ CMPM.L (A4)+,(A5)+

--

 CMP2 (compare register against bounds) {68020} {68030} {68040} {CPU32}

Syntax:
CMP2.? ,Rn

Flags:
-U*U*

Size:
byte, word, long

Compares the value in Rn to each bound. The effective address contains

the bound pair; the upper bound following the lower bound. For signed

comparisons, the arithmetically smaller value should be used as the

lower bound. For unsigned comparisons, the logically smaller value

should be the lower bound.

The size of the data and the bounds can be specified as byte, word or

long. If Rn is a data register and the operation size is byte or word,

only the byte or word part of Dn is checked. If Rn is an address

register and the operation size is byte or word, the bounds operands are

sign-extended to 32-bits, and the resultant operands are compared to the

full 32-bits of An.

If the upper bound equals the lower bound, the valid range is a single

value.

CMP2.B ,D4 CMP2.W ,D4 CMP2.L ,D4

CMP2.B ,A4 CMP2.W ,A4 CMP2.L ,A4

(An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 cpBcc (branch on coprocessor condition) {68020} {68030}

 cpDBcc (test coprocessor condition, decrement and branch) {68020} {68030}

 cpGEN (coprocessor general function) {68020} {68030}

 cpScc (set on coprocessor condition) {68020} {68030}

 cpTRAPcc (trap on coprocessor condition) {68020} {68030}

 cpRESTORE (coprocessor restore functions) {68020} {68030} {priv}

 cpSAVE (coprocessor save function) {68020} {68030} {priv}

These instructions are not currently implemented because I am unsure of the

correct syntax.

--

 CPUSH (push and invalidate cache entries) {68040} {68LC040} {priv}

This instruction is not currently implemented because I am unsure of the correct

syntax.

--

 DBcc (test condition, decrement and branch)

Syntax:
DBcc Dn,label

Flags:

Size:
word

This instruction first tests the condition for termination; if it is

true, no operation is performed. If the termination condition is not

true, the low order 16-bits of the counter data register are decremented

by one. If the result is -1, execution continues with the next

instruction. If the result is not -1, execution continues at label.

conditions:-

DBRA
DBF
always (unconditionally)

DBT

never (no operation)

DBCC
DBHS
until carry clear / higher or same (unsigned)

DBCS
DBLO
until carry set / lower (unsigned)

DBEQ

until equal

DBGE

until greater or equal (signed)

DBGT

until greater than (signed)

DBHI

until higher than (unsigned)

DBLE

until less or equal (signed)

DBLS

until lower or the same (unsigned)

DBLT

until less than (signed)

DBMI

until minus

DBNE

until not equal

DBPL

until plus

DBVC

until overflow clear

DBVS

until overflow set

DBRA D4,label

--

 DIVS DIVSL (signed divide)

Syntax:
DIVS.W ,Dn

DIVS.L ,Dq
 1
ô

DIVS.L ,Dr:Dq 2
³ {68020} {68030} {68040} {CPU32}

DIVSL.L ,Dr:Dq 3
õ

Flags:
-***0

Size:
word, long

(long is 68020, 68030, 68040, CPU32 only)

Divides the signed destination operand by the signed source operand and

stores the signed result in the destination. The instruction uses one of

four forms:

word
divides a long by a word. The result is a quotient in the lower

word, and a remainder in the upper word. The sign of the

remainder is the same as the sign of the dividend.

long 1
divides a long by a long. The result is a long quotient, the

remainder is discarded.

long 2
divides a quad word (in any two different data registers) by a

long word. The result is a long quotient and a long remainder.

long 3
divides a long word by a long word. The result is a long

quotient and a long remainder.

Dr:Dq cannot be the same register. Division by zero causes a trap. The

operands are unaffected if an overflow occurs.

DIVS.W ,D4

DIVS.L ,D4

DIVS.L ,D4:D5

DIVSL.L ,D4:D5

Dn (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 DIVU DIVUL (unsigned divide)

Syntax:
DIVU.W ,Dn

DIVU.L ,Dq
 1
ô

DIVU.L ,Dr:Dq 2
³ {68020} {68030} {68040} {CPU32}

DIVUL.L ,Dr:Dq 3
õ

Flags:
-***0

Size:
word, long

(long is 68020, 68030, 68040, CPU32 only)

Divides the unsigned destination operand by the unsigned source operand

and stores the unsigned result in the destination. The instruction uses

one of four forms:

word
divides a long by a word. The result is a quotient in the lower

word, and a remainder in the upper word.

long 1
divides a long by a long. The result is a long quotient, the

remainder is discarded.

long 2
divides a quad word (in any two different data registers) by a

long word. The result is a long quotient and a long remainder.

long 3
divides a long word by a long word. The result is a long

quotient and a long remainder.

Dr:Dq cannot be the same register. Division by zero causes a trap. The

operands are unaffected if an overflow occurs.

DIVU.W ,D4

DIVU.L ,D4

DIVU.L ,D4:D5

DIVUL.L ,D4:D5

Dn (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 EOR (logical exclusive OR)

Syntax:
EOR.? Dn,

Flags:
-**00

Size:
byte, word, long

EORs the source with the destination, storing the result in the

destination.

EOR.B D4, EOR.W D4, EOR.L D4,

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 EORI (logical exclusive OR, immediate)

Syntax:
EORI.? #imm,

EOR.? #imm,

Flags:
-**00

Size:
byte, word, long

EORs the immediate value with the destination, storing the result in the

destination.

EORI.B #imm, EORI.W #imm, EORI.L #imm,

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 EORI to CCR (logical exclusive OR, immediate to condition codes)

Syntax:
EORI #imm,CCR

EOR #imm,CCR

Flags:
X changed if bit 4 of #imm is one, unchanged otherwise

N changed if bit 3 of #imm is one, unchanged otherwise

Z changed if bit 2 of #imm is one, unchanged otherwise

V changed if bit 1 of #imm is one, unchanged otherwise

C changed if bit 0 of #imm is one, unchanged otherwise

Size:
byte

EORs the immediate value with the condition codes, storing the result in

the condition code register.

EORI #imm,CCR

--

 EORI to SR (logical exclusive OR, immediate to status register) {priv}

Syntax:
EORI #imm,SR

EOR #imm,SR

Flags:
X changed if bit 4 of #imm is one, unchanged otherwise

N changed if bit 3 of #imm is one, unchanged otherwise

Z changed if bit 2 of #imm is one, unchanged otherwise

V changed if bit 1 of #imm is one, unchanged otherwise

C changed if bit 0 of #imm is one, unchanged otherwise

Size:
word

EORs the immediate value with the status register, storing the result in

the status register.

EORI #imm,SR

--

 EXG (exchange registers)

Syntax:
EXG Rn,Rn

Flags:

Size:
long

Exchanges the contents of two 32-bit registers.

EXG D4,D5 EXG D4,A5 EXG A4,D5 EXG A4,A5

--

 EXT (sign extend)

 EXTB (sign extend byte to long) {68020} {68030} {68040} {CPU32}

Syntax:
EXT.W Dn
extend byte to word

EXT.L Dn
extend word to long

EXTB.L Dn
extend byte to long {68020} {68030} {68040} {CPU32}

Flags:
-**00

Size:
word, long

Sign extends a byte in a data register to word, a word in a data

register to long, or (EXTB) extends a byte in a data register to long.

EXT.W D4 EXT.L D4 EXTB.L D4

--

 FRESTORE (restore internal floating point state)

 {68881} {68882} {68040} {priv}

 FSAVE (save internal floating point state)

 {68881} {68882} {68040} {priv}

These instructions are not currently implemented because I am unsure of the

correct syntax.

--

 ILLEGAL (take illegal instruction trap)

Syntax:
ILLEGAL

Flags:

Size:
unsized

Forces an illegal instruction exception, vector number 4. All other

illegal instruction bit patterns are reserved for future extension of

the instruction set, and should not be used to force an exception.

ILLEGAL

--

 JMP (jump to effective address)

Syntax:
JMP

Flags:

Size:
unsized

Program continues execution at the specified effective address.

JMP

(An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 JSR (jump to subroutine)

Syntax:
JSR

Flags:

Size:
unsized

Store the long word address of the next instruction onto the stack, then

program continues execution at the specified effective address.

JSR

(An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 LEA (load effective address)

Syntax:
LEA ,An

Flags:

Size:
long

Loads the effective address into the address register. All 32-bits of

the address register are affected.

LEA ,A4

(An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 LINK (link and allocate)

Syntax:
LINK An,#displacement

Flags:

Size:
word, long

(long is 68020, 68030, 68040, CPU32 only)

Stores the contents of the specified address register on the stack, then

loads the updated stack pointer into the address register. Finally, adds

the displacement value to the stack pointer. The displacement is sign

extended for word size operation. The displacement should be a negative

value in order to allocate stack area. LINK and UNLINK can be used to

keep local data and parameter areas on the stack for nested subroutines.

LINK.W A4,#displacement LINK.L A4,#displacement

--

 LPSTOP (low power stop) {CPU32} {priv}

Syntax:
LPSTOP #data

Flags:
set according to the immediate word

Size:
unsized

Moves the immediate word into the status register, advances the program

counter to the next instruction, and stops the fetching and executing of

instructions. A CPU LPSTOP broadcast cycle is executed to CPU space $3

to copy the updated interrupt mask to the external bus interface (EBI).

The internal clocks are stopped.

Instruction execution resumes when a trace, interrupt, or reset

exception occurs. A trace exception will occur if the trace state is on

when the LPSTOP instruction is executed. If an interrupt request is

asserted with a priority higher than the priority level set by the new

status register, an interrupt exception occurs; otherwise, the interrupt

request is ignored. An external reset always initiates reset exception

processing.

LPSTOP #word

--

 LSL (logical shift left)

Syntax:
LSL.? Dx,Dy

LSL.? #count,Dy

LSL

Flags:
***0*
(-**00 if count=0)

Size:
byte, word, long
(word if LSL)

Shift the destination by the specified count (Dx modulo 64, or #count

from 1 to 8), or by 1 if using LSL . Bits shifted out of the high

order bit go to both the carry and extend flags; zeros are shifted into

the low order bit.

LSL.B D4,D5 LSL.W D4,D5 LSL.L D4,D5

LSL.B #count,D5 LSL.W #count,D5 LSL.L #count,D5

LSL

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 LSR (logical shift right)

Syntax:
LSR.? Dx,Dy

LSR.? #count,Dy

LSR

Flags:
***0*
(-**00 if count=0)

Size:
byte, word, long
(word if LSR)

Shift the destination by the specified count (Dx modulo 64, or #count

from 1 to 8), or by 1 if using LSR . Bits shifted out of the low

order bit go to both the carry and extend flags; zeros are shifted into

the high order bit.

LSR.B D4,D5 LSR.W D4,D5 LSR.L D4,D5

LSR.B #count,D5 LSR.W #count,D5 LSR.L #count,D5

LSR

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 MOVE (move data from source to destination)

Syntax:
MOVE.? source ,destination

Flags:
-**00

Size:
byte, word, long

MOVEs the data from the source operand to the destination operand,

setting the condition codes accordingly.

MOVE.B , MOVE.W , MOVE.L ,

 :
Dn An (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

 :
Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 MOVEA (move data to address register)

Syntax:
MOVEA.? ,An

MOVE.? ,An

Flags:

Size:
word, long

MOVEs the data from the source operand to the destination address

register.

MOVE.W ,A4 MOVE.L ,A4

Dn An (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 MOVE from CCR (move from the condition code register)

 {68010} {68020} {68030} {68040} {CPU32}

Syntax:
MOVE CCR,

Flags:

Size:
word

MOVEs the condition code register to the destination effective address

(unimplemented bits are read as zero). MOVE from CCR is a word

operation; ANDI, ORI and EORI to CCR are byte operations.

MOVE CCR,

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 MOVE to CCR (move to the condition code register)

Syntax:
MOVE ,CCR

Flags:
X set to bit 4 of #imm

N set to bit 3 of #imm

Z set to bit 2 of #imm

V set to bit 1 of #imm

C set to bit 0 of #imm

Size:
word

MOVEs the source operand to the condition code register. MOVE to CCR is

a word operation; ANDI, ORI and EORI to CCR are byte operations.

