
Palm OS®

Programming Bible

4676-7 FM.f.qc 10/16/00 9:59 AM Page i

4676-7 FM.f.qc 10/16/00 9:59 AM Page ii

Palm OS®

Programming Bible

Lonnon R. Foster

IDG Books Worldwide, Inc.
An International Data Group Company

Foster City, CA ✦ Chicago, IL ✦ Indianapolis, IN ✦ New York, NY

4676-7 FM.f.qc 10/16/00 9:59 AM Page iii

Palm OS® Programming Bible
Published by
IDG Books Worldwide, Inc.
An International Data Group Company
919 E. Hillsdale Blvd., Suite 400
Foster City, CA 94404
www.idgbooks.com (IDG Books Worldwide Web site)
Copyright © 2000 IDG Books Worldwide, Inc. All
rights reserved. No part of this book, including
interior design, cover design, and icons, may be
reproduced or transmitted in any form, by any means
(electronic, photocopying, recording, or otherwise)
without the prior written permission of the publisher.
ISBN: 0-7645-4676-7
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1B/QW/RR/QQ/FC
Distributed in the United States by IDG Books
Worldwide, Inc.
Distributed by CDG Books Canada Inc. for Canada;
by Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa;
by Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland;
by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile;
by Ediciones ZETA S.C.R. Ltda. for Peru; by WS
Computer Publishing Corporation, Inc., for the
Philippines; by Contemporanea de Ediciones for
Venezuela; by Express Computer Distributors for
the Caribbean and West Indies; by Micronesia
Media Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.

For general information on IDG Books Worldwide’s
books in the U.S., please call our Consumer Customer
Service department at 800-762-2974. For reseller
information, including discounts and premium
sales, please call our Reseller Customer Service
department at 800-434-3422.
For information on where to purchase IDG Books
Worldwide’s books outside the U.S., please contact
our International Sales department at 317-596-5530
or fax 317-572-4002.
For consumer information on foreign language
translations, please contact our Customer Service
department at 800-434-3422, fax 317-572-4002, or
e-mail rights@idgbooks.com.
For information on licensing foreign or domestic
rights, please phone +1-650-653-7098.
For sales inquiries and special prices for bulk
quantities, please contact our Order Services
department at 800-434-3422 or write to the
address above.
For information on using IDG Books Worldwide’s
books in the classroom or for ordering examination
copies, please contact our Educational Sales
department at 800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or
other publicity information, please contact our
Public Relations department at 650-653-7000 or
fax 650-653-7500.
For authorization to photocopy items for
corporate, personal, or educational use, please
contact Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, or fax 978-750-4470.
Library of Congress Cataloging-in-Publication Data
Foster, Lonnon R., 1972-

Palm OS programming Bible / Lonnon R. Foster.
p. cm.

ISBN 0-7645-4676-7 (alk. paper)
1. Palm OS. 2. PalmPilot (Computer)--Programming.

I. Title.
QA76.76.O63 F685 2000
005.26'8- -dc21 00-044954

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE
DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF
THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR
WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR
SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT
NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: All brand names and product names used in this book are trade names, service marks,
trademarks, or registered trademarks of their respective owners. IDG Books Worldwide is not associated
with any product or vendor mentioned in this book.

is a registered trademark or trademark under exclusive license
to IDG Books Worldwide, Inc. from International Data Group, Inc.
in the United States and/or other countries.

4676-7 FM.f.qc 10/16/00 9:59 AM Page iv

Eleventh Annual
Computer Press
Awards 1995Tenth Annual

Computer Press
Awards 1994

Eighth Annual
Computer Press
Awards 1992 Ninth Annual

Computer Press
Awards 1993

IDG is the world’s leading IT media, research and exposition company. Founded in 1964, IDG had 1997 revenues of $2.05
billion and has more than 9,000 employees worldwide. IDG offers the widest range of media options that reach IT buyers
in 75 countries representing 95% of worldwide IT spending. IDG’s diverse product and services portfolio spans six key areas
including print publishing, online publishing, expositions and conferences, market research, education and training, and
global marketing services. More than 90 million people read one or more of IDG’s 290 magazines and newspapers, including
IDG’s leading global brands — Computerworld, PC World, Network World, Macworld and the Channel World family of
publications. IDG Books Worldwide is one of the fastest-growing computer book publishers in the world, with more than
700 titles in 36 languages. The “...For Dummies®” series alone has more than 50 million copies in print. IDG offers online
users the largest network of technology-specific Web sites around the world through IDG.net (http://www.idg.net), which
comprises more than 225 targeted Web sites in 55 countries worldwide. International Data Corporation (IDC) is the world’s
largest provider of information technology data, analysis and consulting, with research centers in over 41 countries and more
than 400 research analysts worldwide. IDG World Expo is a leading producer of more than 168 globally branded conferences
and expositions in 35 countries including E3 (Electronic Entertainment Expo), Macworld Expo, ComNet, Windows World
Expo, ICE (Internet Commerce Expo), Agenda, DEMO, and Spotlight. IDG’s training subsidiary, ExecuTrain, is the world’s
largest computer training company, with more than 230 locations worldwide and 785 training courses. IDG Marketing
Services helps industry-leading IT companies build international brand recognition by developing global integrated marketing
programs via IDG’s print, online and exposition products worldwide. Further information about the company can be found
at www.idg.com. 1/26/00

Welcome to the world of IDG Books Worldwide.

IDG Books Worldwide, Inc., is a subsidiary of International Data Group, the world’s largest publisher of
computer-related information and the leading global provider of information services on information technology.
IDG was founded more than 30 years ago by Patrick J. McGovern and now employs more than 9,000 people
worldwide. IDG publishes more than 290 computer publications in over 75 countries. More than 90 million
people read one or more IDG publications each month.

Launched in 1990, IDG Books Worldwide is today the #1 publisher of best-selling computer books in the
United States. We are proud to have received eight awards from the Computer Press Association in recognition
of editorial excellence and three from Computer Currents’ First Annual Readers’ Choice Awards. Our best-
selling ...For Dummies® series has more than 50 million copies in print with translations in 31 languages. IDG
Books Worldwide, through a joint venture with IDG’s Hi-Tech Beijing, became the first U.S. publisher to
publish a computer book in the People’s Republic of China. In record time, IDG Books Worldwide has become
the first choice for millions of readers around the world who want to learn how to better manage their
businesses.

Our mission is simple: Every one of our books is designed to bring extra value and skill-building instructions
to the reader. Our books are written by experts who understand and care about our readers. The knowledge
base of our editorial staff comes from years of experience in publishing, education, and journalism —
experience we use to produce books to carry us into the new millennium. In short, we care about books, so
we attract the best people. We devote special attention to details such as audience, interior design, use of
icons, and illustrations. And because we use an efficient process of authoring, editing, and desktop publishing
our books electronically, we can spend more time ensuring superior content and less time on the technicalities
of making books.

You can count on our commitment to deliver high-quality books at competitive prices on topics you want
to read about. At IDG Books Worldwide, we continue in the IDG tradition of delivering quality for more than
30 years. You’ll find no better book on a subject than one from IDG Books Worldwide.

John Kilcullen
Chairman and CEO
IDG Books Worldwide, Inc.

4676-7 FM.f.qc 10/16/00 9:59 AM Page v

Credits
Acquisitions Editors
John Osborn
Greg Croy

Project Editor
Eric Newman

Technical Editor
JB Parrett

Copy Editors
Mildred Sanchez
S. B. Kleinman

Permissions Editor
Jessica Montgomery

Media Dev. Manager
Laura Carpenter

Media Dev. Supervisor
Rich Graves

Senior Permissions Editor
Carmen Krikorian

Media Dev. Coordinator
Marisa Pearman

Media Development Specialists
Megan Decraene
Brock Bigard

Project Coordinators
Joe Shines
Danette Nurse

Graphics and Production Specialists
Robert Bihlmayer
Jude Levinson
Michael Lewis
Victor Pérez-Varela
Ramses Ramirez

Quality Control Technician
Dina F Quan

Illustrators
Rashell Smith
Karl Brandt
Gabriele McCann

Proofreading and Indexing
York Production Services

Cover Image
Evan Deerfield

About the Author
Lonnon R. Foster is a freelance programmer who has spent the past seven years cre-
ating desktop applications, database front ends, Web sites, communications software,
technical documentation, and handheld applications. He has been developing Palm
OS applications almost as long as the platform has existed, starting with his first Pilot
5000. Lonnon fills his sparse free time with tactical tabletop gaming, recreational Perl
coding, and reading everything he can get his hands on.

4676-7 FM.f.qc 10/16/00 9:59 AM Page vi

For Elisabeth, who believed from the very start that I could do it

4676-7 FM.f.qc 10/16/00 9:59 AM Page vii

4676-7 FM.f.qc 10/16/00 9:59 AM Page viii

Foreword

In 1992, Palm Computing (now Palm, Inc.) was founded. The rest is history. Of
course, there’s a lot more to it. Many good decisions were made, and many bad

designs were thrown out. Palm started as a software company intending to influence
existing handheld manufacturers with its easy-to-use software and synchronization
technologies. The company soon realized two things. The first was that the hard-
ware manufacturers didn’t seem to believe in Palm’s philosophy. The second was
that it was difficult to make a viable business just writing software for this small
market. Palm realized that its first take at this company was not the right one and
decided to become the master of its destiny. The name was Pilot. Palm changed the
focus of its business virtually overnight. This is a lot like in development, where you
find that the first take is rarely the best one. I have often gone back through my code
and discovered some wacky designs. Only then do I discover the best architectural
design, giving me fewer bugs and the best feature set. In Palm, this is known as the
sweet spot and it is a zone that few developers enter and fewer leave successfully.
However, Palm not only entered this zone, it now owns it. This accounts for most
of Palm’s success. There are more powerful devices out there (PocketPC), and there
are more connected ones (Cybiko). Yet all of those devices combined still do not
add up to the amount of devices that Palm has shipped. Why? Because Palm has
found the sweet spot, the spot where functionality and ease of use conflict, and
difficult decisions are made to remove functionality (something that even Microsoft
hasn’t realized). Other companies have discovered this zone and understand what
is necessary in the handheld market. That’s the reason why these very wise compa-
nies have licensed the Palm OS. Companies like Sony, Handspring, and Symbol have
all realized the importance of Palm’s philosophy, where ease of use and power are
not necessarily mutually exclusive, and where the end-user experience is always
top notch.

At this writing, there are more than 100,000 Palm OS developers. This development
community is as diverse as the world of computing: from high school kids writing
in Basic to skilled university researchers writing in C, from enterprise developers
writing in Java to commercial developers writing in C++. From Iceland to Argentina,
these developers have realized not only that Palm is the best-selling handheld in
the world but also that the Palm OS is an open operating system, intuitive to pro-
gram and very clearly documented. I don’t expect to see developers evangelize
the virtues of Palm OS® Programming Bible, but they should. Lonnon Foster has
proven that he understands not only the fundamentals of Palm OS programming

4676-7 FM.f.qc 10/16/00 9:59 AM Page ix

x Foreword

but the sweet spot of writing as well. This book covers everything from building
forms and menus to programming sounds and color. The examples are complete
yet amazingly simple. Not only will you learn to program the Palm OS, you will
understand the philosophy that has made Palm successful, and in doing so, I
hope that you will be successful too.

Phillip B. Shoemaker
Director, Development Tools
Palm, Inc.

4676-7 FM.f.qc 10/16/00 9:59 AM Page x

Preface

The convenience, power, and ease of use of Palm OS handheld devices make
them attractive to a wide variety of users. Handheld devices running the Palm

OS have found their way into the shirt pockets of doctors, lawyers, sales personnel,
business professionals, and other segments of society not normally given to using
small electronic gadgetry. With more than 100,000 registered developers, the Palm
OS has also proven to be popular with software authors, which is where this book
comes in.

Palm OS® Programming Bible will show you how to create applications for Palm’s
popular line of handheld organizers, as well as third-party devices that also run the
Palm OS. In addition, this book covers creation of Web clipping applications for the
Palm VII/VIIx (and other wireless-equipped Palm OS handhelds) to allow wireless
connection to the Internet. You will also find material on writing conduit programs
to synchronize data between a Palm OS handheld and a desktop computer.
Whether you are a developer for a large organization that is integrating Palm OS
handhelds into its sales force or a hobbyist who wants to get the most from your
organizer, you will find this book to be a useful guide to creating software for the
Palm OS platform.