Unimplemented bits of the condition code register are unaffected.

MOVE ,CCR

Dn (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 MOVE from SR (move from the status register) {priv?}

Syntax:
MOVE SR,

Flags:

Size:
word

MOVEs the status register to the destination effective address

(unimplemented bits are read as zero). MOVE from SR is not a privileged

instruction on the 68000 and 68008; it is a privileged instruction on

the 68EC000, 68010, 68020, 68030, 68040 and CPU32.

MOVE SR,

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 MOVE to SR (move to the status register) {priv}

Syntax:
MOVE ,SR

Flags:
X set to bit 4 of #imm

N set to bit 3 of #imm

Z set to bit 2 of #imm

V set to bit 1 of #imm

C set to bit 0 of #imm

Size:
word

MOVEs the data from the source to the status register. Unimplemented

bits of the status register are unaffected.

MOVE ,SR

Dn (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 MOVE USP (move user stack pointer) {priv}

Syntax:
MOVE USP,An

MOVE An,USP

Flags:

Size:
long

MOVEs the contents of the user stack pointer to or from the specified

address register.

MOVE USP,A5

MOVE A4,USP

--

 MOVE16 (move 16 byte block) {68040}

Syntax:
MOVE16 (Ax)+,(Ay)+

MOVE16 mem.l,(An)

MOVE16 mem.l,(An)+

MOVE16 (An),mem.l

MOVE16 (An)+,mem.l

Flags:

Size:
line (16 bytes)

MOVEs the source line to the destination line. The lines are aligned

to 16 byte boundaries. Applications for this instruction include

coprocessor communications, memory initialization and fast copying.

MOVE16 (A4)+,(A5)+

MOVE16 mem.l,(A5)

MOVE16 mem.l,(A5)+

MOVE16 (A4),mem.l

MOVE16 (A4)+,mem.l

--

 MOVEC (move control register)

 {68010} {68020} {68030} {68040} {CPU32} {priv}

Syntax:
MOVEC Rc,Rn

MOVEC Rn,Rc

Flags:

Size:
long

MOVEs the contents of the specified control register (Rc) to or from the

specified general register (Rn). This is always a 32-bit transfer, even

though the control register may be implemented with fewer bits, with

unimplemented bits read as zero.

This is a list of the control registers :-

SFC
source function code

DFC
destination function code

USP
user stack pointer

{68010} {68020} {68030}

VBR
vector base register

{68040} {CPU32}

CACR
cache control register

CAAR
cache address register

MSP
master stack pointer

ISP
interrupt stack pointer

{68020} {68030}

CACR
cache control register

MSP
master stack pointer

ISP
interrupt stack pointer

{68040}

TC
MMU translation control register

ITT0
instruction transparent translation register 0

ITT1
instruction transparent translation register 1

DTT0
data transparent translation register 0

DTT1
data transparent translation register 1

MMUSR
MMU status register

URP
user root pointer

SRP
supervisor root pointer

{68040} {68LC040}

IACR0
instruction access control register 0

IACR1
instruction access control register 1

DACR0
data access control register 0

DACR1
data access control register 1
{68EC040}

MOVEC SFC,D5 MOVEC SFC,A5

MOVEC D4,DFC MOVEC A4,DFC

--

 MOVEM (move multiple registers)

Syntax:
MOVEM.? register list,

MOVEM.? ,register list

Flags:

Size:
word, long

MOVEs the selected registers to or from consecutive memory locations

starting at the location specified by the effective address. When

transferring words from memory, each word is sign-extended to 32-bits

before being loaded into the data or address registers.

Registers are transferred to or from memory in the order of D0-D7, then

A0-A7; UNLESS using the predecrement address mode -(An), where the

registers are transferred in the order of A7-A0, then D7-D0.

Any data register or address register can be included in the register

list. Examples of register lists are given :-

D0/A0/A4/D6

mixed registers D0 A0 A4 D6

D0/D1/D2/D3/D4/D5/D6/D7 D0-D7 D0-7

all data registers

D1-D2/D4-D6/A1-2/A4-6

D1 D2 D4 D5 D6 A1 A2 A4 A5 A6

MOVEM.W register list, MOVEM.L register list,

(An) -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

MOVEM.W ,register list MOVEM.L ,register list

(An) (An)+ d16(An) d8(An,Ix) mem.w mem.l

d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 MOVEP (move peripheral data)

Syntax:
MOVEP.? Dx,d16(Ay)

MOVEP.? d16(Ay),Dx

Flags:

Size:
word, long

MOVEs data between a data register and alternate bytes within the

address space starting at the location specified and incrementing by

two. The high order byte of the data register is transferred first, and

the low order byte is transferred last.

This instruction was designed for interfacing 8-bit peripherals on a

16-bit data bus. Although still supported by the 68020, 68030 and 68040,

you can not interface 8-bit peripherals on a 32-bit data bus.

MOVEP.W D4,d16(A5) MOVEP.L D4,d16(A5)

MOVEP.W d16(A4),D5 MOVEP.L d16(A4),D5

--

 MOVEQ (move quick)

Syntax:
MOVEQ #data,Dn

Flags:
-**00

Size:
long

MOVEs a sign-extended byte to the 32-bit data register.

MOVEQ #-128 to #127 is the proper data range.

MOVEQ #-256 to #255 will give a 'sign-extended data' warning

MOVEQ.L #-256 to #255 will suppress the 'sign-extended data' warning

MOVEQ #data (-256 to 255),Dn

--

 MOVES (move address space)

 {68010} {68020} {68030} {68040} {CPU32} {priv}

Syntax:
MOVES.? Rn,

MOVES.? ,Rn

Flags:

Size:
byte, word, long

This instruction moves the byte, word or long from the specified general

register to a location within the address space specified by the

destination function code (DFC) register, or it moves the byte, word or

long from a location within the address space specified by the source

function code (SFC) register to the general register.

If the destination is a data register, the source operand replaces the

low-order bits of that data register, depending on the size of the

operation. If the destination is a address register, the source operand

is sign-extended to 32-bits and then loaded into that register.

MOVES.B ,D5 MOVES.W ,D5 MOVES.L ,D5

MOVES.B ,A5 MOVES.W ,A5 MOVES.L ,A5

MOVES.B
D4, MOVES.W D4, MOVES.L D4,

MOVES.B A4, MOVES.W A4, MOVES.L A4,

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l

--

 MULS (signed multiplication)

Syntax:
MULS.W ,Dn

MULS.L ,Dl
 1
ô

MULS.L ,Dh:Dl 2
õ {68020} {68030} {68040} {CPU32}

Flags:
-***0

Size:
word, long

(long is 68020, 68030, 68040, CPU32 only)

Multiplies two signed operands yielding a signed result. The instruction

uses one of three forms:

word
multiplies a word with a word. The result is a long word stored

in register Dn.

long 1
multiplies a long with a long. The result is a long word stored

in register Dl, the upper 32-bits of the result are discarded.

long 2
multiplies a long (register Dl) with a long. The result is

stored in Dh:Dl (in any two different data registers).

Dh:Dl cannot be the same register. Overflow can only occur if

multiplying two 32-bit operands to yield a 32-bit result.

MULS.W ,D4

MULS.L ,D4

MULS.L ,D4:D5

Dn (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 MULU (unsigned multiplication)

Syntax:
MULU.W ,Dn

MULU.L ,Dl
 1
ô

MULU.L ,Dh:Dl 2
õ {68020} {68030} {68040} {CPU32}

Flags:
-***0

Size:
word, long

(long is 68020, 68030, 68040, CPU32 only)

Multiplies two unsigned operands yielding an unsigned result. The

instruction uses one of three forms:

word
multiplies a word with a word. The result is a long word stored

in register Dn.

long 1
multiplies a long with a long. The result is a long word stored

in register Dl, the upper 32-bits of the result are discarded.

long 2
multiplies a long (register Dl) with a long. The result is

stored in Dh:Dl (in any two different data registers).

Dh:Dl cannot be the same register. Overflow can only occur if

multiplying two 32-bit operands to yield a 32-bit result.

MULU.W ,D4

MULU.L ,D4

MULU.L ,D4:D5

Dn (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 NBCD (negate binary coded decimal)

Syntax:
NBCD

Flags:
*U*U*

Size:
byte

Subtracts the destination operand and the extend bit from zero, storing

the result at the destination. The operation is performed using binary

coded decimal arithmetic.

NBCD

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 NEG (negate)

Syntax:
NEG.?

Flags:

Size:
byte, word, long

Subtracts the destination from zero, storing the result at the

destination.

NEG.B NEG.W NEG.L

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 NEGX (negate with extend)

Syntax:
NEGX.?

Flags:

Size:
byte, word, long

Subtracts the destination and the extend bit from zero, storing the

result at the destination.

NEGX.B NEGX.W NEGX.L

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 NOP (no operation)

Syntax:
NOP

Flags:

Size:
unsized

Performs no operation. The NOP instruction does not begin execution

until all pending bus cycles have completed. This synchronizes the

pipeline and prevents instruction overlap.

NOP

--

 NOT (logical complement)

Syntax:
NOT.?

Flags:
-**00

Size:
byte, word, long

Calculates the ones complement of the destination, storing the result at

the destination.

NOT.B NOT.W NOT.L

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 OR (logical inclusive OR)

Syntax:
OR.? ,Dn

OR.? Dn,

Flags:
-**00

Size:
byte, word, long

ORs the source with the destination, storing the result in the

destination.

OR.B ,D4 OR.W ,D4 OR.L ,D4

Dn (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

OR.B D4, OR.W D4, OR.L D4,

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 ORI (logical inclusive OR, immediate)

Syntax:
ORI.? #imm,

OR.? #imm,

Flags:
-**00

Size:
byte, word, long

ORs the immediate value with the destination, storing the result in the

destination.

ORI.B #imm, ORI.W #imm, ORI.L #imm,

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 ORI to CCR (logical inclusive OR, immediate to condition codes)

Syntax:
ORI #imm,CCR

OR #imm,CCR

Flags:
X set if bit 4 of #imm is one, unchanged otherwise

N set if bit 3 of #imm is one, unchanged otherwise

Z set if bit 2 of #imm is one, unchanged otherwise

V set if bit 1 of #imm is one, unchanged otherwise

C set if bit 0 of #imm is one, unchanged otherwise

Size:
byte

ORs the immediate value with the condition codes, storing the result in

the condition code register.

ORI #imm,CCR

--

 ORI to SR (logical inclusive OR, immediate to status register) {priv}

Syntax:
ORI #imm,SR

OR #imm,SR

Flags:
X set if bit 4 of #imm is one, unchanged otherwise

N set if bit 3 of #imm is one, unchanged otherwise

Z set if bit 2 of #imm is one, unchanged otherwise

V set if bit 1 of #imm is one, unchanged otherwise

C set if bit 0 of #imm is one, unchanged otherwise

Size:
word

ORs the immediate value with the status register, storing the result in

the status register.

ORI #imm,SR

--

 PACK (pack) {68020} {68030} {68040}

Syntax:
PACK Dx,Dy,#adjustment

PACK -(Ax),-(Ay),#adjustment

Flags:

Size:
unsized

Adjusts and packs the lower four bits of each of two bytes into a single

byte.

When both operands are data registers, the adjustment is added to the

value contained in the source register. Bits 11-8 and 3-0 of the

intermediate result are concatenated and placed in bits 7-0 of the

destination register. The remainder of the destination register is

unaffected.

When the predecrement addressing mode is specified, two bytes from the

source are fetched and concatenated. The adjustment word is added to the

concatenated bytes. Bits 0-3 of each byte are extracted. These eight

bits are concatenated to form a new byte, which is written to the

destination.

PACK D4,D5,#adjustment word

PACK -(A4),-(A5),#adjustment word

--

 PBcc (branch on PMMU condition) {68851} {priv}

 PDBcc (test, decrement and branch on PMMU condition) {68851} {priv}

 PFLUSH (flush ATC entries) {68030} {68040} {68551} {priv}

 PLOAD (load an entry into the ATC) {68030} {68551} {priv}

 PMOVE (move to/from MMU registers) {68030} {68551} {priv}

 PRESTORE (PMMU restore function) {68551} {priv}

 PSAVE (PMMU save function) {68551} {priv}

 PScc (set on PMMU condition) {68551} {priv}

 PTEST (test a logical address) {68030} {68040} {68551} {priv}

 PTRAPcc (trap on PMMU condition) {68551} {priv}

 PVALID (validate a pointer) {68551} {priv}

These instructions are not currently implemented because I am unsure of the

correct syntax.