The primary focus of this book is Palm OS development in the C language, using
CodeWarrior for Palm Computing Platform or the GNU PRC-Tools as a development
environment. Other tools exist for developing Palm OS applications (and an overview
of other such tools is available in the appendixes), but these two environments are
popular with the largest developer audience, and they offer the most complete
access to the many features of the Palm OS and the handhelds that run it.

Who Should Read This Book
This book was written with the experienced C programmer in mind. If you know
nothing at all about Palm OS programming, this book will get you started with the
fundamentals, teaching you how the Palm OS works, showing you the tools avail-
able for Palm OS development, and providing you with tips to make your own
applications work seamlessly within Palm’s programming guidelines.

Even if you already have delved into the world of creating Palm OS applications,
you will find this book a useful resource, because it covers almost every aspect of
Palm OS development in depth. The Palm OS is very large, and this book can serve
as a guide to exploring those parts of the operating system that you have not yet
dealt with.

4676-7 FM.f.qc 10/16/00 9:59 AM Page xi

xii Preface

If you wish to create Web clipping applications for the Palm VII/VIIx, you will
need to know the basics of HTML and Web page creation to make the Palm Query
Applications (PQAs) that reside on the handheld and provide a client-side connec-
tion to the Internet. To create the server side of a Web clipping application, you
will need to be familiar with some sort of system for creating dynamic Web
content, such as Perl CGI or Active Server Pages.

Conduit programming requires knowledge of C++, as well as a working knowledge
of how to create desktop applications for either Windows or the Mac OS.

How This Book Is Organized
This book is organized into seven parts, plus four appendixes.

Part I: Getting Started
This first part of the book discusses the philosophy behind the Palm OS and intro-
duces fundamental concepts behind the inner workings of the operating system.

Part II: Creating Palm OS Applications
The chapters in Part II cover the mechanics of making a Palm OS application. This
section begins with a tour of the tools for Palm OS programming, then gets you
off the ground with a simple “Hello, world” application and finally presents tools
and techniques for every programmer’s favorite part of writing an application:
debugging.

Part III: Programming the Palm OS
The third part of this book focuses on actually writing the code to make a Palm OS
application work. Starting with chapters on creating the resources that form the
structure of an application, this part continues by showing how to actually make
the program do something, from interacting with the user to manipulating text.

Part IV: Storing Information on the Handheld
Part IV shows how to store and retrieve application data. It starts with the big
picture, showing how to interact with databases, then moves in for a closer look
at the records that make up a database.

4676-7 FM.f.qc 10/16/00 9:59 AM Page xii

xiiiPreface

Part V: Communicating Outside the Handheld
The chapters in Part V cover the myriad methods a Palm OS handheld can use to
communicate with the outside world, including infrared beaming, serial communi-
cation, and wireless Web clipping.

Part VI: Synchronizing Data with the Desktop
Part VI introduces the concepts behind the HotSync Manager, which allows a Palm
OS handheld to synchronize its applications with desktop data sources. The section
continues by showing how to write a conduit to customize the interaction between
a Palm OS database and desktop applications.

Part VII: Advanced Programming Topics
In Part VII you will find various topics that do not come up as often as do the others
in Palm OS programming, including managing color, creating large applications, and
creating user interface elements dynamically while an application is running.

Appendixes
The final section of the book is devoted to four appendixes:

✦ Appendix A, “Palm OS API Quick Reference,” is a quick guide to the most
common functions, data structures, and constants used in the Palm OS,
including prototypes for Palm OS functions.

✦ Appendix B, “Finding Resources for Palm OS Development,” is a list of
helpful resources for Palm OS developers.

✦ Appendix C, “Developing in Other Environments,” is a survey of alternative
tools for Palm OS development.

✦ Appendix D, “What’s on the CD-ROM?” describes the contents of the
CD-ROM that accompanies this book, which features sample code and
applications from the book, as well as all the tools a developer needs to
get started with Palm OS development.

In addition, I’ve included a glossary at the end of the book.

4676-7 FM.f.qc 10/16/00 9:59 AM Page xiii

xiv Preface

How to Approach This Book
Readers who are completely new to Palm OS development will get the most benefit
from this book by reading Parts I and II first to get a good handle on how the Palm
OS works and how to use CodeWarrior or the PRC-Tools. Then look at Part III to
learn what to do with those tools to make an actual application, and follow up with
Part IV to learn how to save and retrieve an application’s data. The other parts of
the book may be read in any order; pick a topic of interest, and start reading.

For readers who have already done some Palm OS development, Part I probably will
be material you already know. Part II can be useful if you use either CodeWarrior or
the PRC-Tools, and you want to see how the other set of tools works in comparison
with what you are using, and in particular, Chapter 5, “Debugging Your Program,”
contains useful tips for any Palm OS developer. Parts III and IV will serve as useful
references to parts of the operating system that you may or may not already be
familiar with, and later chapters introduce other parts of the Palm OS that are
not strictly required by most applications.

Developers interested in creating Web clipping applications can go straight to
Chapter 16, “Creating Web Clipping Applications.” Most Web clipping development
requires only a working knowledge of HTML, and if you run across any Palm OS–
specific concepts you are not familiar with, a quick look through Part I should
serve to resolve any confusion.

Anyone interested in creating conduits should first be familiar with the conceptual
information in Part I. After you understand the concepts behind the Palm OS, turn
to Part VI to learn how to hook the Palm OS up to a desktop computer.

Conventions Used in This Book
Each chapter in this book begins with a heads-up of the topics covered in the
chapter and ends with a summary of what you should have learned by reading
the chapter.

Throughout this book, you will find icons in the margins that highlight special or
important information. Keep an eye out for the following icons:

A Caution icon indicates a procedure that could potentially cause difficulty or even
data loss; pay careful attention to Caution icons to avoid common and not-so-
common programming pitfalls.

Cross-Reference icons point to additional information about a topic, which you can
find in other sections of the book.

Cross-
Reference

Caution

4676-7 FM.f.qc 10/16/00 9:59 AM Page xiv

xvPreface

A Note icon highlights interesting or supplementary information and often contains
extra bits of technical information about a subject.

The On the CD-ROM icon is a pointer to information, tools, or programs available
on the CD-ROM that accompanies this book.

Tip icons draw attention to handy suggestions, helpful hints, and useful pieces of
advice.

In addition to the icons listed previously, the following typographical conventions
are used throughout the book:

✦ Code examples appear in a fixed width font.

✦ Other code elements, such as data structures and variable names, appear
in fixed width.

✦ File names and World Wide Web addresses (URLs) also appear in fixed width.

✦ Function and macro names are in bold.

✦ The first occurrence of an important term in a chapter is highlighted with
italic text. Italic is also used for placeholders — for example, ICON <icon
file name>, where <icon file name> represents the name of a bitmap file.

✦ A menu command is indicated in hierarchical order, with each menu com-
mand separated by an arrow. For example, File ➪ Open means to click the
File command on the menu bar, and then select Open.

✦ Keyboard shortcuts are indicated with the following syntax: Ctrl+C.

Tip

On the
CD-ROM

Note

What Is a Sidebar?

Topics in sidebars provide additional information. Sidebar text contains discussion that is
related to the main text of a chapter, but not vital to understanding the main text.

4676-7 FM.f.qc 10/16/00 9:59 AM Page xv

4676-7 FM.f.qc 10/16/00 9:59 AM Page xvi

Acknowledgments

Few books of this size and scope are ever the work of a single individual, and
this one is no exception. I owe a debt of gratitude to many people for their

help and encouragement in writing this book.

First and foremost, thanks to my acquisitions editors, John Osborn and Greg Croy,
as well as my agent, Neil Salkind, for giving me the opportunity to write this book.
Thanks also go to Erica Sadun, who had the whole idea in the first place.

I want to extend special thanks to Eric Newman, whose hard work as development
editor was an incalculable asset in creating this book. Not only did he help wrestle
the text of the book into a more focused and organized whole, he kept up the faith
even in the face of slipping deadlines and the author’s trip to England in the middle
of the writing. A Palm enthusiast himself, Eric also kept me abreast of happenings
in the Palm OS world that I would otherwise have missed during the busiest
months of writing.

In addition, my thanks go out to the book’s technical reviewer, JB Parrett, whose
expertise and passion for good user interface improved the quality of the book
immeasurably. I would also like to thank Mildred Sanchez and S. B. Kleinman for
their copyediting as well as apologize for any gross abuses of the English language
they were forced to endure.

A big thank you to the production team at IDG Books, including Gabriele McCann,
Linda Marousek, Danette Nurse, Ronald Terry, and Mary Jo Weis, whose efforts
behind the scenes made it possible for a random assortment of Word documents
and bitmap images to transform magically into the printed copy you now hold.
More thanks go to Jessica Montgomery, Lenora Chin Sell, and Carmen Krikorian,
the media production folks who secured legal permissions for third-party CD-ROM
content, and a very special thank you to Joe Kiempisty for his able assistance and
patience in getting my own source code onto the CD.

I owe a lot to Lisa Rathjens and Ryan Robertson of Palm. Lisa’s loan of time and soft-
ware helped produce much better CodeWarrior support in this book, and Ryan’s
explanation of how tables work and answers to random technical questions ensured
that some of the more confusing aspects of the Palm OS were made much clearer.
Thanks also go to Christine Ackerman and Neil Shepherd of Oracle, Ivan Phillips of
Pendragon Software, Ray Combs of PUMATECH, Dan Simon of Qualcomm, and Chris
Ciervo of Symbol.

4676-7 FM.f.qc 10/16/00 9:59 AM Page xvii

xviii Acknowledgments

Special thanks go to Ken Martin, Gene Thompson, and Steve Feldon, whose com-
mentary as “beta testers” was very useful in making sure that I have not ignored
first-time Palm OS programmers in this volume. Steve also deserves my gratitude
for introducing me to handheld computing, first with his old Newton (which he
wouldn’t let me touch for fear of messing up the handwriting recognition), then
again with his Pilot 5000 (which he did let me touch, and convinced me that I
really needed to get one of my own).

An especially warm thank you goes out to the free software community, both for
producing the free Palm OS development tools that allowed me to get into Palm
development in the first place and for providing source code of working Palm OS
programs, which allowed me to learn the ropes of the Palm OS. In particular, I
thank Mitch Blevins, author of DiddleBug and other fine free software, for fabulous
source code to work from and general camaraderie between developers, and
John Marshall, maintainer of the PRC-Tools, for his able assistance in getting
the PRC-Tools up and running under GNU/Linux.

I also thank Garbage, Goodness, Guano Apes, and other bands whose names do not
begin with “G” (like Jethro Tull, Depeche Mode, and They Might Be Giants), for their
inspiring tunes, which were of great help during those really long chapters. In addi-
tion, my thanks go out to Nullsoft, makers of the Winamp MP3 player, whose fine
program allowed me to queue up hundreds of songs by the aforementioned bands
and blast them at obnoxious volumes.

Finally, I would like to offer my eternal thanks to Elisabeth (my wife), Constance
Maytum, John Hedtke, Alan Zander, both of my cats, and all my friends who put
up with alternating blank stares and manic technical babbling from me over the
course of this massive project.