--

 PEA (push effective address)

Syntax:
PEA

Flags:

Size:
long

Computes the effective address and pushes it onto the stack. The

effective address is a long address.

PEA

(An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 RESET (reset external devices) {priv}

Syntax:
RESET

Flags:

Size:
unsized

Asserts the RSTO signal for 512 (124 for MC68000, MC68EC000, MC68HC000,

MC68HC001, MC68008, MC68010 and MC68302) clock periods, resetting all

external devices.

RESET

--

 ROL (rotate left)

Syntax:
ROL.? Dx,Dy

ROL.? #count,Dy

ROL

Flags:
-**0*
(-**00 if count=0)

Size:
byte, word, long
(word if ROL)

Rotate the destination by the specified count (Dx modulo 64, or #count

from 1 to 8), or by 1 if using ROL . Bits rotated out of the high

order bit go to the carry and also back into the low order bit.

ROL.B D4,D5 ROL.W D4,D5 ROL.L D4,D5

ROL.B #count,D5 ROL.W #count,D5 ROL.L #count,D5

ROL

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 ROR (rotate right)

Syntax:
ROR.? Dx,Dy

ROR.? #count,Dy

ROR

Flags:
-**0*
(-**00 if count=0)

Size:
byte, word, long
(word if ROR)

Rotate the destination by the specified count (Dx modulo 64, or #count

from 1 to 8), or by 1 if using ROR . Bits rotated out of the low

order bit go to the carry and also back into the high order bit.

ROR.B D4,D5 ROR.W D4,D5 ROR.L D4,D5

ROR.B #count,D5 ROR.W #count,D5 ROR.L #count,D5

ROR

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 ROXL (rotate with extend, left)

Syntax:
ROXL.? Dx,Dy

ROXL.? #count,Dy

ROXL

Flags:
***0*

Size:
byte, word, long
(word if ROXL)

Rotate the destination by the specified count (Dx modulo 64, or #count

from 1 to 8), or by 1 if using ROXL . Bits rotated out of the high

order bit go to the carry and the extend; the previous value of the

extend rotates into the low order bit.

ROXL.B D4,D5 ROXL.W D4,D5 ROXL.L D4,D5

ROXL.B #count,D5 ROXL.W #count,D5 ROXL.L #count,D5

ROXL

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 ROXR (rotate with extend, right)

Syntax:
ROXR.? Dx,Dy

ROXR.? #count,Dy

ROXR

Flags:
***0*

Size:
byte, word, long
(word if ROXR)

Rotate the destination by the specified count (Dx modulo 64, or #count

from 1 to 8), or by 1 if using ROXR . Bits rotated out of the low

order bit go to the carry and the extend; the previous value of the

extend rotates into the high order bit.

ROXR.B D4,D5 ROXR.W D4,D5 ROXR.L D4,D5

ROXR.B #count,D5 ROXR.W #count,D5 ROXR.L #count,D5

ROXR

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 RTD (return and deallocate) {68010} {68020} {68030} {68040} {CPU32}

Syntax:
RTD #displacement

Flags:

Size:
unsized

Pulls the program counter value from the stack and adds the sign

extended 16-bit displacement value to the stack pointer. The previous

value of the program counter is lost.

RTD #displacement word

--

 RTE (return from exception) {priv}

Syntax:
RTE

Flags:
set according to the status register from the stack

Size:
unsized

{68000} {68008}

Pulls the status register and program counter values from the stack. The

previous values are lost.

{68010} {68020} {68030} {68040} {CPU32}

Loads the processor state information stored in the exception stack

frame located at the top of the stack into the processor. The

instruction examines the stack format field in the format/offset word

to determine how much information must be restored.

RTE

--

 RTM (return from module) {68020}

Syntax:
RTM Rn

Flags:
set according to the content of the word on the stack

Size:
unsized

A previously saved module state is reloaded from the top of stack. After

the module state is retrieved from the top of the stack, the caller's

stack pointer is incremented by the argument count value in the module

stack.

RTM Dn RTM An

--

 RTR (return and restore condition codes)

Syntax:
RTR

Flags:
set to the condition codes from the stack

Size:
unsized

Pulls the condition code and program counter values from the stack. The

previous values are lost. The supervisor portion of the status register

is unaffected.

RTR

--

 RTS (return from subroutine)

Syntax:
RTS

Flags:

Size:
unsized

Pulls the program counter from the stack. The previous program counter

value is lost.

RTS

--

 SBCD (subtract binary coded decimal)

Syntax:
SBCD Dx,Dy

SBCD -(Ax),-(Ay)

Flags:
*U*U*

Size:
byte

Subtracts the source and the extend bit from the destination, storing

the result in the destination. Subtraction is performed using binary

coded decimal (BCD) arithmetic.

SBCD D4,D5

SBCD -(A4),-(A5)

--

 Scc (set conditionally)

Syntax:
Scc

Flags:

Size:
byte

If the specified condition is true, the byte at the effective address is

set to $FF. If false, the byte is cleared to $00.

conditions:-

SF

flase, clear to $00

ST

true, set to $FF

SCC
SHS
set if carry clear / higher or same (unsigned)

SCS
SLO
set if carry set / lower (unsigned)

SEQ

set if equal

SGE

set if greater or equal (signed)

SGT

set if greater than (signed)

SHI

set if higher than (unsigned)

SLE

set if less or equal (signed)

SLS

set if lower or the same (unsigned)

SLT

set if less than (signed)

SMI

set if minus

SNE

set if not equal

SPL

set if plus

SVC

set if overflow clear

SVS

set if overflow set

Scc

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 STOP (load status register and stop) {priv}

Syntax:
STOP #data

Flags:
set according to the immediate word

Size:
unsized

Moves the immediate word into the status register, advances the program

counter to the next instruction, and stops the fetching and executing of

instructions. A trace, interrupt, or reset exception causes the

processor to resume instruction execution. A trace exception occurs if

instruction tracing is enabled (T0=1, T1=0) when the STOP instruction

begins execution. If an interrupt request is asserted with a priority

higher than the priority level set by the new status register, an

interrupt exception occurs; otherwise, the interrupt request is ignored.

An external reset always initiates reset exception processing.

STOP #word

--

 SUB (subtract)

Syntax:
SUB.? ,Dn

SUB.? Dn,

Flags:

Size:
byte, word, long

SUBtracts the source from the destination, storing the result in the

destination.

SUB.B ,D4 SUB.W ,D4 SUB.L ,D4

Dn An (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

SUB.B D4, SUB.W D4, SUB.L D4,

(An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

see also: SUBA SUBI SUBQ

--

 SUBA (subtract from address register)

Syntax:
SUBA.? ,An

SUB.? ,An

Flags:

Size:
word, long

SUBtracts the source from the destination register, storing the result

in the destination address register. Word length operands are

sign-extended to 32-bits for subtraction.

SUBA.W ,A4 SUBA.L ,A4

Dn An (An) (An)+ -(An) d16(An) d8(An,Ix)

mem.w mem.l #data d16(PC) d8(PC,Ix) ext(An) ext(PC)

--

 SUBI (subtract immediate)

Syntax:
SUBI.? #imm,

SUB.? #imm,

Flags:

Size:
byte, word, long

SUBtracts the immediate value from the destination, storing the result

in the destination.

SUBI.B #imm, SUBI.W #imm, SUBI.L #imm,

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 SUBQ (subtract quick)

Syntax:
SUBQ.? #imm,

Flags:
***** (----- if the destination is an address register)

Size:
byte, word, long (word, long if the destination is an address register)

SUBtracts the immediate value (from 1 to 8) from the destination,

storing the result in the destination. If the destination is an address

register, word length operands are sign-extended to 32-bits for

subtraction.

SUBQ.B #imm, SUBQ.W #imm, SUBQ.L #imm,

Dn An (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 SUBX (subtract with extend)

Syntax:
SUBX.? Dx,Dy

SUBX.? -(Ax),-(Ay)

Flags:

Size:
byte, word, long

SUBs the source and the extend from the destination, storing the result

in the destination.

SUBX.B D4,D5 SUBX.W D4,D5 SUBX.L D4,D5

SUBX.B -(A4),-(A5) SUBX.W -(A4),-(A5) SUBX.L -(A4),-(A5)

--

 SWAP (swap register halves)

Syntax:
SWAP Dn

Flags:
-**00

Size:
word

Exchange the 16-bit words (halves) of a data register.

SWAP D4

--

 TAS (test and set an operand)

Syntax:
TAS

Flags:
-**00

Size:
byte

Tests and sets the byte operand addressed by the effective address. The

instruction tests the current value of the operand and sets the N and Z

condition codes appropriately. TAS then sets the high order bit of

the operand. The operation uses a locked or read-modify-write transfer

sequence. This instruction supports use of a flag or semaphore to

coordinate several processors.

TAS

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

--

 TBLS (table lookup and interpolate, signed, result rounded) {CPU32}

 TBLSN (table lookup and interpolate, signed, result not rounded) {CPU32}

Syntax:
TBLS.? ,Dx

result rounded

TBLS.? Dym:Dyn,Dx
result rounded

TBLSN.? ,Dx

result not rounded

TBLSN.? Dym:Dyn,Dx
result not rounded

The TBLS and TBLSN instructions allow the efficient use of piecewise

linear compressed data tables to model complex functions. There are two

modes of operation; table lookup and interpolate mode and data register

interpolate mode.

TBLS.B ,D5 TBLS.W ,D5 TBLS.L ,D5

TBLSN.B ,D5 TBLSN.W ,D5 TBLSN.L ,D5

(An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

TBLS.B D4:D5,D6 TBLS.W D4:D5,D6 TBLS.L D4:D5,D6

TBLSN.B D4:D5,D6 TBLSN.W D4:D5,D6 TBLSN.L D4:D5,D6

--

 TBLU (table lookup and interpolate, unsigned, result rounded) {CPU32}

 TBLUN (table lookup and interpolate, unsigned, result not rounded) {CPU32}

Syntax:
TBLU.? ,Dx

result rounded

TBLU.? Dym:Dyn,Dx
result rounded

TBLUN.? ,Dx

result not rounded

TBLUN.? Dym:Dyn,Dx
result not rounded

The TBLU and TBLUN instructions allow the efficient use of piecewise

linear compressed data tables to model complex functions. There are two

modes of operation; table lookup and interpolate mode and data register

interpolate mode.

TBLU.B ,D5 TBLU.W ,D5 TBLU.L ,D5

TBLUN.B ,D5 TBLUN.W ,D5 TBLUN.L ,D5

(An) d16(An) d8(An,Ix) mem.w mem.l d16(PC) d8(PC,Ix) ext(An) ext(PC)

TBLU.B D4:D5,D6 TBLU.W D4:D5,D6 TBLU.L D4:D5,D6

TBLUN.B D4:D5,D6 TBLUN.W D4:D5,D6 TBLUN.L D4:D5,D6

--

 TRAP (trap)

Syntax:
TRAP #vector

Flags:

Size:
unsized

Causes a TRAP #vector exception. The instruction adds the immediate

operand (vector, 0-15) of the instruction to 32 to obtain the vector

number.

TRAP #vector (0-15)

--

 TRAPcc (trap on condition) {68020} {68030} {68040} {CPU32}

 TRPcc (trap on condition) {68020} {68030} {68040} {CPU32} {!!!}

Syntax:
TRAPcc

TRPcc {!!!}

TRAPcc.W #data

TRPcc.W #data {!!!}

TRAPcc.L #data

TRPcc.L #data {!!!}

Flags:

Size:
unsized, word, long

If the specified condition is true, causes a TRAPcc exception with a

vector number 7. The immediate data (word or long) is available to the

trap handler.

conditions:-

TRAPF

false, never trap

TRAPT

true, always trap

TRAPCC
TRAPHS
trap if carry clear / higher or same (unsigned)

TRAPCS
TRAPLO
trap if carry set / lower (unsigned)

TRAPEQ

trap if equal

TRAPGE

trap if greater or equal (signed)

TRAPGT

trap if greater than (signed)

TRAPHI

trap if higher than (unsigned)

TRAPLE

trap if less or equal (signed)

TRAPLS

trap if lower or the same (unsigned)

TRAPLT

trap if less than (signed)

TRAPMI

trap if minus

TRAPNE

trap if not equal

TRAPPL

trap if plus

TRAPVC

trap if overflow clear

TRAPVS

trap if overflow set

TRAPEQ

TRAPEQ.W #word

TRAPEQ.L #long

--

 TRAPV (trap if overflow)

Syntax:
TRAPV

Flags:

Size:
unsized

If the overflow condition code is set, a TRAPV exception with a vector

number 7 occurs.

TRAPV

--

 TST (test an operand)

Syntax:
TST.?

Flags:
-**00

Size:
byte, word, long

Compares the operand with zero and sets the condition codes accordingly.

TST.B TST.W TST.L

Dn (An) (An)+ -(An) d16(An) d8(An,Ix) mem.w mem.l ext(An)

An #data d16(PC) d8(PC,Ix) ext(PC) {68020} {68030} {68040} {CPU32}

--

 UNLK (unlink)

Syntax:
UNLK An

Flags:

Size:
unsized

Loads the stack pointer from the specified address register, the loads

the address register with the long word pulled from the top of the

stack.

UNLK A4

--

 UNPK (unpack BCD) {68020} {68030} {68040}

 UNPACK (unpack BCD) {68020} {68030} {68040}

Syntax:
UNPK Dx,Dy,#adjustment

UNPK -(Ax),-(Ay),#adjustment

Flags:

Size:
unsized

Places the two binary-coded decimal digits in the source operand byte

into the lower four bits of two bytes and places zero bits in the upper

four bits. Adds the adjustment word to this unpacked value.

When both operands are data registers, the instruction unpacks the

source register contents, adds the adjustment word, and places the

result in the destination register. The high word of the destination is

not affected.

When the addressing mode is predecrement, the instruction extracts two

binary-coded decimal digits from a byte at the source address. After

unpacking the digits and adding the adjustment word, the instruction

writes the two bytes to the destination address.

UNPK D4,D5,#adjustment word

UNPK -(A4),-(A5),#adjustment word

ÚÄÄ¿

³ Unimplemented Instructions ³

ÀÄÄÙ

The following instructions are not currently implemented, because I am unsure of

the correct syntax :-

 cpBcc (branch on coprocessor condition) {68020} {68030}

 cpDBcc (test coprocessor condition, decrement and branch) {68020} {68030}

 cpGEN (coprocessor general function) {68020} {68030}

 cpScc (set on coprocessor condition) {68020} {68030}

 cpTRAPcc (trap on coprocessor condition) {68020} {68030}

 cpRESTORE (coprocessor restore functions) {68020} {68030} {priv}

 cpSAVE (coprocessor save function) {68020} {68030} {priv}

 CINV (invalidate cache entries) {68040} {68LC040} {priv}

 CPUSH (push and invalidate cache entries) {68040} {68LC040} {priv}

 FRESTORE (restore internal floating point state)

 {68881} {68882} {68040} {priv}

 FSAVE (save internal floating point state)

 {68881} {68882} {68040} {priv}

 PBcc (branch on PMMU condition) {68851} {priv}

 PDBcc (test, decrement and branch on PMMU condition) {68851} {priv}

 PFLUSH (flush ATC entries) {68030} {68040} {68551} {priv}

 PLOAD (load an entry into the ATC) {68030} {68551} {priv}

 PMOVE (move to/from MMU registers) {68030} {68551} {priv}

 PRESTORE (PMMU restore function) {68551} {priv}

 PSAVE (PMMU save function) {68551} {priv}

 PScc (set on PMMU condition) {68551} {priv}

 PTEST (test a logical address) {68030} {68040} {68551} {priv}

 PTRAPcc (trap on PMMU condition) {68551} {priv}

 PVALID (validate a pointer) {68551} {priv}

Also, floating point coprocessor instructions are not currently implemented.

ÉÍÍ»

º Address Modes º

ÈÍÍ¼

 68000 Addressing Modes

Dn
D0-D7
data register direct

An
A0-A7
address register direct

(An)

address register indirect

(An)+

address register indirect, with postincrement

-(An)

address register indirect, with predecrement

d16(An)

address register indirect, with word displacement

d8(An,Ix)
address register indirect, with index and byte displacement

d16(PC)

program counter indirect, with word displacement

d8(PC,Ix)
program counter indirect, with index and byte displacement

mem.w

absolute data addressing short

mem.l

absolute data addressing long

#imm

immediate data

Ix :- the index register must have a size (.W or .L)

ÚÄÄ¿

³ Extended Addressing Modes (68020,68030,68040,CPU32) ³

ÀÄÄÙ

The 68020, 68030, 68040 and CPU32 have an extended address mode capacity.

Here follows a list of all the new address modes. There are some duplicates with

the original address modes, with the original used instead of the new in these

cases. Examples of unique new address modes are given.

{offset:width}
specify bit field (not CPU32)

bd
base displacement
ô default to word if no size

od
outer displacement
õ is given (.w or .l)

Ix
index register D0-D7/A0-A7, size must be given (.w or .l),

scale is optional (*1 *2 *4 *8)

An
ô

PC
³ base register

zPC
õ

zPC (zero program counter, or suppress program counter) example :- (zPC,100) and

(100) are assembled differently, but operate in exactly the same way.

using PC without a base displacement will generate a warning.

--

 No Memory Indirect Action Mode

(base displacement, base register, index register)

(bd)

(An)

(Ix)

(PC)

(zPC)

(bd,An)

(bd,Ix)

(An,Ix)

(bd,PC)

(PC,Ix)

(bd,zPC)

(zPC,Ix)

(bd,An,Ix)

(bd,PC,Ix)

(bd,zPC,Ix)

examples:-

(PC)

(PC)

no offset

(zPC)

(zPC)

(Ix)

(D0.w) (D0.l) (A0.l*4)

(bd,An)

100.l(A0) (100.l,A0) (A0,100.l)
long offset

(bd,PC)

mem.l(PC) (mem.l,PC)

long offset

(bd,zPC)
100(zPC) (100,zPC)

(bd,Ix)

100(D0.w) (100,D0.l) (A0.l*4,100)

(PC,Ix)

(PC,D0.w) (D0.l,PC) (PC,A0.l*4)
no offset

(zPC,Ix)
(zPC,D0.w) (D0.l,zPC) (zPC,A0.l*4)

(bd,An,Ix)
100.w(An,D0.w) (100.l,A0,D0.l)

word/long offset

(bd,PC,Ix)
mem.w(PC,D0.w) (mem.l,PC,D0.l)

word/long offset

(bd,zPC,Ix)
100.w(zPC,D0.w) (100.l,zPC,D0.l)

--

 Memory Indirect With Preindex / Index Suppressed (not CPU32)

([base displacement, base register, index register], outer displacement)

([bd])

([An])

([Ix])

([],od) ***

([PC])

([zPC])

([bd,An])
([bd,Ix])
([bd],od)

([bd,PC])

([bd,zPC])

([An,Ix])
([An],od)
([Ix],od)

([PC,Ix])
([PC],od)

([zPC,Ix])
([zPC],od)

([bd,An,Ix])
([bd,An],od])
([bd,ix],od)
([An,ix],od)

([bd,PC,Ix])
([bd,PC],od])

([PC,ix],od)

([bd,zPC,Ix])
([bd,zPC],od])

([zPC,ix],od)

([bd,An,Ix],od)

([bd,PC,Ix],od)

([bd,zPC,Ix],od)

examples:-

([bd])

([100.w]) ([100.l])

([An])

([A0])

([PC])

([PC])

([zPC])

([zPC])

([Ix])

([D0.w]) ([D0.l]) ([A0.l*4])

([bd,An])
([100,A0]) ([100.w,A0]) ([100.l,A0])

([bd,PC])
([mem,PC]) ([mem.w,PC]) ([mem.l,PC])

([bd,zPC])
([100,zPC]) ([100.w,zPC]) ([100.l,zPC])

([bd,Ix])
([100,D0.w]) ([100.w,D0.l]) ([100.l,A1.w*4])

([bd],od)
([100],200) ([100.w],200.l) ([100.l],200.w)

([An,Ix])
([A0,D0.w]) ([A0,D0.l]) ([A0,A1.w*4])

([PC,Ix])
([PC,D0.w]) ([PC,D0.l]) ([PC,A1.w*4])

([zPC,Ix])
([zPC,D0.w]) ([zPC,D0.l]) ([zPC,A1.w*4])

([An],od)
([A0],200) ([A0],200.w) ([A0],200.l)

([PC],od)
([A0],200) ([A0],200.w) ([A0],200.l)

([zPC],od)
([zPC],200) ([zPC],200.w) ([zPC],200.l)

([Ix],od)
([D0.w],200) ([D0.l],200.w) ([A1.w*4],200.l)

([bd,An,Ix])
([100,A0,D0.w]) ([100.w,A0,D0.l]) ([100.l,A0,A1.w*4])

([bd,PC,Ix])
([mem,PC,D0.w]) ([mem.w,PC,D0.l]) ([mem.l,PC,A1.w*4])

([bd,zPC,Ix])
([100,zPC,D0.w]) ([100.w,zPC,D0.l])

 ([100.l,zPC,A1.w*4])

([bd,An],od)
([100,A0],200) ([100.w,A0],200.l) ([100.l,A0],200.w)

([bd,PC],od)
([mem,PC],200) ([mem.w,PC],200.l) ([mem.l,PC],200.w)

([bd,zPC],od)
([100,zPC],200) ([100.w,zPC],200.l)

 ([100.l,zPC],200.w)

([bd,Ix],od)
([100,D0.w],200) ([100.w,D0.l],200.l)

 ([100.l,A1.w*4],200.w)

([An,Ix],od)
([A0,D0.w],200) ([A0,D0.l],200.w) ([A0,A1.w*4],200.l)

([PC,Ix],od)
([PC,D0.w],200) ([PC,D0.l],200.w) ([PC,A1.w*4],200.l)

([zPC,Ix],od)
([zPC,D0.w],200) ([zPC,D0.l],200.w)

 ([zPC,A1.w*4],200.l)

([bd,An,Ix],od)
([100,A0,D0.w],200) ([100.l,A0,D0.l],200.w)

 ([100.w,A0,A1.w*4],200.l)

([bd,PC,Ix],od)
([mem,PC,D0.w],200) ([mem.l,PC,D0.l],200.w)

 ([mem.w,PC,A1.w*4],200.l)

([bd,zPC,Ix],od) ([100,zPC,D0.w],200) ([100.l,zPC,D0.l],200.w)

 ([100.w,zPC,A1.w*4],200.l)

--

 Memory Indirect With Postindex (not CPU32)

([base displacement, base register], index register, outer displacement)

([],Ix) ***

([bd],Ix)
([An],Ix)
([],Ix,od) ***

([PC],Ix)

([zPC],Ix)

([bd,An],Ix)
([bd],Ix,od)
([An],Ix,od)

([bd,PC],Ix)

([PC],Ix,od)

([bd,zPC],Ix)

([zPC],Ix,od)

([bd,An],Ix,od)

([bd,PC],Ix,od)

([bd,zPC],Ix,od)

examples:-

([bd],Ix)
([100],D0.w) ([100.w],D0.l) ([100.l],A1.w*4)

([An],Ix)
([A0],D0.w) ([A0],D0.l) ([A0],A1.w*4)

([PC],Ix)
([PC],D0.w) ([PC],D0.l) ([PC],A1.w*4)

([zPC],Ix)
([zPC],D0.w) ([zPC],D0.l) ([zPC],A1.w*4)

([bd,An],Ix)
([100,A0],D0.w) ([100.w,A0],D0.l) ([100.l,A0],A1.w*4)

([bd,PC],Ix)
([100,PC],D0.w) ([100.w,PC],D0.l) ([100.l,PC],A1.w*4)

([bd,zPC],Ix)
([100,zPC],D0.w) ([100.w,zPC],D0.l)

 ([100.l,zPC],A1.w*4)

([bd],Ix,od)
([100],D0.w,200) ([100.w],D0.l,200.l)