4676-7 FM.f.qc 10/16/00 9:59 AM Page xviii

4676-7 FM.f.qc 10/16/00 9:59 AM Page xix

Contents at a Glance
Foreword . ix
Preface. xi
Acknowledgments. xviii

Part I: Getting Started . 1
Chapter 1: Understanding the Palm Computing Platform 3
Chapter 2: Understanding the Palm OS . 15

Part: II: Creating Palm OS Applications 41
Chapter 3: Introducing the Development Environments 43
Chapter 4: Writing Your First Palm OS Application 67
Chapter 5: Debugging Your Program . 97

Part III: Programming the Palm OS . 131
Chapter 6: Creating and Understanding Resources 133
Chapter 7: Building Forms . 165
Chapter 8: Building Menus . 193
Chapter 9: Programming User Interface Elements 213
Chapter 10: Programming System Elements . 265
Chapter 11: Programming Tables. 309

Part IV: Storing Information on the Handheld. 371
Chapter 12: Storing and Retrieving Data . 373
Chapter 13: Manipulating Records . 403

Part V: Communicating Outside the Handheld 469
Chapter 14: Beaming Data by Infrared . 471
Chapter 15: Using the Serial Port. 507
Chapter 16: Creating Web Clipping Applications 535

4676-7 FM.f.qc 10/16/00 9:59 AM Page xx

Part VI: Synchronizing Data with the Desktop. 571
Chapter 17: Introducing Conduit Mechanics . 573
Chapter 18: Building Conduits . 593

Part VII: Advanced Programming Topics 657
Chapter 19: Programming in Color . 659
Chapter 20: Odds and Ends . 673

Appendix A: Palm OS API Quick Reference . 707
Appendix B: Finding Resources for Palm OS Development 813
Appendix C: Developing in Other Environments 821
Appendix D: What’s on the CD-ROM? . 829

Glossary . 837
Index . 861
End-User License Agreement . 894
GNU General Public License . 897
CD-ROM Installation Instructions . 904

4676-7 FM.f.qc 10/16/00 9:59 AM Page xxi

4676-7 FM.f.qc 10/16/00 9:59 AM Page xxii

Contents
Foreword . ix

Preface. xi

Acknowledgments . xviii

Part I: Getting Started 1

Chapter 1: Understanding the Palm Computing Platform 3
The Palm OS Philosophy . 3
Comparing Desktop and Handheld Application Design 4

Expectation of Performance . 5
Limited Input Methods . 5
Small Screen Size . 6
Battery and Processor Power . 6
Limited Memory . 7
RAM as Permanent Storage. 7

Connecting to the Desktop . 8
Comparing Hardware Versions . 9
Looking to the Future. 13

Chapter 2: Understanding the Palm OS 15
Understanding a Palm OS Handheld’s Power Usage 15
Running a Palm OS Application . 16

Responding to Launch Codes. 17
Handling Events . 17

Managing Memory . 18
Dynamic RAM. 19
Storage RAM . 21

Using Resources. 23
Designing the User Interface. 24

Forms . 25
Alerts . 26
Menus . 27
Tables . 27
Lists . 28
Pop-up Triggers. 28
Buttons . 29

4676-7 FM.f.qc 10/16/00 9:59 AM Page xxiii

xxiv Palm OS Programming Bible

Repeating Buttons . 29
Selector Triggers . 30
Push Buttons . 30
Check Boxes . 31
Labels . 31
Form Bitmaps . 31
Fields. 32
Graffiti Shift Indicator . 32
Scroll Bars. 33
Gadgets . 34

Communicating with Other Devices . 35
Serial . 35
TCP/IP . 35
Wireless . 36
IrDA . 36
Beaming . 36

Comparing Palm OS Versions . 37
Changes in Version 2.0. 37
Changes in Version 3.0. 38
Changes in Version 3.1. 38
Changes in Version 3.2. 38
Changes in Version 3.3. 39
Changes in Version 3.5. 39

Part II: Creating Palm OS Applications 41

Chapter 3: Introducing the Development Environments 43
Using CodeWarrior for Palm OS . 43

Familiarizing Yourself with the IDE. 45
Changing Target Settings . 52
Compiling and Linking in CodeWarrior 56

Using the GNU PRC-Tools . 57
Compiling and Linking with the PRC-Tools 59
Automating Builds with Make. 61

Chapter 4: Writing Your First Palm OS Application 67
Looking at the Hello World User Interface . 67
Walking Through the Hello World Code . 68

Including Header Files . 69
Entering the Application . 71
Starting the Application . 73
Closing the Application . 73
Handling Events . 73
Setting Up Forms . 76
Responding to Form Events. 77

xxivxxiv

4676-7 FM.f.qc 10/16/00 9:59 AM Page xxiv

xxvContents

Handling Menu Events . 81
Displaying Alerts and Using the Text Field 83

Using Memory in the Palm OS. 85
Putting It All Together . 90

Chapter 5: Debugging Your Program . 97
Using the Palm OS Emulator. 97

Controlling POSE . 100
Running POSE for the First Time . 102
Installing a ROM Image . 103
Installing Applications . 106
Saving and Restoring Configurations 106
Adjusting POSE Settings . 107
Handling Gremlins . 112
Emulating a HotSync Operation. 115
Taking Screen Shots . 117
Handling Errors in POSE . 118

Debugging at the Source Level . 118
Debugging with CodeWarrior . 119
Debugging with GDB . 122

Resetting a Palm OS Handheld. 125
Using Developer Graffiti Shortcuts . 125
Using the Palm OS Error Manager . 127

Part III: Programming the Palm OS 131

Chapter 6: Creating and Understanding Resources 133
Following Palm OS User Interface Guidelines 133

Making Fast Applications . 134
Highlighting Frequently Used Functions 135
Designing for Ease of Use . 136
Maintaining Palm OS Style . 137

Creating Resources with Constructor. 142
Exploring the Project Window. 143
Creating Catalog Resources . 156

Creating Resources with PilRC. 157
Creating Application Resources. 158
Previewing the Interface in PilrcUI . 163
Assigning Constants to Resources . 163

Chapter 7: Building Forms . 165
Building Forms with Constructor . 165

Setting Common Object Properties. 167
Setting Individual Object Properties 169

4676-7 FM.f.qc 10/16/00 9:59 AM Page xxv

xxvi Palm OS Programming Bible

Building Forms with PilRC . 180
Creating a Form Resource . 181
Adding Objects to a Form . 182

Chapter 8: Building Menus . 193
Building Menus with Constructor . 193

Sharing Menus between Menu Bars 196
Building Menus with Rez . 197

Integrating Rez Menus with Your Project 200
Building Menus with PilRC . 202
Introducing Librarian, a Sample Application. 204

Displaying Multiple Records in List View 204
Displaying an Individual Book in Record View 205
Editing a Record in Edit View . 206
Examining Librarian’s Menus . 208

Chapter 9: Programming User Interface Elements 213
Programming Alerts . 213
Programming Forms. 216

Switching to a New Form. 216
Displaying a Complex Modal Dialog Box 217
Displaying a Simple Modal Dialog Box 218

Programming Objects on Forms . 221
Handling Form Object Events . 222
Retrieving an Object Pointer . 225
Hiding and Showing Form Objects . 226

Programming Check Boxes and Push Buttons 227
Handling Control Groups. 228

Programming Selector Triggers . 229
Programming Fields . 233

Setting a Handle for a Text Field . 233
Modifying a Text Field . 234
Retrieving Text from a Field . 236
UInt16 length = FldGetTextLength(field); Setting Field Focus 236
Setting Field Attributes. 237

Programming Gadgets . 238
Programming Lists and Pop-up Lists . 243

Retrieving List Data. 243
Manipulating Lists . 244
Programming Dynamic Lists. 245
Handling Pop-up Lists . 248

Programming Menus . 249
Using MenuEraseStatus . 250
Removing Menu Items . 250

Drawing Graphics and Text. 252
Understanding Windows . 252

4676-7 FM.f.qc 10/16/00 9:59 AM Page xxvi

xxviiContents

Drawing Lines . 256
Drawing Rectangles. 256
Drawing Text. 260
Drawing Bitmaps . 261

Chapter 10: Programming System Elements. 265
Checking for Supported Features . 265

Determining Operating System Version 266
Checking Individual Features . 268

Manipulating Text . 270
Using Font Functions . 270
Using String Functions . 274
Using Character Macros . 276

Handling Pen Events . 279
Handling Key Events . 281
Setting Alarms . 284

Setting an Alarm. 285
Responding to Alarms . 286
Responding to Other Launch Codes 289

Playing Sounds. 290
Looking Up Phone Numbers . 292
Launching Applications. 293

Calling the System Application Launcher 294
Launching Applications Directly . 294
Sending Launch Codes Globally. 297
Creating Your Own Launch Codes . 297

Generating Random Numbers . 298
Managing Power . 299

Reacting to Low Battery Conditions 300
Identifying the Device . 301
Manipulating Time Values . 302

Retrieving and Setting Time Values . 303
Converting Time Values . 303
Altering Time Values . 305

Using the Clipboard . 305

Chapter 11: Programming Tables . 309
Creating a Simple Table . 310

Understanding How Tables Work . 311
Initializing a Table. 314
Handling Table Events . 328
Hiding Rows and Columns . 328

Creating More Complex Tables . 331
Connecting a Table to Data . 332
Scrolling Tables . 350
Handling Table Text Fields. 365

4676-7 FM.f.qc 10/16/00 10:00 AM Page xxvii

xxviii Palm OS Programming Bible

Part IV: Storing Information on the Handheld 371

Chapter 12: Storing and Retrieving Data 373
Understanding the Data Manager . 373

Resource Databases . 378
Working with Databases . 379

Creating Databases . 379
Opening Databases . 381
Closing Databases . 382
Finding Databases . 383
Deleting Databases . 385
Retrieving and Modifying Database Information 386
Creating an Application Info Block . 391

Storing Application Preferences . 394
Reading and Setting System Preferences 397

Using Feature Memory . 399

Chapter 13: Manipulating Records . 403
Working with Records. 403

Looking at Records in the Librarian Sample Application 404
Comparing Records. 409
Finding Records . 416
Creating Records . 418
Deleting Records . 422
Reading Records . 424
Modifying Records . 424
Sorting Records . 435
Retrieving and Modifying Record Information 436
Categorizing Records. 438
Implementing Private Records . 448
Resizing Records . 449

Working with Resources . 450
Finding Resources . 452
Creating Resources . 453
Deleting Resources . 454
Reading Resources . 455
Retrieving and Modifying Resource Information 457
Resizing Resources . 458

Implementing the Global Find Facility . 458
Handling sysAppLaunchCmdSaveData. 459
Handling sysAppLaunchCmdFind. 460
Handling sysAppLaunchCmdGoto . 464

4676-7 FM.f.qc 10/16/00 10:00 AM Page xxviii

xxixContents

Part V: Communicating Outside the Handheld 469

Chapter 14: Beaming Data by Infrared 471
Using the Exchange Manager . 471

Registering a Data Type . 475
Sending Data. 477
Customizing the Beam Acceptance Dialog Box 488
Receiving Data. 492
Displaying Beamed Records . 499
Debugging Beaming. 499
Beaming Applications and Databases 500

Understanding the IR Library . 503

Chapter 15: Using the Serial Port . 507
Understanding Palm OS Serial Communications 507
Using the Serial Manager . 510

Using the New Serial Manager. 511
Using the Old Serial Manager . 529

Chapter 16: Creating Web Clipping Applications 535
Understanding Web Clipping. 535

Understanding Web Clipping Security 537
Designing PQAs and Web Clippings 537

Building Palm Query Applications . 539
Organizing HTML Files . 540
Defining Header Tags . 541
Formatting Text . 542
Linking to Other Pages and Applications 544
Constructing Query Forms . 549
Adding Images. 554
Using the Query Application Builder 556
Looking at a Sample PQA . 558

Building Web Clippings . 561
Defining Header Tags . 562
Creating Clipping Pages for Desktop Browsers 562
Linking Outside the Web Clipping . 563
Adding Images. 563
Looking at a Sample Web Clipping . 563

Testing Web Clipping Applications . 567

4676-7 FM.f.qc 10/16/00 10:00 AM Page xxix

xxx Palm OS Programming Bible

Part VI: Synchronizing Data with the Desktop 571

Chapter 17: Introducing Conduit Mechanics. 573
Understanding Conduits . 574

Stepping Through the HotSync Process 576
Designing Conduits . 578

Choosing a Development Path . 579
Installing Conduits. 580

Installing Conduits Manually . 581
Creating Automatic Conduit Installations 585

Logging Actions in the HotSync Log. 588

Chapter 18: Building Conduits . 593
Using the Conduit Wizard . 593

Selecting a Conduit Type. 595
Choosing a Handheld Application . 595
Selecting a Data Transfer Type . 597
Selecting Conduit Features . 598
Confirming Class and File Names . 599

Implementing Conduit Entry Points. 601
Implementing GetConduitInfo . 602
Implementing GetConduitName. 605
Implementing GetConduitVersion. 606
Implementing OpenConduit . 606
Implementing Configuration Entry Points 610

Using the Palm MFC Base Classes . 619
Following MFC Conduit Flow of Control 621
Implementing a Monitor Class. 622
Implementing a Table Class . 623
Implementing a Schema Class . 626
Implementing a Record Class . 627
Implementing a Link Converter Class 631

Using the Generic Conduit Base Classes . 635
Following Generic Conduit Flow of Control 636
Describing the Desktop Record Format 637
Implementing Storage and Retrieval 639
Converting Data to and from CPalmRecord 643
Syncing the Application Info Block . 645