 ([100.l],A1.w*4,200.w)

([An],Ix,od)
([A0],D0.w,200) ([A0],D0.l,200.l) ([A0],A1.w*4,200.w)

([PC],Ix,od)
([PC],D0.w,200) ([PC],D0.l,200.l) ([PC],A1.w*4,200.w)

([zPC],Ix,od)
([zPC],D0.w,200) ([zPC],D0.l,200.l)

 ([zPC],A1.w*4,200.w)

([bd,An],Ix,od)
([100,A0],D0.w,200) ([100.l,A0],D0.l,200.w)

 ([100.w,A0],A1.w*4,200.l)

([bd,PC],Ix,od)
([mem,PC],D0.w,200) ([mem.l,PC],D0.l,200.w)

 ([mem.w,PC],A1.w*4,200.l)

([bd,zPC],Ix,od) ([100,zPC],D0.w,200) ([100.l,zPC],D0.l,200.w)

 ([100.w,zPC],A1.w*4,200.l)

--

 How Indirect Addressing Modes ('[]') Work (not CPU32)

the expression between [] is evaluated, a long from that memory address is read,

and the rest of the expression is added (I assume this is how it works, I have

never been able to test it).

example:
A0 = 1000, D0 = 2000

memory address at 9100 contains 25000

memory address at 1100 contains 75000

preindex :- ([100.w,A0,D0.l*4],200.l)

100.w + A0 + D0.l*4 = 100 + 1000 + 8000 (2000*4) = 9100

[9100] = 25000, + 200 = 25200

memory address = 25200

postindex :- ([100.w,A0],D0.l*4,200.l)

100.w + A0 = 100 + 1000 = 1100

[1100] = 75000, + 8000 (D0.l*4, 2000*4) + 200 = 83200

memory address = 83200

ÉÍÍ»

º Acknowledgments, Disclaimer º

ÈÍÍ¼

The Motorola M68000 Family Programmer's Reference Manual is highly recommended

for detailed information about the instruction sets.

 All copyrights are acknowledged.

This file is part of the CrossFire package. Feel free to modify this file for

your own use, but if you distribute it, please distribute the whole unmodified

demonstration package (do NOT distribute the registered version). Add files if

you like, but try to keep them in the 'EXTRA' directory.

 Disclaimer

To the best of my knowledge the information contained in this file is accurate.

However, the user takes full liability for any damage caused by the use or

misuse of software, documentation and information in the CrossFire package.

APPENDIX C: 68000 Instruction Set (a description)

68000 Instruction Set
ABCD - Add Binary Coded Decimal
This instruction is a specialized arithmetic instruction that adds together two bytes (and only bytes) containing binary-coded decimal numbers. The addition can either be done between two data registers or between two memory locations. If performed on bytes in memory, only address register indirect with predecrement addressing can be used. This facilitates easy manipulation of multiple-precision BCD numbers. The extend bit is added along with the BCD bytes to allow this multiprecision data manipulation. Also note that the Zero flag is only changed if the result becomes non-zero. Therefore, both the Extend and Zero bits in the condition code register should be preset before the operation is performed. The Extend bit would normally be preset to a zero (to prevent extension on the first addition), and the Zero bit to a one (to preset a zero result prior to the first addition). A MOVE #4,CCR would setup these flags correctly. Syntax: ABCD Dn, Dn or ABCD -(An), -(An). Flags affected: The Extend, Zero, and Carry flags are affected as per the result of the operation. The state of the Negative and Ovreflow flags is undefined.
ADD - Add Binary
The ADD instruction adds the source to the destination operand with the result appearing in the destination. It is possible to add bytes, words, or long words with this opcode. Either the source or destination (or both) must be a data register. The source operand can be any memory location or data register, and the destination operand can also be any memory location or data register. Syntax: ADD Dn, Dn or ADD address, Dn or ADD Dn, address. Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all affected as per the result of the addition.
ADDA - Add Address
This variant of the ADD instruction only differs from ADD in that an address register is specified as the destination. As an address rather than data is being manipulated, the condition code flags are left unaltered. Only sign-extended words or long words can be added.
ADDI - Add Immediate
This variant of the ADD instruction is used to add a constant value to the destination. The immediate operand can be any 8-, 16-, or 32-bit value as specified by the .B, .W, or .L opcode suffix. The destination can not be an address register or a program counter relative address. Syntax: ADDI #imm, Dn or ADDI #imm, address where address is any memory addressing mode except program counter relative. Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set as per the result of the addition.
ADDQ - Add Quick
This variant of the ADD instruction is used to add a small positive integer between one and eight to the destination. The destination can be a memory location, a data register, or an address register. If it is an address register, the condition code flags are unaffected and the operand length can not be a byte. This operation takes the place of the increment instruction found on other processors. Syntax: ADDQ #imm, Rn or ADDQ #imm, address. Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set as per the result of the addition unless the destination is an address register.
ADDX - Add Extended
This variant of the ADD instruction adds two numbers plus the Extend bit from the condition code register. This allows multiple-precision additions to be performed. For this reason, the Zero flag is only affected when a non-zero result is obtained. This means that if multiple numbers are added together using ADDX, the Zero flag will stay reset if any of those numbers were non-zero. Syntax: ADDX Dn, Dn or ADDX -(An), -(An).
AND - Logical AND
This instruction logically ANDs bits in the source operand with the same number of bits in the destination operand were the result is left. The number of bits can be 8, 16, or 32 as per the .B, .W, or .L opcode suffix. One or both operands must be a data register. Syntax: AND Dn, Dn or AND Dn, memory or AND memory, Dn.
ANDI - Logical AND Immediate
This instruction logically ANDs an immediate byte, word, or long word value with the destination. The destination can be a data register, memory, or one of two special cases: the condition code register, only a byte-length immediate value is allowed. If the destination is the status register, only a word-length immediate value is allowed, and the processor must be in supervisor mode or a priviledge voilation will occur. Syntax: ANDI #imm, Dn or ANDI #imm, memory or ANDI.B #imm 8-bit value, CCR or ANDI.W #imm 16-bit value, SR (Privileged). Flags affected: The Overflow and Carry bits are reset, the Negative and Zero bits set as per the result, and the Extend bit is unaffected.
ASL - Arithmetic Shift Left
This instruction shifts the destination operand left by a specified number of bits. If you are shifting a data register, the number of bits to be shifted can be specified as an immediate value or as a value in another data register. The immediate value can be 1 to 8, whereas the data register can be 1 to 64 (where zero acts as the 64 count). Data registers may be shifted as 8, 16, or 32 bit quantities. Only 16-bit word values can be shifted in memory and then only by one bit. As shown below zeroes are shifted in at the right hand side of the operand. As each bit is shifted out of the left of an operand, it is placed in the Carry and Extend bits of the condition code register. If the sign of the operand changes during the shift, the Owerflow bit is set in the condition code register. C < < | <<< ASL <<< | < 0 X < Syntax: ASL Dn, Dn or ASL #imm 3-bit value, Dn or ASL memory (1 bit shift only).
ASR - Arithmetic Shift Right
This instruction shifts the destination operand right by a specified number of bits. If you are shifting a data register, the number of bits to be shifted can be specified as an immediate value or as a value in another data register. The immediate value can specify a shift of 1 to 8, while the data register can specify a shift of 1 to 64 (where zero acts as the 64 count). Data registers may be shifted as 8, 16, or 32 bit quantities. Only 16-bit word values can be shifted in memory and then only by one bit. Each bit shifted out of the right hand side of an operand is placed in the Carry and Extend bits of the condition code register. As shown below the bit shifted in at the left hand side is the current sign bit (the most significant bit is therefore preserved throughout the shift). > C Current MSB > | >>> ASR >>> | > > X Syntax: ASR Dn, Dn or ASR #imm 3-bit value, Dn or ASR memory (1 bit shift only).
BRA - Branch Always
This instruction changes the program counter register so execution continues at a different point in the program code. The destination of the jump is specified as a signed displacement to the program counter. This signed displacement can be an 8- or 16- bit quantity. With a bit 8-bit quantities, this allows branches of +126 to -128 bytes; 16-bit quantities can specify branches of +32766 to -32768 bytes. The value of the program counter when the displacement is added is taken to be the first word after the BRA opcode. This is the actual opcode address plus two. Normally an assembler will assume a 16-bit quantity as the displacement, but if an opcode suffix of .S is appended th the BRA, a short 8-bit displacement will be used instead. Syntax: BRA label (16-bit displacement) or BRA.S label (8-bit displacement). Flags affected: None.
Bcc - Branch Conditionally
Other variants of the BRA instruction allow a branch to be made only if a certain condition is met in the condition code register. These Bcc instructions can be divided into three different categories. Whether or not this instruction is actually executed depends on the required condition, which is verified by means of the flags. A minus sign before a flag indicates that it must be cleared to satisfy the condition. Logical operations are indicated with "*" for AND and "/" for OR. Branches depending on flag status:
BCC - Branch if carry clear -C
BCS - Branch if carry set C
BNE - Branch if zero clear -Z
BEQ - Branch if zero set Z
BVC - Branch if overflow clear -V
BVS - Branch if overflow set V
BPL - Branch if negative clear -N
BMI - Branch if negative set N Branches after unsigned comparison:
BHI - Branch if higher than -C * -Z
BHS - Branch if higher than or same as
BLO - Branch if lower than
BLS - Branch if lower than or same as C / Z
BEQ - Branch if equal to Z
BNE - Branch if not equal to -Z Branches after signed comparison:
BGT - Branch if greater than N * V * -Z / -N * -V * -Z
BGE - Branch if greater than or equal to N * V / -N * -V
BLT - Branch if less than N * -V / -N * V
BLE - Branch if less than or equal to Z / N * -V / -N * V
BEQ - Branch if equal to Z
BNE - Branch if not equal to -Z Syntax: Bcc label (16-bit displacement) or Bcc.S label (8-bit displacement). Flags affected: None.
BSR - Branch to Subroutine
This instruction causes control to be passed unconditionally to the specified program counter displacement as in the BRA opcode. However, before the branch is made, the address of the opcode following the BSR is saved on the stack so return can later be made to that address to continue processing at that point. This is achived as follows: 1. The 24-bit address following the opcode is pushed on the stack as two words. 2. The program counter is loaded with its new value and processing continues at the new address. Syntax: BSR label (16-bit displacement) or BSR.S label (8-bit displacement). Flags affected: None.
BCHG, BCLR, BSET, BTST - Bit Test and Change, Clear, Set
These instructions allow the manipulation and testing of single bits. The bits are numbered from the right to the left starting with bit no zero. Thus a byte contains bits 0 to 7; a word bits 0 to 15; and a long word bits 0 to 31. The number of the bit to be tested is specified in a data register or as an immediate value. The value of the bit is reflected in the Zero flag of the condition code register. This means that the if the bit tested was zero, the Zero flag will be set (Z=1). Therefore the Zero flag is always the opposite of the bit being tested. Once the test is made and the Zero flag is set up, the tested bit is manipulated as follows:
BCHG - The bit is reversed.
BCLR - The bit is cleared to zero.
BSET - The bit is set to a one.
BTST - The bit is unchanged. Syntax: Bxxx Dn, address or Bxxx #imm, address. Flags affected: Zero flag only.
CHK - Check Against Bounds
This instruction checks its first operand against a data register's word contents. If the data register contains less than zero or greater than its first operand, a trap to the address specified by vector 6 occurs. Thus, CHK can be used to ensure that an element of an array is neither below nor above its boundaries. Syntax: CHK bounds, Dn where bounds is anything except an address register. Flags affected: All flags are undefined after this operation.
CLR - Clear Destination to Zero
This instruction allows a byte, a word or a long word to be cleared to a zero according to the operand suffix .B, .W, or .L. The destination can be either a data register or memory. Address registers cannot be cleared with the CLR instruction (Use MOVE.L #0, An). Syntax: CLR Dn or CLR address. Flags affected: Negative, Overflow, and Carry are all set to zero, the Zero flag is set to a one, and the Extend flag is unaffected.
CMP - Compare
This instruction compares two operands and sets flags in the condition code register according to the result. Except for the Extend flag, the flags are set as if the source operand were subtracted from the destination. However, the result of this subtraction is not actually retained so the destination remains unchanged. The information about the comparison that is stored in the condition flags can then be acted upon by a Bcc-instruction. CMP may be used with byte, word, or long word source operands. Note that although any addressing mode can be used to specify the source operand, an address register can only be used if a word or long word comparison is performed. Syntax: CMP address, Dn.
CMPA - Compare Address
This variation of the CMP instruction is used to compare a source operand with an address register as destination operand. Only word or long word compares are allowed with CMPA. If a word is used as source, if is sign-extended to 32 bits before the comparison is made. Syntax: CMPA address, An. Flags affected: Same as CMP instruction.
CMPI - Compare Immediate
This variation of the CMP instruction is used to compare a source operand consisting of an immediate value with either a data register or memory. The comparison length can be byte, word, or long word as specified by the .B, .W, or .L opcode suffix. Syntax: CMPI #imm, Dn or CMPI #imm, memory.
CMPM - Compare Memory
This variation of the CMP opcode is used to compare sequential memory locations. These locations can be of type byte, word, or long word as specified by the .B, .W, or .L opcode suffix. To perform the sequencing automatically through memory, both source and destination operands must be specified using address register indirect with postincrement. Thus, after the compare is made, the address registers of both source and destination operands will be incremented by the length of data compared. Syntax: CMPM (An)+, (An)+. Flags affected: Same as the CMP opcode.
DBRA - Decrement and Branch
This instruction is used to control the program counter register in much the same way as BRA instruction is except that this allows greater power and versatility. By using DBRA, a specified data register is decremented and the branch made only if that register goes past zero. Thus, the count from a positive number will count down until zero and branch one more time. This allows loops where an index of zero is the last element. Note that as a result of this, the value left in the register will be -1 when an exit is made at the end of the loop. As an example, if eight locations were to be accessed, the data register specified in the DBRA instruction would be loaded with seven. The countdown, including the final zero, would go through eight cycles. The program counter register is modified as in the BRA instruction whereby a sign-extended 16-bit displacement is added to the program counter. No short 8 bit form is available. only bits 0 to 15 (that is, one word) of the data register is used. The destination of the branch is usually supplied as a label from which the assembler automatically calculates the displacement needed to that label. Syntax: DBRA Dn, label.
DBcc - Decrement and Branch Conditionally
This is a whole series of instruction that resemble the conditional versions of the BRA opcode. Conditional decrement and branch instruction work in a similar manner to the DBRA instruction except that one step is added to the execution process. Before the decrement is performed as in DBRA, the condition specified in the mnemonic is tested (in the opposite order to that suggested by the opcode name). If the condition is true, control drops through to the next instruction - the branch is not made. This is the opposite to the normal branch instruction where the conditional branch is made if the condition is true. Thus this mnemonic might more accurately be read as "decrement and branch if the condition is not fulfilled". Powerful loops can be constructed using the decrement and branch conditional instruction; an exit can be made from the loop either if the data register passes zero or if a pretested condition is met. The following list displays the conditions available for testing before the decrement and possible branch is made. This list is similar to that for the Bcc opcode with the addition of the F (false) and T (true) conditions, which specify an always false or always true precondition. Therefore a DBF is always false, so it will never drop through to the following opcode. Thus, the branch after the decrement will always be performed. Conversely, a DBT is always true, so it will always drop through and never perform the decrement. (This would only be likely to be of use during program development.)
DBEQ - Decrement, branch equal.
DBF - Decrement, branch false. (Same as DBRA.)
DBGE - Decrement, branch greater than or equal.
DBGT - Decrement, branch graeter than.
DBHI - Decrement, branch higher.
DBLE - Decrement, branch less than or equal.
DBLS - Decrement, branch lower than or same.
DBLT - Decrement, branch less than.
DBMI - Decrement, branch minus.
DBNE - Decrement, branch not equal.
DBPL - Decrement, branch plus.
DBRA - Decrement, branch unconditionally.
DBT - Decrement, branch true. (Branch never taken.) Syntax: DBcc Dn, label.
DIVS, DIVU - Divide Signed, Unsigned
These instructions allow a 16-bit divisor (n„mnare) to be used as a source and a 32-bit destination to be specified as dividend (t„ljare) in a divide operation. DIVS assumes both mubers are signed, whereas DIVU assumes both to be unsigned. The destination must be a data register. The source can be a memory location or another data register. The result is stored in the low word of the destination data register and the remainder in the high word of the same register. If the result will not fit in the 16 bits of the low half, the Overflow flag is set in the condition code register. It is possible that the overflow condition can occur during the internal processing of the divide, in which case the Negative and Zero flags will be undefined as will be the result. Either a conditional branch on overflow or a TRAPV can be placed after the divide opcode to act upon the error. Another problem occurs if a divisor of zero is specified. In this case a division-by-zero exception processing sequence is automatically initiated which causes a trap through vector 5. Syntax: DIVx Dn, Dn or DIVx address, Dn. Flags affected: The Carry flag is always set to zero. The Zero, Overflow, and Negative flags are set as per the result. The Extend flag is unaffected.
EOR - Logical Exclusive OR
This instruction performs a logical exclusive OR of the source operand with the same number of bits in the destination operand where the result is left. The number if bits can be 8, 16, or 32 as specified by the .B, .W, or .L opcode suffix. Syntax: EOR Dn, Dn or EOR Dn, address or EOR address, Dn. Flags affected: The Overflow and Carry flags are reset. The Negative and Zero flags are set as per the result, and the Extend flag is unaffected.
EORI - Logical Exclusive OR Immediate
This instruction performs a logical exclusive OR on a length of byte, word or long word between an immediate value and a destination. The destination can be a data register, memory or one of two special cases: the condition code register or the status register. If the destination is the the condition code register, only a byte-length immediate value is allowed. If the destination is the status register, only a word-length immediate value is allowed, and the processor must be in supervisor mode or else a priviledge voilation will occur causing a trap through vector 8. Syntax: EORI #imm, Dn or EORI #imm, memory or EORI.B #imm 8-bit value, CCR or EORI.W #imm 16-bit value, SR (Privileged). Flags affected: Same as the EOR instruction.
EXG - Exchange registers
This instruction allows the sign bit (the most significant bit) to be extended up to the next higher size. Thus if an opcode modifier of .W is used, the bit in position 7 of the lower-order byte will be extended into the rest of the word (in bits 8 to 15). If an opcode modifier of .L is used, the bit in position 15 of the low-order word will be extended into the rest of the long word (bits 16 to 31). If a byte value has to sign-extended to a long word, both an EXT.W and an EXT.L have to be performed on the data register. Syntax: EXT Dn. Flags affected: The Negative and Zero flags are set as per the result. The Overflow and Carry are reset to zero, and the Extend flag is unaffected.
JMP - Jump
This instruction allows execution of the program to be transferred anywhere within the entire addressing space of the 68000. The jump address can be specified using any memory mode except register indirect with postincrement or predecrement. It should be borne in mind that an absolute address specified in a jump instruction will load the program counter immediately with that value. Because absolute addresses are not position- independent. If the program is moved in memory it has to be reassembled if the label is contained within the program. The JMP instruction with an absolute address is more properly used for jumps to static locations such as ROM routines. To keep the jump position-independent, a program-counter-relative address should be specified. Syntax: JMP address where address is any addressing mode except (An)+ and -(An). Flags affected: None.
JSR - Jump to Subroutine
This instruction allows control to be redirected in a similar manner to the JMP instruction; however, before the jump is made, the address of the following opcode is pushed onto the stack. (See BSR for a description of the stack save process.) Thus a subroutine can perform a task, and when it finishes, it can execute a Return instruction to return to the address saved on the stack. As far as the destination address of the JSR instruction is concerned, the same caveats apply as for the JMP instruction. Absolute addresses, even as labels inside your program, should be avoided where possible to avoid a program which is not position-independent. Unless using such things as ROM routines or memory-mapped hardware locations, which have absolute addresses, use program counter relative or address register indirect addressing. Syntax: JSR address where address is any addressing mode except (An)+ and -(An). Flags affected: None.
LEA - Load Effective Address
This instruction provides a simple way of loading any address register with the address resulting from nearly any addressing mode. Only two such modes are excluded from the list of possibilities. Due to the fact that address register indirect with postincrement or predecrement represent a dynamically increasing or decreasing addresses, these two modes cannot be used with LEA. But any other address, no matter how complicated, (including address register indirect with displacement and index) can be loaded into the specified address register. This saves performing the address arithmetic within the program. The processor will automatically take the same value as the calculated address - or in other words "the effective address". Only address registers can be used with this instruction, and the destination address register is loaded with a 32-bit long value even though the address will only be 24 bits long. Syntax: LEA address, An where address is any addressing mode except postincrement and predecrement. Flags affected: None.
LINK - Link Subroutine
This instruction is a specialized data area allocation opcode for use by subroutines that require a temporary work area that will be relinguished after use. Normally, when a subroutine has been entered from a JSR or BSR instruction, the return address (that is, the address of the instruction after the JSR or BSR) has automatically been saved on the stack by the processor before transferring control to the subroutine. This is part of the regular linkage for a subroutine call, which is automatically performed by any computer processor. The LINK instruction adds another automatic-linkage option after control has been handed to the subroutine. Assume the subroutine nedds ten bytes of temporary storage in order to perform its function. The ideal place for this would be on the stack, which is the usual place for dynamic registers saves during a program's operation. As the stack pointer saves numbers in a downward direction in memory, simply subtracting ten from the stack pointer register A7 would reserve ten bytes of the stack space with A7 pointing at it. However, A7 may not point to the ten bytes for long, as other items may subsequently be pushed onto the stack changing A7 to point lower in memory. So ideally, another address register should be loaded with the contents of A7 before it was decremented by ten so we have a firm pointer to the stack before it is changed. This is exactly what the LINK instruction does. An address register is elected to save the current pointer to the stack in A7; this assigned will become the pointer to the temporary reserved stack space. The stack pointer A7 is then decremented by however many bytes needed, but before being decremented, the assigned register itself is saved on the stack. This way, the called subroutine can perform a LINK to reserve space, knowing that it can call yet another subroutine, which can also perform a LINK with no registers being corrupted. The diagram shows what happens.
LINK A0,#-10
Before: After: Low memory | | |----------------| Low memory A7 > | | | | | 10 bytes | |----------------| | | A7 > | Return address | |----------------| |----------------| A0 > | Previous A0 | | | |----------------| High memory | Return Address | |----------------| | | High memory Note that because ten bytes are required on stack going downwards in memory (as per normal stack practice), a negative displacement is specified in the LINK instruction. As the displacement is a signed 16-bit immediate value, a stack displacement of plus or minus 32K can be specified. The address register assigned to point to the top of the reserved space, or stack frame, is generally known as a frame pointer when used in this way. Note that as this register will be used with predecrement instructions, it initially points to one word above the frame. Syntax: LINK An, #imm where #imm is plus or minus 32K. Flags affected: None.
LSL - Logical Shift Left
This instruction shifts the destination operand left by a specified number of bits. If you are shifting a data register, the number of bits to be shifted can be specified as an immediate value or as a value in another data register. The immediate value can be 1 to 8, whereas the data register value can be 1 to 64 (where zero acts as the 64 count). Data registers may be shifted as 8, 16 or 32 bit quantities. Only 16-bit word values can be shifted in memory and then only by one bit. Each bit shifted out of the left-hand side of an operand is placed in the Carry and Extend bits in the condition code register. As shown below, the bit shifted in at the right hand side is always a zero. C < < | <<< LSL <<< | < 0 X < Syntax: LSL Dn, Dn or LSL #imm 3-bit value, Dn or LSL memory (1 bit shift only). Flags affected: The Carry and Extend bits are set as per the most significant operand bit before the shift. The Overflow flag is reset to zero. The Negative and Zero flags are set as per result.
LSR Logical Shift Right
This instruction shifts the destination operand right by a specified number of bits. If you are shifting a data register, the number of bits to be shifted can be specified as an immediate value or as a value in another data register. The immediate value can specify a shift of 1 to 8, while the data register value can specify a shift of 1 to 64 (where zero acts as the 64 count). Data registers may be shifted as 8, 16, or 32 bit quantities. Only 16-bit word values can be shifted in memory and then only by one bit. Each bit shifted out of the right hand side of an operand is placed in the Carry and Extend bits of the condition code register. As shown below, the bit shifted in at the left hand side is always a zero. > C 0 MSB > | >>> ASR >>> | > > X Syntax: LSR Dn, Dn or LSR #imm 3-bit value, Dn or LSR memory (1 bit shift only). Flags affected: The Carry and Extend bits are set as per the least significant operand bit before the shift. The Overflow flag is reset to zero. The Negative and Zero flags are set as per result.