Using the Sync Manager API . 646
Registering and Unregistering a Conduit. 646
Opening and Closing Handheld Databases 646
Iterating Over Database Records . 650
Reading and Writing Records . 653
Deleting Records . 654
Maintaining a Connection . 655

4676-7 FM.f.qc 10/16/00 10:00 AM Page xxx

xxxiContents

Part VII: Advanced Programming Topics 657

Chapter 19: Programming in Color . 659
Determining and Setting Color Depth . 660

Retrieving Color Depth . 662
Setting Color Depth . 663

Using Color Tables. 664
Translating RGB to Index Values . 667

Using Color Bitmaps . 667
Coloring the User Interface. 669

Chapter 20: Odds and Ends. 673
Creating Large Applications . 673

Breaking the 32KB Barrier . 674
Segmenting Applications. 676

Adding Custom Fonts to Applications . 684
Creating a Custom Font . 685

Creating User Interface Dynamically . 688
Localizing Applications . 692

Using the Text and International Managers 692
Using the File Streaming API . 699

Opening File Streams . 700
Closing File Streams . 702
Retrieving File Stream Errors . 703
Deleting File Streams . 703
Setting Position in a File Stream. 704
Reading and Writing File Stream Data 704

Appendix A: Palm OS API Quick Reference 707

Appendix B: Finding Resources for Palm OS Development. 813

Appendix C: Developing in Other Environments 821

Appendix D: What’s on the CD-ROM? 829

4676-7 FM.f.qc 10/16/00 10:00 AM Page xxxi

xxxii Palm OS Programming Bible

Glossary. 837

Index . 861

End-User License Agreement . 894

GNU General Public License. 897

CD-ROM Installation Instructions . 904

4676-7 FM.f.qc 10/16/00 10:00 AM Page xxxii

Understanding
the Palm
Computing
Platform

Since the release of the Pilot 1000 in 1996, devices run-
ning Palm OS have dominated the handheld computing

market. Right from the start, Palm Computing was able to
combine just the right mix of features to make a Personal
Digital Assistant (PDA) that is easy to integrate into almost
any user’s lifestyle. Programming an application that takes
advantage of the strengths of the Palm Computing platform
requires an understanding of not only how the platform
works, but also why it was designed the way it was.

This chapter explains some of the thinking that has made the
Palm Computing platform so successful. It also provides an
overview of the different versions of Palm OS available and
the hardware platforms on which they run.

The Palm OS Philosophy
Devices running the Palm OS are not intended to be portable
versions of desktop computers. Instead, the handheld is a
satellite device, designed as an extension to a desktop system.
The handheld provides a window to desktop data, allowing
that data to be viewed anywhere. Though it is indeed possible
to perform many complex tasks with Palm OS handhelds,
their form and function are optimized for viewing data and
entering small amounts of data.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How and why the
Palm Computing
platform works

Designing applica-
tions for handheld
devices

Connecting to
the desktop

Comparing hardware
versions

The future of Palm OS

✦ ✦ ✦ ✦

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 3

4 Part I ✦ Getting Started

In order to meet the goal of conveniently presenting a user’s data while away from
the desktop, the handheld device must adhere to certain criteria:

✦ Small size. It needs to be small enough to be carried anywhere. Most of the
devices currently available for the Palm Computing platform easily fit in a shirt
pocket. The Palm V, smallest member of the Palm family, measures 4.5 × 3.1 × 0.4
inches, weighing a measly 4 ounces. Even the largest, Qualcomm’s pdQ, mea-
sures only 1.4 × 6.2 × 2.6 inches, with a weight of 8.2 ounces, and it includes a
fully functional cell phone in that small package.

✦ Ergonomic interface. Using the device must be simple and quick enough to
not interrupt whatever the user is currently doing. Handheld users need to
comfortably and rapidly operate the device during meetings, in airports, at
business lunches, and in other situations where there is no convenient place
to set the device down. Useful information should be available instantly and
with a minimum of user interaction. The four main applications that ship with
Palm OS handhelds (Date Book, Address Book, To Do List, and Memo Pad) can
display useful information without any stylus input from the user; the user
can scroll through the applications’ data by using the hardware buttons.

✦ Desktop integration. The handheld must synchronize easily and reliably with
the desktop computer. Synchronizing with the desktop not only backs up
important data, but it also allows the user to input large amounts of data on
a desktop machine with a mouse and keyboard, which is much better suited
to mass data entry than the limited interface of the handheld. Palm OS hand-
helds include a cradle to sync the handheld to the desktop with a single but-
ton press, and Palm Computing’s HotSync technology quickly transfers data
between the handheld and desktop.

Palm Computing hit upon a perfect combination of these factors with its first
device, and it has resisted the temptation to cram marginally useful features into
new Palm devices. Although they have fewer features than many other handhelds,
such as Windows CE and the older Newton devices, Palm OS handhelds are more
focused on providing features that will be genuinely useful. Intelligent selection of
features has made these devices into handy tools instead of merely expensive toys.

Comparing Desktop and Handheld
Application Design

There are significant differences between a desktop computer and a handheld
device — enough differences that designing a handheld application must be
approached differently from designing a desktop application. Several elements
must be kept in mind when designing a Palm OS application:

✦ Expectation of performance

✦ Limited input methods

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 4

5Chapter 1 ✦ Understanding the Palm Computing Platform

✦ Small screen size

✦ Battery and processor power

✦ Limited memory

✦ RAM as permanent data storage

Expectation of Performance
Desktop application users usually won’t mind waiting a few seconds for a program
to load because they plan to be using the application for an extended period of
time. A user seated at a desk probably isn’t going anywhere anytime soon.

Compare this with a handheld user on the go. A person using a Palm OS handheld
will need to look up a piece of data (such as a phone number) quickly, or spend a
few seconds jotting down a note, while in the middle of performing some other task.
Someone who is talking to clients on the phone or trying to catch a bus doesn’t
have the time to watch a spinning wait cursor while an application loads.

Speed and efficiency are key to a successful Palm OS application. Writing fast code
is only a small part of the equation; the user interface must be simple and quick to
use. The application should allow for rapid navigation, selection, and execution of
commands. Functions that the user will use most often should require less interac-
tion than those that will be used infrequently.

Limited Input Methods
A desktop system is ideal for entering large quantities of data. A keyboard and a
fast processor allow desktop users to easily input lots of text into the computer
in a short period of time.

A Palm OS handheld does not have a keyboard. Though third-party add-on key-
boards exist, such as the Newton, GoType!, and Palm Portable keyboards, most
users of a standard Palm OS handheld must enter text with a stylus and either
Graffiti or an on-screen keyboard. Graffiti, a software system that converts a special
type of shorthand into text, is faster and more accurate than previous attempts at
handwriting recognition, notably those used by the Apple Newton. Instead of using
the limited processor power and memory available on a handheld device to make
sense of your own handwriting, Graffiti relies on a much more powerful system
to perform its magic: the human brain. It is much simpler for a person to learn to
write Graffiti’s simple set of glyphs than it is for a piece of software to interpret
the idiosyncrasies of most people’s handwriting. (A friend of mine used to own a
Newton, and after spending months tuning it to recognize his writing, he wouldn’t
let anyone else near the device for fear that they would “untrain” the recognition
software.) Although Graffiti is faster than many forms of handwriting recognition,
at a top speed of around thirty words per minute, it is still too slow for entering
anything longer than a short note.

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 5

6 Part I ✦ Getting Started

HotSync technology provides an easy way to get large amounts of data from the
desktop system to the handheld. The Palm Computing platform is designed around
the idea that users will perform mass data entry on the desktop machine, which is
optimized for that kind of work, and then “sync” that data to the handheld. This
kind of symbiosis between desktop computer and handheld plays to the strengths
of both devices.

However, don’t let this discourage you from writing applications that use a Palm OS
handheld as a data collection tool. With intelligent interface design, you can per-
form data entry quickly and efficiently on such a device.

For more details about designing efficient data entry, see Chapter 2, “Understanding
the Palm OS.”

Small Screen Size
Current desktop machines have large monitors, generally running at a minimum
resolution of 640 × 480 pixels. With this kind of screen real estate to play with, dis-
playing large amounts of information and a complex user interface in the same
space is easy.

By contrast, Palm OS handhelds have a screen 6 centimeters on a side, with a reso-
lution of 160 × 160 pixels. This screen size is necessary to keep the device within the
shirt-pocket size range that has contributed to the popularity of such devices.

Designing applications to use such a small screen is a challenge. Displaying the
right information is more important than fitting as much information on the screen
as possible. You must strike a balance between showing enough information and
keeping the interface uncluttered and simple to use.

Requiring users to scroll through many screens of data to find the information they
want will make your application frustrating to use. Find logical groupings of data
and offer the user a way to filter different views of that data. The To Do List applica-
tion is a good example of data filtering; its preferences allow the user to quickly
choose what subset of the list should be displayed. Implementing the standard
Palm OS user-defined categories can also help users zero in on exactly the data
they want to view.

Battery and Processor Power
Unlike desktop machines, which are plugged into wall outlets and sport powerful,
fast processors, Palm OS handhelds must rely on batteries for power, which limits
them to slower processors. The small processor on such a device is not well suited
to intense computation.

If your application has both handheld and desktop components, consider doing
all your intensive number crunching in the desktop portion. A great example of

Cross-
Reference

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 6

7Chapter 1 ✦ Understanding the Palm Computing Platform

relegating processor-intensive tasks to the desktop machine is Doc, the de facto
standard for large text documents on the Palm OS. Several converter applications
exist for the desktop machine, which perform the computationally expensive con-
version and compression of a large text document to Doc format. The newly format-
ted document can then be transferred to the handheld during the next HotSync
session. All the Doc viewer application on the handheld need concern itself with is
displaying the document; all the hard stuff has been handled by the faster desktop
computer.

Limited Memory
As memory prices continue to drop, desktop applications can afford to be less
choosy about how they deal with memory. When your application has 64MB or
more to play with, it can load huge data structures into RAM and leave them there
the entire time the program is running.

Palm OS handhelds have very limited memory space for running applications. On
Palm OS 3 and later, there is less than 36KB of memory available for dynamic alloca-
tion, application global variables, and static variables. Earlier versions of Palm OS
have considerably less room, so writing applications that are compatible with older
Palm OS handhelds can be somewhat challenging. Keep this in mind when writing
your application; things like deeply recursive routines, large numbers of global vari-
ables, and huge dynamically allocated data structures are not Palm OS–friendly.

RAM as Permanent Storage
Hard drives provide desktop computers with abundant permanent storage for vast
amounts of data. Palm OS handhelds are considerably more limited in storage
space because they must store applications and data in RAM.

Available memory on a Palm OS handheld ranges between 128KB on the Pilot 1000
and 8MB on the Palm IIIxe or Visor Deluxe. This kind of limited storage dictates that
handheld applications must be as small as possible. Avoid adding features to your
application that will be used infrequently; if a feature will be used by fewer than
20 percent of the users, leave it out.

For example, features that globally modify an application’s data, but will see only
infrequent use, are prime candidates for inclusion in a companion program on the
desktop. A command that removes duplicate entries in a database would be perfect
for the desktop; it’s not likely to be used very often on the handheld, and removing
it from the handheld application makes the program smaller.

Your application should also pack its data tightly before writing it to memory. Not
only will this reduce the amount of RAM required to store your application’s data,
but it will also decrease the amount of time taken by HotSync when synchronizing
that data with the desktop computer.

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 7

8 Part I ✦ Getting Started

Connecting to the Desktop
Sharing data with the desktop is a key ingredient in the popularity of Palm OS hand-
helds. The connection between desktop and handheld allows each device to borrow
the strengths of the other. A desktop computer is great for large-scale data entry and
crunching numbers, but you can’t carry one in your pocket when visiting clients.
A handheld device is perfect for taking quick notes and reminding you of appoint-
ments, but it’s terrible for analyzing financial reports or writing a book. Together,
the devices become greater than the sum of their parts.

The software component that forms the vital link between the Palm OS device and
the desktop computer is called a conduit. HotSync calls code in a conduit, which
resides on the desktop computer, during synchronization with your handheld appli-
cation, and this code controls exactly what data HotSync transfers between the two
devices. There are several different scenarios in which a conduit plays a vital role;
here are just a few examples:

✦ Two applications, one on the handheld and one on the desktop, use the con-
duit to keep records in their databases in sync with each other. This is how
the conduit for the Date Book and the three other main Palm OS applications
works. In this scenario, the conduit is responsible for looking at the records
in both databases and determining what records are different between them,
as well as which direction those data must be transferred.