MOVE - Move Data
This is the 68000's general purpose data-transfer instruction. Using one single opcode, data can be moved from register to register, register to memory, memory to register and memory to memory. The MOVE instruction can also be used to move data to (but not from) the condition code register, thus explicitly setting a particular set of conditions. If you are in privileged (or supervisor) mode, the MOVE instruction can be used to move data to the status register and to or from the user stack pointer. (Privileged mode is not required to move data from the status register.) With so many potential sources and destinations of data moves, the 68000 makes life easier by allowing all addressing modes to be used for the source. For destination, all except program counter relative addressing modes may be used. With data transfers involving memory and / or data registers, the data transfer can be made using 8, 16, or 32 bit quantities and is specified by appending .B, .W, or .L to the MOVE mnemonic. If the high-order bits of a data register are not involved in the data move, those bits remain unaffected by the transfer. Care should be used when mixing length of operands during routines using MOVE; if a byte is moved from a location using MOVE.B and then stored back again using MOVE.W, it will be stored in a memory location one byte higher than it was fetched from. Similary, storing it back with MOVE.L would store it three bytes higher than its original location. If the destination operand of the MOVE is the condition code register, the length of the source operand can only be eight bits. If the status register is involved as either source or destination of the move, only 16-bit transfers allowed. The instruction involving the user stack pointer is the only circumstance under which the 68000 allows optional access to either the user or the system stack pointer. Normally, the stack pointer is accessed as register A7. Whichever of two A7 registers is in effect depends on whether the processor is in supervisor or user mode. However, the supervisor mode may have a need to access the user stack pointer even though it would normally only access the system stack pointer. This is why the privileged mode is required to access a normally unprotected register. Syntax: MOVE source, destination where source can be any addressing mode destination can be any addressing mode except program counter relative and immediate. Either of the above can be CCR, SR and USP (privileged mode only). Flags affected: When the MOVE source, destination format is used, the Negative and Zero flags are set as per the data moved, the Overflow and Carry flags are reset to zero and the Extend flag is unaffected. When the MOVE source, CCR / SR formats are used, the flags are set directly from the data. When the MOVE is done with the USP as an operand, no flags are affected.
MOVEA - Move Address
This specialized version of the MOVE command is used when the destination is an address register. The instruction only allows transfers of 16 or 32 bits in length. Byte transfers are not allowed with an address register as the destination. Also note that unlike the normal MOVE command, no flag bits are affected. Syntax: MOVEA source, An where source is any addressing mode. Flags affected: None.
MOVEM - Move Multiple
This variation of the MOVE instruction allows multiple registers to be saved and restored using a single operation. Any of the 16 data or address registers can be moved this way. At the source code level, the registers chosen to be saved or restored are specified to the assembler in a list separated by slashes. Thus, to save D0, D3 and A1, the register list would be specified as D0/D3/A1. If a consecutive number of registers are included in the list, they can be idetified as such by a hyphen. So to save D0, D1, D2, D5 and A1, the register list can be specified as D5/D0-D2/A1. Notice that the order of register between slashes is unimportant; however, when the 68000 saves these registers, it does so in a definite order. It also retrives them in a definite (but opposite) order, so that if the registers are saved on the stack, they can be pulled off in a typical stack-like fashion (that is, last in first out). The order in which the 68000 saves registers is first A7 through A0, and then D7 through D0. Then in reverse order, D0 is restored first, and restoration continues all the way through to A7. As the registers are most often saved in a stack formation, normally an address register is chosen to point to that stack. Then a predecrement addressing mode is used to push the registers down onto the stack. Conversely, when registers are being restored, a postincrement addressing mode is used. As an example, to save two registers at a memory location pointed to by A3, the instruction MOVEM D1/A1, -(A3) might be used. To restore them at another point in program, MOVEM (A3)+, D1/A1 would be correct. Note that registers can only be saved as words or long words. If they are saved as 16-bit words, then when they are restored, the upper half of the register is automtically sign-extended so that bit 15 fills the upper half of the register. Although less memory is used to save registers this way, such a loss of control of the upper 16 bits of every restored register may present problems unless you remain acutely aware of the possible corruption of an upper register half. the MOVEM instruction may be used with addressing modes other than predecrement and postincrement. By specifying other addressing modes as the source or destination of the multiple transfer, registers can be saved and restored in ascending locations in memory. The same register order is used, but they will not be stacked in at last in, first out order. Note that no flags are affected by this operation. Thus a subroutine can affect the condition code register, restore multiple registers with MOVEM, and return with the condition code register still intact. Syntax: MOVEM register list, destination address or MOVEM source address, register list or MOVEM register list, -(An) or MOVEM (An)+, register list. Flags affected: None.
MOVEP - Move Peripheral Data
This variation of the MOVE instruction is used to transfer data between the 68000 and certain peripherals. As input and output on the 68000 is memory-mapped, certain addresses will not actually be memory at all but will instead be external devices. The 68000 has a special design to allow it to use the many hardware interfaces that exist for 8-bit microprocessors, in particular the 6800. What this means to the programmer is that if a peripheral is interfaced to the 68000 and is normally addressed at consecutive address on an 8-bit microprocessor, it will be addressed at every other address on the 68000 due to the design of its peripheral hardware bus. Thus the MOVEP instruction was included to address such peripherals. A long word of data from a data register can be transferred high byte first to every alternate memory (pheripheral) address with a single MOVEP to the first address. This also works the other way round in that every other word will be addressed starting with the source address specified in the MOVEP instruction. Only word or long word transfers are allowed. (A normal MOVE would be used for a single byte.) The only addressing mode allowed to specify the memory location is address register indirect with displacement, and only a data register can be used as the other operand. Syntax: MOVEP Dn, disp(An) or MOVEP disp(An), Dn where disp is a 16-bit displacement.
MOVEQ - Move Quick
This variation on the MOVE instruction allows the quick loading of a data register with an immediate value. The MOVEQ variant works like a MOVE immediate value to the data register except that MOVEQ is much faster and only takes up two bytes in memory. The immediate value that is moved into a data register can only be in the range -128 to +127. This value is sign- extended into the entire 32 bits of the data register, so it is always of type .L despite the small immediate value. As this instruction works so fast, it is quicker to clear a data register with a MOVE #0, Dn than to use CLR Dn. MOVEQ cannot, however, be used with address registers or numbers larger than eight bits. Syntax: MOVEQ #imm 8-bit signed value, Dn. Flags affected: The Negative and Zero flags are set as per the immediate value; the Overflow and Carry flags are reset to zero, and the Extent flag is unaffected.
MULS, MULU - Multiply Signed, Unsigned
This instruction allow a multiplication to take place between a 16-bit source operand and the low order 16 bits of a data register. MULS assumes both numbers are signed, whereas MULU assumes both to be unsigned. The source can be a word from any memory location or the low-order 16 bits of a data register. The destination has to be a data register. The result is stored as a 32-bit signed or unsigned value in the destination register. The Negative flag in the condition code register is affected whether or not the operands are signed, and reflects the most significant bit of the result. Syntax: MULx Dn, Dn or MULx address, Dn where address is any addressing mode. Flags affected: The Negative and Zero flags are set as per the result. The Overflow and Carry flags are reset to zero. The Extend flag is unaffected.
NBCD - Negate Binary Coded Decimal
This specialized arithmetic instruction allows a single byte containing two binary coded decimal digits to be negated. The byte can be contained in the low portion of a data register or in memory. If the number is in memory, any memory addressing mode except program counter relative may be used. If the number is in data register, bits 8 to 31 are not affected. Syntax: NBCD Dn or NBCD address. Flags affected: The Negative and Overflow flag is undefined. The Zero flag is set per the contents of register. Carry and Extend are set as per the result of operation.
NEG, NEGX - Negate Binary, Negate with Extend
This instruction negates its operand. The result is the same as if the operand were subtracted from zero. The operand may be 8, 16, or 32 bits long as specified by the .B, .W, or .L mnemonic suffix. All flags are affected by this operation. A variation of this instruction exists to facilitate the manipulation of multiple-precision quantities where data is handled in segments. This is achived by using the Extend flag as set or reset from a previous arithmetic operation. The NEGX instruction works by subtracting its operand from zero then subtracting the Extend bit. All flags are affected by the result of the NEGX operation, but the Zero flag is only changed if the result becomes non-zero thus reflecting the nonzero state of a segmented number. For this reason, the Zero flag should be reset before performing code involving multiple use of NEGX. Syntax: NEG Dn or NEG address where address is any addressing mode except program counter relative. Flags affected: All.
NOP - No Operation
This instruction is a do-nothing opcode. It is used during program developement to leave room in a section of code. This space can be patched with machine-code instruction as necessary during debugging to test new routines within a previously written machine code level by substituting NOP instruction for the instructions and operands. Syntax: NOP. Flags affected: None.
NOT - Logical NOT
This instruction takes its operand and simply inverts all of its bits. (Each one-bit becomes zero and each zero-bit becomes one.) The operand can either be in a data register or memory and can be 8, 16, or 32 bits in length as per the .B, .W, or .L operand suffix. Syntax: NOT Dn or NOT address where address is any memory addressing mode except program counter relative.
OR - Logical OR
The OR opcode performs a logical OR operation. A number of bits in the source operand are ORed with the same number of bits in the destination operand where the result is left. The number of bits can be 8, 16, or 32 as the .B, .W, or .L opcode suffix. One or both operands must be a data register. Syntax: OR Dn, Dn or OR Dn, address or OR address, Dn where address is any addressing mode with the proviso that program counter relative may not be used as destination.
ORI - Logical OR Immediate
This instruction logically ORs a byte, word, or long word immediate value with the destination. The destination address can be a data register, memory, or one of two special cases: the condition code register and the status register. If the destination is the condition code register, only a byte-length immediate value is allowed. If the destination is the status register, only a word-length immediate value is allowed, and the processor must be in supervisor mode or else a privilege voilation will occur. Syntax: ORI #imm, Dn or ORI #imm, address or ORI.B #imm 8-bit value, CCR or ORI.W #imm 16-bit value, SR (Privileged). Flags affected: The Overflow and Carry bits are reset, the Negative and Zero bits set as per the result, and the Extend bit is unaffected.
PEA - Push Effective Address
This instruction takes the effective address of its operands and pushes it onto the stack as pointed to by the stack pointer A7. The operand can be nearly any addressing mode and is represented as a 32-bit long word. Only two addressing modes are excluded from the list of possibilities. Due to the fact that address register indirect with postincrement or predecrement represent a dynamically increasing or decreasing address, these two modes cannot be used with PEA. But any other address, no matter how complicated, (including address register indirect with displacement and index) can be pushed onto the stack. This saves performing the address arithmetic within the program. The processor will automatically push the same value as the calculated address - or in other words "the effective address". The destination address on the stack is loaded with a 32-bit long value even though the address will only be 24 bits long. No flags are affected by the result of the address calculation. Syntax: PEA address where address is any memory addressing mode except postincrement and predecrement. Flags affected: None.
RESET - Reset External Devices
This instruction sends out a pulse from the RESET pin of the 68000. It is normally used when a system is first powered up to reset all devices to a known state. It is only likely to be used after that if a hardware fault-condition developes. Because it is such a powerful opcode, it is restricted to use in supervisor mode only. Syntax: RESET Flags affected: None.
ROL, ROXL - Rotate Left, Rotate Extended Left
These two instructions both rotate the destination operand left by a specified number of bits. If you are rotating a data register, the number of bits can be specified as an immediate value or as a value in another data register. The immediate value can be 1 to 8, whereas the data register value can be 1 to 64 (where zero acts as the 64 count). Data registers may be rotated as 8, 16, or 32 bit quantities. Only 16-bit word values can be rotated im memory and then only by one bit. As shown, each bit rotated out of the left hand side of the operand is placed in the Carry bit of the condition code register, and in case of ROXL, also in the Extend bit. The bit rotated in at the right is the most significant bit for ROL or the Extend bit for ROXL. Thus, one more bit is involved in the ROXL rotate than in the ROL rotate. Note that ROL does not affect the Extend flag in the condition code register. C < | <<< ROL <<< | < C < > > > > > > > > > < | <<< ROXL <<< | < < X < > > > > > > > > > > > > > Syntax: ROL Dn, Dn or ROL #imm, Dn or ROL address. Flags affected: The Negative flag is set as per most significant bit before the rotate. The Zero flag is set as per resultant operand. The Overflow flag is reset to zero. The Extend flag is unaffected by ROL, but contains the previous most significant bit for ROXL.
ROR, ROXL - Rotate Right, Rotate Extended Right
These two instructions both rotate the destination operand right by a specified number of bits. If you are rotating a data register, the number of bits can be specified as an immediate value or as a value in another data register. The immediate value can be 1 to 8, whereas the data register value can be 1 to 64 (where zero acts as the 64 count). Data registers may be rotated as 8, 16, or 32 bit quantities. Only 16-bit word values can be rotated im memory and then only by one bit. As shown, each bit rotated out of the right hand side of the operand is placed in the Carry bit of the condition code register and in case of ROXR, also in the Extend bit. The bit rotated in at the left is the least significant bit for ROR or the Extend bit for ROXR. Thus, one more bit is involved in the ROXR rotate than in the ROR rotate. Note that ROR does not affect the Extend flag in the condition code register. > | >>> ROR >>> | > C > C < < < < < < < < < > | >>> ROXR >>> | > > X > < < < < < < < < < < < < < Syntax: ROR Dn, Dn or ROR #imm, Dn or ROR address. Flags affected: The Negative flag is set as per most significant bit before the rotate. The Zero flag is set as per resultant operand. The Overflow flag is reset to zero. The Extend flag is unaffected by ROR, but contains the previous most significant bit for ROXR.
RTE - Return from Exception, RTR - Return and Restore CCR, RTS - Return from Subroutine
These instructions change program control by loading the program counter with an execution address previously saved on the stack. The most common version is RTS, which simply pulls the saved address from the stack, increments A7 to allow reuse of the stack space, and reloads the program counter. RTE excepts to find a previously saved status register word on the stack, which it pulls and restores prior to reloading the program counter. As RTE accesses the privileged byte of the status register, it can only be executed in supervisor mode or else a privilege voilation trap will occur. RTR expects to find a previously saved condition code register word on the stack, which it pulls and restores prior to reloading the program counter. Syntax: RTS or RTE or RTR. Flags affected: No flags are affected by RTS. All flags are reloaded by RTE and RTR.
SBCD - Subtract Binary Coded Decimal
This instruction a specialized arithmetic instruction that subtracts one bytes from another (only bytes) when each byte containis binary-coded decimal numbers. The subtraction can be performed either on two data registers or between two memory locations. If performed on bytes in memory, only address register indirect with predecrement can be used. This facilitates easy manipulation of multiple-precision BCD numbers. The extend bit is subtracted along with the BCD bytes to allow this multiprecision data manipulation. Also note that the zero flag is only changed if the result becomes nonzero. Therefore, both the Extend and Zero bits in the condition code register should be perset before the operation is performed. The Extend bit would normally be preset to a zero (to prevent extension on the first subtraction) and the Zero bit to a one (to signify a zero result prior to the first subtraction). A MOVE #4, CCR would preset these flags correctly. Syntax: SBCD Dn, Dn or SBCD -(An), -(An) Flags affected: The Zero flag is cleared if the result becomes nonzero. The Carry and Extend flags are set if a decimal borrow is generated. The Negative and Overflow bits are undefined.
Scc - Set from Conditions Codes
This instruction sets a single byte specified in the operand to all zeroes or all ones according to the condition codes. The condition codes which may be used are the same as for the decrement and branch opcode. If the specified condition is true as reflected in the condition code register, the destination byte is set to all ones ($FF). If it is not true, the destination byte is set to zero. The destination can be the low-order byte of a data register or a byte in memory. This instruction is of particular value saving status of a specific condition code. EQ - Equal to NE - Not equal to MI - Minus PL - Plus CS - Carry set CC - Carry clear VS - Overflow set VC - Overflow clear HI - Higher LS - Less than or same HS - Higher or same LO - Lower GT - Greater GE - Greater than or equal to LE - Less than or equal to LT - Less than F - False Always false => MOVE #$0 T - True Always true => MOVE #$FF Syntax: Scc Dn or Scc address where address is any addressing mode except program counter relative. Flags affected: None.
STOP - Stop processor and wait
This is a privileged instruction that first copies its operand (which is an immediate word value) into the status register and then halts the processor. The processor will remain in this state until it receives an interrupt that is not masked by the interrupt mask into the status register. Syntax: STOP #imm 16-bit value (Privileged). Flags affected: All flags are set as per the immediate value.
SUB - Subtract Binary
The SUB instruction subtracts the source operand from the destination operand with the result appearing in the destination. It is possible to subtract bytes, words, or long words with this opcode by appending .B, .W, or .L to the mnemonic. Either the source or destination (or both) must be a data register. The source operand can be any memory location or data register, and the destination operand can also be any memory location or data register. Syntax: SUB Dn, Dn or SUB address, Dn or SUB Dn, address Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all affected as per the result of the subtraction.
SUBA - Subtract Address
This variant of the SUB instruction only differs in that an address register is specified as the destination. As an address rather than data is being manipulated, the condition code flags are left unaffected. Only sign-extended words or long words can be subtracted.
SUBI - Subtract Immediate
This variant of the SUB instruction is used to subtract a constant value from the destination. The immediate operand can be any 8-, 16-, or 32-bit value as specified by the .B, .W, or .L opcode suffix. The destination cannot be an address register or a program counter relative address. Syntax: SUBI #imm, Dn or SUBI #imm, address where address is any memory addressing mode except program counter relative. Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set as per the result of the subtraction.
SUBQ - Subtract Quick
This variant of the SUB instruction is used to subtract a small integer between one and eight from the destination. The destination can be a memory location, a data register, or an address register. If it is an address register, the condition code flags are unaffected and the operand length cannot be a byte. This operation takes the place of the decrement instruction found on other processors. Syntax: SUBQ #imm, Rn or SUBQ #imm, address. Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set as per the result of the subtraction unless the destination is an address register.
SUBX - Subtract Extended
This variant of the SUB instruction subtracts two numbers and the Extend bit of the condition code register. This allows multiple-precision subtractions to be performed. For this reason, the Zero flag is only affected when a non-zero result is obtained. This means that if multiple numbers are subtracted using SUBX, the Zero flag will stay reset if any of those numbers were non-zero. Syntax: SUBX Dn, Dn or SUBX -(An), -(An).
SWAP - Swap Data register halves
This instruction takes the lower 16 bits of the specified data register and swaps it with the upper 16 bits. It can only be used with data registers and only on the fixed word length in each half. Syntax: SWAP Dn. Flags affected: The Negative and Zero flags are set to reflect the 32-bit result. The Overflow and Carry flags are reset to zero. The Extend flag is unaffected.
TAS - Test and Set
This is a highly specialized instruction that is used to test a byte in memory or in a data register. When the condition codes are set as per the byte's contents, bit 7 (the most significant bit) of the byte is set to a one. This operation is achived in an uninterruptible read-modify-write cycle. It is the only instruction on the 68000 that uses this method. Its importance lies in the fact that no interrupt can cause a read of the accessed byte before the operation is finished. If the operation were done in two steps, an interrupt could occur before the byte was changed, which would allow the interrupting routine to scan the byte and draw an erroneous conclution as to its status. Syntax: TAS Dn or TAS address where address is any addressing mode except program counter relative. Flags affected: The Negative and Zero flags are set as per the byte before modification. The Overflow and Carry flags are reset to zero. The Extend flag is unaffected.
TRAP - Software Trap
This instruction causes a trap to occur in the same manner as if it had been caused by a hardware-detected condition. The processor will jump to one of the 16 special addresses set up in the first 1024 bytes of memory. The actual address that will be jumped to is determined by the operand supplied with the opcode. This will be a number from 0 to 15. The software trap vectors are 32-bit addresses stored in memory starting at location #128. Before the specified vector is taken, the status register and program counter are pushed onto the stack to facilitate a return via an RTE instruction. Syntax: TRAP #imm where #imm is an immediate value from 0 to 15. Flags affected: None.
TRAPV - Trap if Overflow
This instruction causes a trap to occur to the address in location #28 in low memory if the Overflow flag is set in the condition code register. Before the overflow vector is taken, the status register and program counter are pushed onto the stack to facilitate a return via an RTE instruction. Syntax: TRAPV Flags affected: None.
TST - Test Operand
This instruction causes the processor to scan the operand and set the condition code flags according to the contents. The operand can be 8, 16, or 32 bytes as specified in the .B, .W, or .L opcode modifier. No registers other than the condition code register are changed. The operand can be either a data register or a memory location. Syntax: TST Dn or TST address where address is any addressing mode except program counter relative.
UNLK - Unlink
This instruction is the reverse of the LINK opcode. It takes the address in the specified address register and loads the stack pointer (A7) with it. This removes any space allocated on the stack for temporary storage. The stack pointer then points at the previous contents of the address register (the frame pointer). This contents would have been placed there by a previous LINK instruction. The frame pointer is automatically reloaded by pulling the value from the stack. Both the frame pointer and the stack pointer are therefore returned to their values before the last LINK. This entire operation is performed automatically by a single UNLK instruction. Syntax: UNLK An Flags affected: None.