✦ The conduit keeps data in a handheld application synchronized with data
in a centralized corporate database, either stored on the machine running
HotSync, or another machine on a corporate network. In this case, the con-
duit might also sift the data and transfer only a customized subset to the
handheld based on user preferences. Customization like this keeps the size
of the data manageable and reduces the time required for HotSync to run.

✦ When syncing, the conduit compares content on the handheld with the con-
tents of a Web page or Usenet newsgroup. If the information on the Web or
newsgroup is newer than what the handheld application has stored, the con-
duit downloads the new data, processes it into a form the handheld applica-
tion can read, and transfers it to the handheld. The conduit may also instruct
the handheld application to cull out-of-date pages or articles. Since Internet
connections are prone to delays, this sort of conduit should probably only
look at information previously cached by a desktop application. A HotSync
operation should be as short as possible because having the serial port
open drains a Palm OS handheld’s batteries rapidly.

If your application does not require the level of detailed synchronization logic that a
conduit can provide, you may be able to use the default backup conduit. Instead of
comparing the handheld application’s database record by record with data on the

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 8

9Chapter 1 ✦ Understanding the Palm Computing Platform

desktop, the backup conduit simply makes a copy of the entire database and trans-
fers it to the desktop computer. This works perfectly well for small application data-
bases but can slow down the HotSync process if your application stores a lot of data.

Chapter 17, “Introducing Conduit Mechanics,” provides an introduction to devel-
oping Palm OS conduits. Further details on writing conduits follow in Chapter 18,
“Building Conduits.”

Comparing Hardware Versions
Palm OS handhelds have evolved slowly, adding just a few new features at a time.
This incremental change is a boon to application developers, because it means
that new versions of hardware and operating system software require only small
changes, if any, to existing applications instead of requiring that they be rewritten
from the ground up.

Even though Palm Computing has wisely refrained from making wild, earth-shattering
changes to the platform, there are some significant differences between versions of
the hardware that you should take into account when designing your application.
Table 1-1 highlights the features of different Palm OS devices.

Table 1-1
Palm OS Handheld Features

Pilot family

Feature Pilot 1000 Pilot 5000

Palm OS version 1.0 1.0

Processor Motorola MC68328 Motorola MC68328 “DragonBall”
“DragonBall”

Memory 128KB 512KB

Flash ROM No No

Backlight No No

TCP/IP No No

Infrared No No

Enhanced LCD screen No No

Battery 2 AAA alkaline batteries 2 AAA alkaline batteries

Hardware expansion Replaceable memory card Replaceable memory card

Continued

Cross-
Reference

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 9

10 Part I ✦ Getting Started

Table 1-1 (continued)

PalmPilot family

Feature PalmPilot Personal PalmPilot Professional

Palm OS version 2.0 2.0

Processor Motorola MC68328 Motorola MC68328 “DragonBall”
“DragonBall”

Memory 512KB 1MB

Flash ROM No No

Backlight No No

TCP/IP No Yes

Infrared No No

Enhanced LCD screen No No

Battery 2 AAA alkaline batteries 2 AAA alkaline batteries

Hardware expansion Replaceable memory card Replaceable memory card

Palm III family

Feature Palm III Palm IIIe Palm IIIx Palm IIIxe Palm IIIc

Palm OS 3.0 3.1 3.1 3.5 3.5
version

Processor Motorola Motorola Motorola Motorola Motorola
MC68328 MC68EZ328 MC68EZ328 MC68EZ328 MC68EZ328
“DragonBall” “DragonBall “DragonBall “DragonBall “DragonBall

EZ” EZ” EZ” EZ”

Memory 2MB 2MB 4MB 8MB 8MB

Flash Yes No Yes Yes No
ROM

Backlight Yes Yes Yes Yes Yes; color
screen acts
as its own
backlight

TCP/IP Yes Yes Yes Yes Yes

Infrared Yes Yes Yes Yes Yes

Enhanced No Yes Yes Yes Color Active
Matrix TFT
LCD screen

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 10

11Chapter 1 ✦ Understanding the Palm Computing Platform

Feature Palm III Palm IIIe Palm IIIx Palm IIIxe Palm IIIc

Battery 2 AAA 2 AAA 2 AAA 2 AAA Recharge-
alkaline alkaline alkaline alkaline able lithium
batteries batteries batteries batteries ion battery

Hardware Replaceable Not possible Open Open Open
expansion memory card connector connector connector

slot slot slot

Palm V family and Palm VII

Feature Palm V Palm Vx Palm VII Palm VIIx

Palm OS version 3.1 3.3 3.2 3.5

Processor Motorola Motorola Motorola Motorola
MC68EZ328 MC68EZ328 MC68EZ328 MC68EZ328
“DragonBall “DragonBall “DragonBall “DragonBall
EZ” EZ” EZ” EZ”

Memory 2MB 8MB 2MB 8MB

Flash ROM Yes Yes Yes Yes

Backlight Yes Yes Yes Yes

TCP/IP Yes Yes Yes, plus wire- Yes, plus
less connectivity less connectivity

Infrared Yes Yes Yes Yes

Enhanced Yes Yes Yes Yes
LCD screen

Battery Rechargeable Rechargeable 2 AAA 2 AAA
lithium ion lithium ion alkaline alkaline
battery battery batteries batteries

Hardware Not possible Not possible Not possible Not possible
expansion

Palm m100

Feature Palm m100

Palm OS version 3.5.1

Processor Motorola MC68EZ328 “DragonBall EZ”

Memory 2MB

Flash ROM No

Backlight Yes

TCP/IP Yes

Continued

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 11

12 Part I ✦ Getting Started

Table 1-1 (continued)

Feature Palm m100

Infrared Yes

Enhanced LCD screen Yes; smaller (0.29 dot pitch)

Battery 2 AAA alkaline batteries

Hardware expansion Not possible

Handspring Visor and TRGPro

Feature Visor Visor Deluxe TRGPro

Palm OS version 3.3 3.3 3.3

Processor Motorola Motorola Motorola
MC68EZ328 MC68EZ328 MC68EZ328
“DragonBall EZ” “DragonBall EZ” “DragonBall EZ”

Memory 2MB 8MB 8MB

Flash ROM No No Yes

Backlight Yes Yes Yes

TCP/IP Yes Yes Yes

Infrared Yes Yes Yes

Enhanced LCD screen Yes Yes Yes

Battery 2 AAA alkaline 2 AAA alkaline 2 AAA alkaline
batteries batteries batteries

Hardware expansion Springboard Springboard CompactFlash slot
module slot module slot

IBM’s WorkPad series are essentially clones of PalmPilot Professional, Palm III,
and Palm V, and they have the same features. Both the Symbol SPT line and the
Qualcomm pdQ are based on the Palm III and share all of its features, but include
extra hardware for specialized purposes; the SPT series includes barcode scanning
equipment, and on the SPT 1740, a radio for connection to a Spectrum 24 short-
range wireless network. The pdQ has an integral cell phone.

Fortunately for handheld software developers, these hardware differences are
either insignificant from a programming perspective, or the Palm OS application
programming interfaces (APIs) handle them gracefully. Your application can query

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 12

13Chapter 1 ✦ Understanding the Palm Computing Platform

the Palm OS to determine what features are available before attempting to use a
piece of hardware that doesn’t exist on a particular handheld.

For more information on determining what features are available to your applica-
tion, see Chapter 10, “Programming System Elements.”

Physically, Palm OS handhelds have changed very little. Palm Computing has
applied sleeker industrial design to more recent models, and the cases of the
Symbol SPT series and the Qualcomm pdQ are shaped differently to accommodate
a barcode reader and a cell phone, respectively. The Palm VII also has a slightly
larger case, earning it the affectionate nickname “FrankenPalm” from some users,
because of the enlarged “forehead” required to hold the wireless radio components.
Likewise, the Palm IIIc is a bit larger than other Palm III series handhelds because of
the extra space required for a color screen and rechargeable lithium ion batteries.
All current Palm OS handhelds have the same familiar layout of hardware buttons
and silk-screened Graffiti input area.

Looking to the Future
The official Palm OS documentation stresses the importance of developers’ not
making assumptions about the hardware that underlies their applications. This is
important because the hardware may change, and if your code ignores the Palm
OS APIs and directly accesses the hardware, your application is very likely to break
on future devices.

Palm Computing has separate groups working on hardware and software. The
group developing the Palm OS plans to add features to the operating system that
the hardware group won’t necessarily incorporate in handhelds made by Palm
Computing. Instead, these APIs will be used by third-party partners making their
own hardware that runs the Palm OS. Already, manufacturers such as Handspring
and TRG have released their own handhelds running the Palm OS, and other com-
panies, such as Sony, have announced their intentions to release new hardware
that uses the Palm OS. There is an equally good chance that some of these devices
may be very different from the current crop of Palm handhelds, incorporating new
hardware features such as larger screens.

Use the Palm OS APIs instead of making direct calls to hardware. The Palm OS
APIs are very complete, and if you stick with using the provided functions, your
application will continue to run smoothly on new devices.

Tip

Cross-
Reference

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 13

14 Part I ✦ Getting Started

Summary
This chapter has explained the philosophy behind the Palm Computing platform
and introduced you to the unique mindset required to write effective handheld
applications. You should now know the following:

✦ The Palm Computing platform’s success depends on a small device with
ergonomic interface and seamless desktop integration.

✦ Handheld application development is very different from desktop application
development and requires that you work within a number of constraints.

✦ Connecting your handheld device to the desktop computer takes place
through a conduit.

✦ Though a number of Palm OS handhelds are on the market, they are very simi-
lar in form and function.

✦ You should call Palm OS functions instead of directly accessing the hardware
in your application to ensure that it will continue to work on future hardware.

✦ ✦ ✦

4676-7 ch01.f.qc 9/29/00 12:45 PM Page 14

Understanding
the Palm OS

The previous chapter introduced you to the philosophy
behind the Palm Computing platform and the mindset

required to write applications for it. Even with the limitations
imposed upon a Palm application by the hardware and the
very mobile nature of handheld usage, the Palm OS provides
a wealth of features for the developer. The Palm OS handles
everything from user interaction to database management to
serial communications. This chapter provides an overview of
the structure of the Palm OS and how it affects application
design.

Understanding a Palm OS
Handheld’s Power Usage

Because of its small size, a Palm OS handheld must deal with
power in a much different way than a desktop computer does.
The Palm OS is designed to minimize power usage, making even
ecologically conscious modern power-saving desktop systems
look like energy hogs by comparison. Desktop machines with
power-saving features do so to save money on the electric bill,
but Palm OS devices have to be energy efficient for a different
reason: battery life.

Most Palm devices run on a pair of AAA alkaline batteries, and
even devices in the Palm V family, with their rechargeable
lithium ion batteries, have little power to spare. The Palm OS
manages to stretch the small amount of power available to it
for weeks of normal operation, which is really amazing when
you consider that the device is never really turned off.

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding Palm
OS power usage

Starting, running,
and stopping Palm
OS applications

Managing memory

Using resources
and user interface
elements

Communicating with
other devices

Comparing Palm OS
versions

✦ ✦ ✦ ✦

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 15

16 Part I ✦ Getting Started

A Palm OS handheld constantly supplies power to important subsystems. The
on/off button on the device only toggles the device between a low-power mode and
a more active mode. Power must not be completely turned off on the Palm, because
the memory, real-time clock, and interrupt generation circuitry require some small
amount of power constantly for proper operation. This is particularly important in
the case of memory because the device stores applications and permanent data in
RAM, which loses data if the handheld loses power.

The Palm OS supports three modes of operation:

✦ Sleep mode. This is the mode a Palm handheld user identifies with the device
being turned “off.” Everything on the device that does not require power is
shut down, including the display, the digitizer, and the main system clock.
Only essential systems such as interrupt-generation circuitry and the real-
time clock are active, along with a trickle of power to keep the RAM from los-
ing its data. When the device is in sleep mode, only certain interrupts, such
as input from the serial port or a hardware button press, will “wake up” the
device. After a user-customizable period of time (from one to three minutes),
the device will drop automatically into sleep mode.

✦ Doze mode. Most of the time the device appears to be “on,” it is in doze mode.
The main clock, digitizer, and LCD screen are turned on, and the processor
clock is running but not executing instructions. When there is no user input to
process, the system enters doze mode. Any hardware interrupt (such as text
input) that the processor receives will bring the processor out of doze, which
is much faster than coming out of sleep mode, because the device does not
need to power up any of its peripheral hardware.

✦ Running mode. In this mode, the processor is actively executing instructions.
User input in doze mode will put the device into running mode, as will an
interrupt while in doze mode or sleep mode, such as the system alarm going
off or the user pressing a hardware button. The device remains in running
mode long enough to process the user input, usually less than a second, and
then it immediately drops to doze mode. Most applications will cause the sys-
tem to enter running mode only 5 percent of the time.

Running a Palm OS Application
The Palm OS has a pre-emptive multitasking kernel. However, the User Interface
Application Shell (UIAS), the part of the OS responsible for managing applications
that display a user interface, runs only one application at a time. Normally, the only
task running is the UIAS, which calls application code as a subroutine. The UIAS
doesn’t gain control again until the currently running application quits, at which
point the UIAS immediately calls the next application as another subroutine.

Applications may not be multithreaded, because they must run within the single
thread of the UIAS.

Note

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 16

17Chapter 2 ✦ Understanding the Palm OS

Certain calls in an application will cause the OS to launch a new task. For instance,
the HotSync application starts another task to handle serial communication with
the desktop computer. The serial communication task has a lower priority than the
main user interface task.

This creation of a new task allows for more optimized communication, both with
the desktop and the user. If the user taps on the screen to cancel the sync, the
higher-priority user interface task processes the tap immediately, allowing for quick
response to user input, even when the serial task is using most of the processor’s
time to talk with the desktop. However, because there usually isn’t any user interac-
tion during a HotSync session, the serial task gets all the processor time it needs for
rapid communication.

Only the system software can launch a new task. Application code does not have
direct access to the Palm OS multitasking APIs.

Responding to Launch Codes
When the system launches an application, it calls a function named PilotMain (simi-
lar to the main function in a C program) and passes it a launch code. The launch
code may tell the application to start and display its user interface, in which case
it will start up its event loop and process the event queue. This kind of startup is
called a normal launch.

Alternatively, the launch code may tell the application to perform some small task,
without displaying its user interface, and then exit. The Palm OS global find func-
tion works this way, sending a launch code to each application on the device
requesting that it search its own databases for a particular string. Launch codes
also exist for many other purposes, such as opening the application to a specific
record or notifying the application that a HotSync has just been completed.

When an application receives any launch code other than a normal launch, control
does not pass to the event loop, but rather to another function in the application
that does its job outside the event loop.

Launch codes are covered in more detail in Chapter 4, “Writing Your First Palm OS
Application.”

Handling Events
A Palm OS application is event-driven, receiving events from the OS and either han-
dling them or passing them back to be handled by the OS itself. An event structure
describes the type of event that has taken place (for example, a stylus tap on an
on-screen button), as well as information related to that event, such as the screen
coordinates of a stylus tap. During a normal launch, execution passes to the appli-
cation’s event loop, which retrieves events from the event queue and dispatches
them according to the type of event.

Cross-
Reference

Note

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 17

18 Part I ✦ Getting Started

The event loop passes most events back to the OS, because the system already has
facilities for dealing with common tasks such as displaying menus or determining
what button on the screen was tapped. Those events that are not handled by the
OS go to the application’s own event handler, which either handles the events if
they are interesting to the application, or passes them back to the event loop.

A typical Palm OS application will remain in the event loop until it receives an event
telling it to close the application, at which point the event loop will pass control to
another function that performs cleanup operations and prepares the program to be
shut down.

The standard event loop is an important ingredient in power management in a Palm
OS application. A normal event loop calls OS functions to process the event queue,
and these functions know enough about managing power to put the device into
doze mode if no events currently need processing. Using a standard event loop also
ensures that if the application is left on for a few minutes, the operating system’s
auto-off feature will put the device into sleep mode.

The event loop is covered in more detail in Chapter 4, “Writing Your First Palm OS
Application.”

Managing Memory
Because the Palm OS was designed to run on inexpensive, low-power handheld
devices, it is very good at dealing with tight memory conditions. The Palm OS does
not handle all the burden of dealing with such a limited memory space, though.
Memory constraints on a Palm OS device require that you pay careful attention to
how you use memory in your application. Therefore, understanding the memory
architecture of the Palm OS is very important to writing a successful application.

Both the ROM and RAM of a Palm OS device reside on a memory module called a
card. In the first Palm devices, this was an actual physical card, which a user could
easily replace to upgrade the amount of memory available, exchange the OS and
applications in the ROM for newer versions, or both. However, a “card” is only a log-
ical abstraction used by the Palm OS to describe a memory area used to contain
ROM and RAM; a device may have any number of logical cards or no cards at all.
As of Palm OS 3.5, there is only one card available (card 0), but future Palm OS
handhelds may actually have more than one memory card.

The Palm OS is built around a 32-bit memory architecture, with data types 8, 16,
and 32 bits long. Memory addresses are 32 bits long, giving the OS a total of 4GB
of address space in which to store data and code. The operating system reserves
256MB of address space for each card. Future versions of the Palm OS have a lot
of room to expand, because current devices use only a fraction of the available
address space.

Cross-
Reference

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 18

19Chapter 2 ✦ Understanding the Palm OS

The memory architecture described here is representative only of the implementa-
tion in Palm OS version 3.5 and earlier, and is subject to change in future versions.
Relying on these implementation-specific details may cause your application to
crash on future versions of the OS. Always use the Palm OS memory APIs to manip-
ulate memory.

RAM in the Palm OS is divided into two separate areas: dynamic RAM and storage
RAM. Figure 2-1 graphically depicts these areas of memory and what they contain.

Figure 2-1: RAM in the Palm OS is divided into two areas: dynamic RAM and
storage RAM.

Dynamic RAM is used for many of the same purposes as RAM on a desktop com-
puter; it provides a space for temporary storage of global variables and other data
that does not require persistence between executions of an application. Storage
RAM is used in much the same way the file system on a desktop machine’s hard
drive is; it provides permanent storage for applications and data. Both dynamic
and storage RAM are further detailed in the following section.

Dynamic RAM
The entire dynamic area of the device’s RAM is used to implement the dynamic
heap. A heap is a contiguous area of memory that manages and contains smaller
units of memory. These smaller units are called chunks. A chunk is a contiguous
area of memory between 1 byte and slightly less than 64KB in size. All data in the
Palm OS environment are stored in chunks.

System Global
Variables

System Dynamic
Allocation

(TCP/IP stack,
IrDA stack)

Application Dynamic
Allocation

Application Global
Variables

Application Stack

Dynamic RAM

Storage RAM

Applications,
Stored Data,
Preferences

Caution

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 19

20 Part I ✦ Getting Started

Current implementations of the Palm OS restrict chunks to less than 64KB in size,
but this restriction may not exist in future versions of the OS. Again, always use the
Palm OS memory APIs to manipulate memory.

The dynamic heap provides memory for several purposes:

✦ Application and system global variables

✦ Dynamic allocations by the system, such as the TCP/IP and IrDA stacks

✦ Stack space for the running application

✦ Temporary memory allocations

✦ Dynamic allocations by applications

Table 2-1 shows how much space is allocated to the dynamic heap in different ver-
sions of the Palm OS, and it provides a breakdown of what that memory is used for.
Notice that even in later versions, the dynamic heap is still a very small amount of
memory, most of which is used by the operating system itself. Very little memory is
left for application use.

Table 2-1
The Dynamic Heap in Various Versions of Palm OS

OS 3.x (more than OS 2.0 (1MB OS 2.0/1.0
1MB total RAM; total RAM; (512MB total RAM;

Memory Usage TCP/IP and IrDA) TCP/IP only) no TCP/IP or IrDA

Total dynamic memory 96KB 64KB 32KB

System globals (UI about 2.5KB about 2.5KB about 2.5KB
globals, screen buffer,
database references, and
so forth.)

TCP/IP stack 32KB 32KB 0KB

System dynamic variable amount about 15KB about 15KB
allocation (IrDA, “Find”
window, temporary
allocations)

Application stack (call 4KB (default) 2.5KB 2.5KB
stack and local variable
space)

Remaining space 36KB 12KB 12KB
(dynamic allocations,
application global
variables, static variables)

Caution

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 20

21Chapter 2 ✦ Understanding the Palm OS

All of the RAM in the dynamic heap is dedicated to dynamic use. Even if some areas
of the dynamic heap are currently not in use (for instance, no TCP/IP communica-
tion is currently taking place), that memory is still available only for the dynamic
allocations outlined in Table 2-1.

Applications allocate, manipulate, and free allocated memory in the dynamic heap
using the Palm OS memory manger. The memory manager functions allow safe use
of the dynamic memory on the device, regardless of how the running version of the
OS structures that memory internally.

See Chapter 4, “Writing Your First Palm OS Application,” for more details about the
memory manager APIs.

Storage RAM
Any memory on the device that is not dedicated to the dynamic heap is divided into
a number of storage heaps. The size and number of storage heaps are dependent on
the version of the OS and the total amount of RAM available on the device. In ver-
sions 1.0 and 2.0 of the Palm OS, storage RAM is divided into several 64KB storage
heaps. Version 3.x treats all the storage RAM available as one big storage heap.

Cross-
Reference

Storage Heaps and Memory Fragmentation

The version 3.x use of a single large heap is a big improvement over earlier versions of the
Palm OS because it prevents fragmentation of storage memory. Fragmentation occurs as
storage heaps fill with data. Even if there is enough total free memory for a new record,
there may not be enough contiguous space in any given heap to contain that record.

For example, assume there are four storage heaps, each 64KB in size, with 40KB of mem-
ory filled in each heap. There is a total of 96KB of free memory, but if an application tries to
allocate 50KB, it won’t be able to, because there is, at most, only 24KB available in any
given heap. The following figure illustrates this situation and shows how different versions
of Palm OS try to deal with this problem. Notice that later versions of the Palm OS deal
much better with fragmentation than earlier versions.

Version 1.0 uses an ineffective storage allocation strategy that attempts to keep all the
heaps equally full, which in fact causes every new allocation to be more difficult than the
last. Version 2.0 improves this a little by allocating memory from the heap with the most
free space. System Update 2.0.4 further improves this scheme, moving chunks of memory
from the least filled heap to other heaps until there is enough space for the new allocation.
Palm OS version 3.0 finally did away with fragmentation problems by putting all storage
memory in one big heap.

Fragmentation on earlier Palm devices is another good reason to make your application as
small as possible. Not only is there less total RAM available on earlier devices, but memory
fragmentation can make what seems like a reasonably sized application impossible to install.

Continued

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 21

22 Part I ✦ Getting Started

Memory fragmentation in different versions of the Palm OS

Versions 1.0 and 2.0

Before allocation After allocation. None of the heaps
has enough free space, so the
allocation fails.

System Update 2.0.4

Version 3.0

Before allocation

Before allocation After allocation. The system moves
chunks from the least occupied heap,
until there is enough space for the
new memory allocation.

After allocation. Since Palm OS
Version 3.0 uses one big storage heap,
fragmentation is never a problem.

64KB

256KB

64KB

40KB

120KB

40KB

50KB

50KB

50KB

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 22

23Chapter 2 ✦ Understanding the Palm OS

Memory chunks in a storage heap are called records. Each record is part of a database
implemented by the Palm OS data manager. A database is simply a list of memory
chunks and some database header information. Most of the time, records in a particu-
lar database share some kind of association, such as each record representing an
appointment in the Date Book.

The Palm OS data manager provides functions for creating, opening, closing, and
deleting databases, as well as functions to manipulate records within those data-
bases. A database in the Palm OS serves much the same function as a file in a desk-
top computer. Depending on the contents of a database’s records, a given database
may represent an application, a shared library, or simply stored application data.

Because memory is such a limited commodity on a Palm OS handheld, applications
do not copy data from a storage heap to the dynamic heap to modify it the way desk-
top computers copy data from the hard drive to memory. The data and memory
managers in the Palm OS lock individual chunks of memory and edit them in place.
RAM is used for permanent storage, and even the best programmers can introduce
errors into their code that write to the wrong memory address. Because of this, the
Palm OS will not allow an application to change the contents of any chunk of storage
memory without using the memory and data manager APIs. It is still possible to
change the contents of dynamic memory, though, so be sure to use caution when
writing to the dynamic heap.