APPENDIX D: Number systems

HEXADECIMAL NOTATION

 Hexadecimal notation is used by most machine language programmers when

 they talk about a number or address in a machine language program.

 Some assemblers let you refer to addresses and numbers in decimal

 (base 10), binary (base 2), or even octal (base 8) as well as hexadecimal

 (base 16) (or just "hex" as most people say). These assemblers do the

 conversions for you.

 Hexadecimal probably seems a little hard to grasp at first, but like

 most things, it won't take long to master with practice.

 By looking at decimal (base 10) numbers, you can see that each digit

 fails somewhere in the range between zero and a number equal to the base

 less one (e.g., 9). THIS IS TRUE OF ALL NUMBER BASES. Binary (base 2)

 numbers have digits ranging from zero to one (which is one less than the

 base). Similarly, hexadecimal numbers should have digits ranging from

 zero to fifteen, but we do not have any single digit figures for the

 numbers ten to fifteen, so the first six letters of the alphabet are used

 instead:

 +---------+-------------+----------+

 | DECIMAL | HEXADECIMAL | BINARY |

 +---------+-------------+----------+

 | 0 | 0 | 00000000 |

 | 1 | 1 | 00000001 |

 | 2 | 2 | 00000010 |

 | 3 | 3 | 00000011 |

 | 4 | 4 | 00000100 |

 | 5 | 5 | 00000101 |

 | 6 | 6 | 00000110 |

 | 7 | 7 | 00000111 |

 | 8 | 8 | 00001000 |

 | 9 | 9 | 00001001 |

 | 10 | A | 00001010 |

 | 11 | B | 00001011 |

 | 12 | C | 00001100 |

 | 13 | D | 00001101 |

 | 14 | E | 00001110 |

 | 15 | F | 00001111 |

 | 16 | 10 | 00010000 |

 +---------+-------------+----------+

 Let's look at it another way; here's an example of how a base 10

 (decimal number) is constructed:

 Base raised by

 increasing powers:... 10^3 10^2 10^1 10^0

 Equals:.............. 1000 100 10 1

 Consider 4569 (base 10) 4 5 6 9 = (4*1000)+(5*100)+(6*10)+9

 Now look at an example of how a base 16 (hexadecimal number) is

 constructed:

 Base raised by

 increasing powers:... 16^3 16^2 16^1 16^0

 Equals:.............. 4096 256 16 1

 Consider 11D9 (base 16) 1 1 D 9 = 1*4096+1*256+13*16+9

 Therefore, 4569 (base 10) = 11D9 (base 16)

(from c64.....)

Inline ASM with OnBoardC/Asm ©2003 by John Wilund [page 5of 1]