Records in a database may be scattered across multiple storage heaps and inter-
spersed with records from other databases. They may also be located in ROM as
part of the applications that ship with the OS. The only restriction on the location
of individual records is that all the records in a given database must reside on the
same memory card.

Part IV, “Storing Information on the Palm OS Handheld,” provides details about
using the Palm OS data manager to manipulate databases and records.

Using Resources
A Palm OS application is composed of resources, which are blocks that represent
data, executable code, user interface elements, and other pieces of the application.
Resources may be relocated in memory, so each is identified with a four-byte
resource name (such as tBTN for a command button) and a two-byte ID number.

Three types of resources are as follows:

✦ System resources

✦ Catalog resources

✦ Project resources

Cross-
Reference

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 23

24 Part I ✦ Getting Started

System resources include the application code itself, data structures for initializing
the application’s global variables, and startup information required by the OS for
launching the application. These resources are usually created for you by the devel-
opment environment from the source code you have written.

Catalog resources include the various user interface elements, from labels to but-
tons to scroll bars. You must create these resources yourself, supplying identifiers
for them so your code will be able to use them during execution.

Project resources include things that will be referenced throughout your applica-
tion, such as forms, alert dialogs, and menus. You must also create these resources
yourself. Some project resources, such as forms, serve as containers for catalog
resources and other project resources.

A Palm OS application is really a resource database. It contains all the code, user
interface, and other resources necessary to make the application run properly.
On the desktop, resource database files end in the extension .PRC, so resource
databases are often referred to as PRC files.

Resources also allow for easier localization of an application. Because all the user
interface elements and strings of an application may be kept in separate resources
from the application code, translating an application to another language is a sim-
ple matter of rebuilding the resources in the new language. Using this modularity
ensures that the code running the application need not be changed or recompiled
to localize the application.

Chapter 6, “Creating and Understanding Resources,” covers creating resources in
detail.

Designing the User Interface
The Palm OS provides a variety of resources that represent user interface elements.
The visible portion of a Palm OS application is where user interaction happens, so
it is important to know what tools are available and how they work. More than any
other part of an application, the user interface separates a good Palm OS applica-
tion from one that is frustrating to use.

Every user interface element in the Palm OS is a resource that you build and then
compile into your application. Different development environments provide differ-
ent ways of generating interface resources, but your code will deal with them the
same way no matter where they came from.

This section introduces the user interface elements available in the Palm OS,
describes their function, and gives examples of each.

Cross-
Reference

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 24

25Chapter 2 ✦ Understanding the Palm OS

Complete details on programming user interface elements are available in
Chapter 9.

Forms
A form provides a container, both visual and programmatic, for user interface ele-
ments. Forms contain other user interface elements. A given form usually repre-
sents a single screen in an application or a modal dialog box. Figure 2-2 shows
different forms from the built-in applications. Notice that different sizes of forms
are possible.

Figure 2-2: Palm OS forms come in different sizes and may
contain a variety of user interface elements.

Every application must consist of at least one form, and most contain more than
one to display different views and dialogs. Most forms will occupy the entire screen
area, except for dialogs, which may occupy less height than a full-screen form but
still occupy the entire width of the screen.

Optionally, forms may have the following features:

✦ A title bar

✦ An associated menu bar

✦ A tips icon (only in modal forms)

The tips icon appears as a small circled “i” in the upper-right corner of a form with
a title bar (see the third form pictured in Figure 2-2). If the user taps the tips icon,
another dialog opens, displaying helpful information about the dialog that con-
tained the icon.

Adding tips to a dialog is covered in Chapter 7, “Building Forms.”Cross-
Reference

Cross-
Reference

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 25

26 Part I ✦ Getting Started

Alerts
Alerts provide a facility for displaying simple modal dialogs to the user. An alert dia-
log is a special kind of form with a title bar, a text message, one or more buttons,
and an icon. Alerts may also have a tips icon just like forms.

An alert can be one of four types:

✦ Information. An information dialog displays an “i” icon, which is similar to the
tips icon, but larger. It is used to give the user simple information, or to inform
the user that the requested action cannot or should not be performed. Such
an action should not generate an error or result in data loss. Information
alerts can also serve as simple application “about” boxes.

✦ Confirmation. A dialog of the confirmation type displays a “?” icon. It asks the
user for input or confirmation and provides a number of buttons from which
the user can choose.

✦ Warning. A warning dialog displays an “!” icon. This type of dialog should be
used to ask confirmation when the user requests a potentially dangerous
action. The difference between a warning and a confirmation dialog is
whether the action is reversible or not. Use a confirmation dialog if the action
can be reversed or if data deleted as a result of the action can be backed up to
the desktop. Use a warning dialog if permanent data loss may result from the
action.

✦ Error. An error dialog displays a circular stop sign that contains a white “X.”
Use this type of alert to inform the user that the last action caused an error or
could not be completed.

If sounds are enabled on the device, different types of alerts will also produce dif-
ferent sounds when displayed. Figure 2-3 shows examples of all four types of alerts
from the built-in applications.

Figure 2-3: Alert dialogs come in four
flavors (clockwise from upper left):
information, confirmation, error, and
warning.

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 26

27Chapter 2 ✦ Understanding the Palm OS

Menus
Menus provide access to commands without occupying precious screen real estate.
Each menu contains one or more menu items, each of which may have a command
shortcut assigned to it. A command shortcut is a single character that allows Graffiti
access to a menu item’s command. If the user enters the Graffiti command stroke, pic-
tured in Figure 2-4, followed by a menu shortcut character, the corresponding menu
item is activated. The dot in the figure represents where the stroke should begin.

Figure 2-4: The Graffiti command stroke
provides quick access to menu commands.

To visually group menu items, use a separator bar. In the menu resource, a separa-
tor bar is simply another menu item with special properties. There is a separator
bar pictured in Figure 2-5, between the “Select All” and “Keyboard” menu items.

Menus themselves are contained in a menu bar. There can be only one menu bar
assigned to any given form. Figure 2-5 shows a single menu bar, one of its menus,
and that menu’s menu items.

Creating menu resources is covered in Chapter 8, and programming them is detailed
in Chapter 9.

Figure 2-5: A menu bar contains one or more
menus, each of which contains menu items.

Tables
Tables are a way to display data in columns. A table may organize a number of
other user interface elements within its rows and columns. Objects contained in
a row or column of a table often contain the same kind of objects. For example,
in a two-column table, the first column might contain labels and the second
column text fields.

A table may be scrolled vertically to display more rows of data than will fit on the
screen at once. Tables cannot be scrolled horizontally, though. Figure 2-6 shows
tables from the built-in To Do List and Address Book applications. Notice the vari-
ety of different things that a table’s cells may contain. This kind of flexibility makes
tables one of the more difficult user interface elements to implement correctly. It
also makes them one of the most useful.

Cross-
Reference

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 27

28 Part I ✦ Getting Started

Figure 2-6: Tables are highly
customizable, and they may
contain many different user
interface elements.

Lists
A list is ideal for displaying multiple rows of data in a single column. Like a table, it
may scroll vertically to display more items than will fit on the screen at the same
time. The Palm OS draws scroll indicators (small arrows) in the corners of a list to
indicate that the list may be scrolled up or down to display more items. Unlike a
table, a list is not well suited to displaying dynamic data. Use a list to offer static
choices to the user; use a table to allow the user to directly edit displayed rows.

List resources may be displayed in two different ways. If you include a list directly
in a form and set it to be visible, the system will draw the list with square corners
and display it as a static user interface element. Alternatively, you can associate a
nonvisible list with a pop-up trigger to create a pop-up list. Drawn on the screen
with rounded corners, a pop-up list saves screen real estate by staying hidden until
the user actually needs to select an item from it. Instead of occupying screen space
with numerous list items, only a single item, displayed in the associated pop-up
trigger, needs to show up on the screen. Both types of lists are shown in Figure 2-7.

Figure 2-7: Lists may be static user interface
elements (left), or they may be pop-up lists
associated with a pop-up trigger (right).

Pop-up Triggers
A pop-up trigger consists of a downward-pointing arrow to the left of a text label,
which can change its width to accommodate changes in the text. Pop-up triggers
allow the user to choose an item from an associated list without occupying pre-
cious screen real estate by displaying the entire list. Only the currently selected
list item is displayed in the pop-up trigger’s label.

When the user taps the arrow or the text label in a pop-up trigger, the trigger’s asso-
ciated list is displayed. If the user taps a new item from the list, the list disappears
and the pop-up trigger’s caption changes to the newly selected item. If the user taps
outside the list while it is displayed, the list disappears and the pop-up trigger’s
text remains the same.

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 28

29Chapter 2 ✦ Understanding the Palm OS

The most common place where pop-up triggers appear in the built-in applications is
in the upper right corner of a form for the selection of a category. Pop-up triggers
make very efficient use of screen space. Figure 2-8 shows a pop-up list next to the
list that appears when the pop-up trigger is tapped.

Figure 2-8: A pop-up trigger (left)
and its associated list (right)

Buttons
Buttons are used to launch commands or switch to other screens in an application
with a single tap of the stylus. A button usually has a rounded frame and contains
a text caption, but rectangular and frameless buttons are also possible. Buttons
highlight when tapped until the user lifts up the stylus or drags the stylus outside
the button’s boundaries. Figure 2-9 shows some sample buttons from the built-in
applications.

Use buttons for the most frequently used functions in an application. Requiring
only a single tap to activate a command, buttons are the quickest user interface
element with which the user can interact. Buttons are perfect for creating new
records, calling up details on a particular record, and changing between major
forms in an application.

Figure 2-9: Buttons allow for quick access
to commonly used commands.

Repeating Buttons
Unlike a button, which sends only one event when tapped, a repeating button con-
tinues to put events on the event queue while the user holds the stylus down on it.
Repeating buttons are commonly used for scrolling other user interface elements,
such as tables.

Although a repeat button may look exactly like a normal button, they are usually
defined without borders. The Palm OS has a few symbol fonts that contain arrow
characters suitable for use as captions in repeating buttons. Most of the built-in
applications use a pair of repeating buttons with arrows in them as scroll controls.
Figure 2-10 shows the pair of repeating buttons used for scrolling the To Do List.

Figure 2-10: Repeating buttons serve well
to scroll other user interface elements.

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 29

30 Part I ✦ Getting Started

Chapter 7 contains more details about setting up repeating button resources to
mimic the arrow buttons in the built-in applications.

Selector Triggers
A selector trigger displays a value inside a rectangular box with a dotted-line bor-
der. When the user taps the box, a dialog appears that allows the user to change the
data displayed in the box. Selector triggers grow or shrink to match the width of
the values they display.

The most common use of a selector trigger is to allow selection of a time or date.
There are functions in the Palm OS for displaying standard time and date picker
dialogs, and these work perfectly with selector triggers. If the data you display in a
selector trigger is not a time or a date, or you wish to show a different dialog from
those supplied by the OS, you must supply the dialog that appears when the user
taps on a selector trigger.

Figure 2-11 shows selector triggers from the Event Details dialog in the built-in Date
Book application. Notice that the caption of a selector trigger may be any string of
text you choose.

Figure 2-11: Selector triggers display a value that
may be edited by the user’s tapping on the control.

Push Buttons
Push buttons perform the same function as radio buttons in other graphical inter-
faces. A push button always occurs in a group of two or more push buttons. Only
one button in the group may be selected at a time, and that button is highlighted.
Use a group of push buttons when you need to present the user with only a small
number of options for a particular value. If you need the user to pick from a large
number of values, or if those values may change from time to time, use a list.

Figure 2-12 shows examples of push buttons from the built-in applications.

Figure 2-12: Push buttons allow selection
of a single item from a group of choices.

Cross-
Reference

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 30

31Chapter 2 ✦ Understanding the Palm OS

Check Boxes
Use a check box to indicate a setting that may be switched either on or off. A check
box consists of a square and a text caption. If the setting indicated by the check box
is off, the square is empty; if the setting is on, the square contains a check. Tapping
either the box or the text caption will toggle the value of a check box. The text cap-
tion of a check box always appears to the right of the square. If you want a check
box to be labeled on the left, leave the check box’s text caption empty and place a
label resource to the left of the check box (see the “Labels” section in this chapter).

Like push buttons, check boxes may also be arranged into groups so that only one
check box in the group may be checked at a time. Push buttons are better for indi-
cating exclusive choices, though, because they provide a better visual cue that they
are part of a group. Check boxes are better for situations where more than one set-
ting may be turned on at a time.

Two check boxes, one checked and the other empty, are shown in Figure 2-13.

Figure 2-13: Check boxes allow the
user to toggle a setting on or off.

Labels
A label is simply a bit of non-editable text that appears on a form or in a table. Use
labels to provide descriptions of other user interface elements. For example, plac-
ing a label containing the text “Date:” to the left of a selector trigger tells the user
that tapping the selector trigger will change the date listed in the selector. Labels
also work to provide instructions or information in dialog boxes.

Figure 2-14 shows labels from a few different built-in applications.

Figure 2-14: Labels describe user interface
elements or provide information to the user.

Form Bitmaps
Every form may have one or more form bitmaps associated with it. Form bitmaps
are typically used to display icons, such as those used by alert dialogs. A form
bitmap also works well as a logo for an about box.

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 31

32 Part I ✦ Getting Started

Form bitmaps simply attach a predefined bitmap resource to a form and specify
where on the form the bitmap should appear. Figure 2-15 shows an example of a
form bitmap.

If a bitmap must be able to change locations within a form, you must use the
WinDrawBitmap function. Chapter 9 explains how.

Figure 2-15: A form bitmap

Fields
Fields allow in-place editing of text via Graffiti input or the on-screen keyboard. A
text field is also useful for displaying non-editable text that may change as the pro-
gram runs; labels may be used for this purpose, but they are somewhat more lim-
ited in what they can do than a text field.

Fields may be a single line or multiline. Single-line fields may be either left- or right-
justified, and they do not accept Tab or Return characters. Multiline fields may be
set to change height dynamically, so when text is added or removed from the field,
its height expands or contracts to accommodate the text. Scroll bars are often used
in conjunction with multiline fields to allow them to contain many pages of text.

The Palm OS keeps track of the current insertion point, a blinking cursor that indi-
cates which field in a form is currently active, as well as where newly entered text
will appear. Usually, you won’t need to worry about the location of the insertion
point, because the OS handles all the nitty-gritty implementation details.

Figure 2-16 shows both single-line and multiline text fields.

Figure 2-16: Fields are used for text entry
and to display changeable strings. Pictured
here are a multiline field (left) and a single-
line field (right).

Graffiti Shift Indicator
Every form with editable text fields should also contain a Graffiti shift indicator,
preferably in the lower right corner of the form. The state indicator shows the cur-
rent shift state of the Graffiti text entry system: punctuation, symbol, uppercase
shift, or uppercase lock. This provides an important visual cue for the user that
aids in accurate data entry. Forgetting to add one to a form with fields will make
your application frustrating for the user.

Cross-
Reference

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 32

33Chapter 2 ✦ Understanding the Palm OS

If your application is designed to run on Palm OS version 1.0, be sure to leave
extra horizontal space for the Graffiti shift indicator. Instead of the underlined
arrow used by current versions of the OS to indicate uppercase lock, version 1.0
actually displays the letters “Caps” in the shift indicator.

Fortunately, a Graffiti shift indicator is an easy user interface element to implement;
simply include one as a resource on a form, and the Palm OS Graffiti manager will
update it automatically as necessary. Figure 2-17 shows a Graffiti shift indicator in
its four states. Notice the slight difference in size between the version 1.0 upper-
case lock symbol and the symbol used by later versions of the Palm OS.

Figure 2-17: The four Graffiti shift states, pictured from left to right,
are punctuation, symbol, uppercase shift, and uppercase lock.

Scroll Bars
The scroll bar element allows for vertical scrolling of tables, lists, or multiline fields.
The arrow buttons at the top and bottom of a scroll bar can scroll a single line at
a time. A solid bar in the middle of the scroll bar, called the scroll car, provides a
visual indicator of what percentage of the total data contained in the attached field,
list, or table is currently displayed on the screen. Users may tap the shaded area
above or below the scroll car to move through the data a page at a time, or they
may drag the scroll car to navigate directly to a specific location in the data.

Scroll bars are available only in Palm OS version 2.0 and later. If your application
must run on version 1.0, use repeating buttons and the hardware scroll buttons
instead of a scroll bar.

Implementing a scroll bar requires a certain amount of effort on your part. You
must provide two-way communication between the scroll bar and the attached list,
table, or field in the following manner:

✦ When the data in the element attached to the scroll bar changes, your code
must alert the scroll bar to the change so it can properly position and size
the scroll car.

✦ When the user taps the scroll bar or its arrows, or drags the scroll car, your
code needs to update the list, field, or table to display the appropriate portion
of its data. Your application may update the data display in two ways:

• Dynamic updating. As users hold the stylus down on the scroll bar, the
data display changes. This method of updating the data provides users
with instant feedback about their current location in the data, but it can
be slow if the data display is a complex table with many different types
of data to draw.

Note

Tip

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 33

34 Part I ✦ Getting Started

• Static updating. The data display changes only after users release the
stylus from the scroll bar. This method requires less processing and may
be more appropriate for complex tables. It can be frustrating to users,
though, because there is no indication of where they are in the data until
they let up on the stylus, at which point they must use the scroll bar
again if the field, list, or table is not displaying the correct data.

Figure 2-18 shows a scroll bar.

Figure 2-18: A scroll bar

Gadgets
If none of the other user interface elements in the Palm OS will work, you can make a
custom user interface element using a gadget. A gadget contains information about
its screen location, whether it is currently usable or not, and a pointer to a piece of
data. You must implement everything else, from drawing the gadget to responding to
stylus taps.

Because you have to do the bulk of the work to implement a gadget anyway, you
may be thinking that you might as well code your own custom interface object from
scratch. The gadget does offer some advantages over rolling your own object,
though:

✦ Gadgets keep track of their rectangular bounds on the screen, making it easy
to detect whether a particular tap on the screen was on the gadget or not. This
also makes any drawing code for your gadget more portable, because it can
draw relative to the gadget’s bounds instead of requiring hard-coded screen
coordinates. You can then use your gadget code in a different application, or
even in a different location on the same form, and you will not need to rewrite
a lot of your code.

✦ A gadget maintains a pointer to whatever data you wish to associate with the
gadget.

✦ The Palm OS Emulator (POSE) has a testing feature called Gremlins that can
randomly poke at your application and uncover obscure bugs that you might
otherwise miss. Gremlins occasionally tap on random areas of the screen that
don’t contain any controls, but they are particularly attracted to standard
user interface elements. Coding a custom element as a gadget ensures that
Gremlins will give your custom interface a good workout.

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 34

35Chapter 2 ✦ Understanding the Palm OS

More information about Gremlins is available in Chapter 5.

Figure 2-19 shows a gadget from the built-in Date Book’s month view. This complex
gadget draws a calendar view and indicates appointments with symbols. The user
can pick a particular day by tapping it; this will display that particular day in a dif-
ferent screen.

Figure 2-19: The month view gadget from the built-in Date
Book application can display a lot of information at a glance.

Communicating with Other Devices
A key part of the Palm Computing platform’s success is its ability to communicate
with other devices. Current versions of the Palm OS offer a number of different
communications protocols.

Serial
Palm OS devices use the serial protocol to synchronize through a cradle with a desk-
top computer. With the right cable or third-party hardware, the Palm OS can also
talk to just about anything, from modems to temperature probes to GPS receivers.
The Palm OS serial communications architecture supports several layers of varying
utility and complexity, including byte-level serial I/O and high-level error-correcting
protocols.

Palm OS serial communications are covered in detail in Chapter 15, “Using the
Serial Port.”

TCP/IP
The standard protocol of the Internet, TCP/IP, allows a Palm OS device with the
proper attached hardware to connect to any machine on the Internet and exchange
data with it. Most of the functions in the Palm OS net library, which provides TCP/IP
connectivity in Palm OS applications, are the spitting image of functions in the
Berkeley Unix sockets API, which is the de facto standard for Internet applications.
Applications written to use Berkeley sockets can be easily recompiled for the Palm
OS with only a few changes.

Cross-
Reference

Cross-
Reference

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 35

36 Part I ✦ Getting Started

Wireless
Introduced in Palm OS version 3.2, which is installed on the Palm VII, wireless com-
munication on a Palm OS device takes place via the Palm.Net wireless network.
Because wireless bandwidth is expensive, the Palm OS wireless system uses a strat-
egy called Web clipping to minimize the amount of data that must be transferred
between the Palm OS device’s wireless radio and the network. A wireless Palm OS
user runs a Web clipping application to request information, which is then dis-
played by Clipper, the browser application resident on the Palm OS device.

Applications cannot directly access the Internet through the Palm device’s wireless
modem. This is a deliberate limitation to minimize the amount of data sent across
expensive wireless connections.

On the client side, PQAs are easy to make, because they are coded in Hypertext
Markup Language (HTML) with only a few Palm OS–specific additions, and then
compiled using the free Query Application Builder (QAB). The server end of a PQA
may be constructed using existing Web technologies, because the Palm.Net service
communicates with the server via standard Hypertext Transfer Protocol (HTTP).

More information about the Palm.Net service and creating PQAs may be found in
Part VII.

IrDA
Starting with the Palm III and Palm OS version 3.0, Palm devices can communicate
via the industry-standard Infrared Data Association (IrDA) protocol. This low-level
communications protocol can be used to communicate via infrared (IR) with a
growing variety of similarly equipped devices, including cell phones, pagers, and
even desktop or laptop computers. Like the serial manager, the Palm OS infrared
library offers low-level control of IR data transfer.

IrDA communication is covered in detail in Chapter 14.

Beaming
The Palm OS exchange manager provides facilities for beaming individual records
and applications between two devices via infrared (IR). Although primarily used
to beam information between two Palm OS handhelds, the exchange manager is
a generic communications method that allows exchange of typed data objects
between different devices. The exchange manager runs on top of the IrDA transfer
implemented by the Palm OS infrared library.

More information on beaming via the exchange manager is available in Chapter 13.Cross-
Reference

Cross-
Reference

Cross-
Reference

Note

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 36

37Chapter 2 ✦ Understanding the Palm OS

Comparing Palm OS Versions
Many of the changes between different models of Palm OS devices that you will
need to keep in mind are changes to the Palm OS itself. Fortunately, just as Palm
Computing and its partners have changed the hardware incrementally, the Palm OS
has also evolved at an easy pace, making backwards compatibility much easier to
implement. This section provides a brief overview of what has changed since ver-
sion 1.0 of the Palm OS.

Because a number of new functions have been added to the Palm OS with each
new version, the system provides facilities to easily determine what features are
supported in the currently running environment. If your application uses functions
from newer versions of the OS, it will run more smoothly if you check for the exis-
tence of those features before calling them. Checking for the version number of the
operating system alone is not enough because future versions of the Palm OS will
not necessarily implement all the features of earlier versions. Instead, the system
can query whether specific feature sets are present in the version of the Palm OS
on which your application is running.

For more detail about checking for the presence of feature sets, see Chapter 10.

Changes in Version 2.0
Features added to version 2.0 include:

✦ Scroll bars and associated functions for manipulating them

✦ New launch codes to support phone lookup and access to the system prefer-
ences panel

✦ TCP/IP support (only on devices with 1MB or more of memory)

✦ IEEE floating point math, including 32-bit floats and 64-bit doubles

✦ System-wide Graffiti reference dialog

✦ New string manipulation functions

Features changed from those in earlier versions include:

✦ Application preferences

✦ System keyboard dialog

✦ Edit categories dialog

Cross-
Reference

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 37

38 Part I ✦ Getting Started

Changes in Version 3.0
Features added to version 3.0 include:

✦ IR beaming

✦ A large bold font

✦ Dynamic user interface functions

✦ Custom fonts

✦ Progress dialog manager

✦ Unique device ID on hardware with flash ROM

✦ File streaming to support records larger than 64KB

✦ Support for Standard MIDI Files (SMF) and asynchronous sound playback

Features changed from those in earlier versions include:

✦ Further changes to the edit categories dialog

✦ Dynamic heap increased to 96KB in size

✦ Storage RAM configured as a single heap instead of multiple 64KB heaps

✦ Application launcher becomes an actual application rather than a system
pop-up

Changes in Version 3.1
Features added to version 3.1 include:

✦ Contrast adjustment dialog (on devices in the Palm V family only)

✦ Support for the DragonBall EZ processor

Features changed from those in earlier versions include:

✦ Character encoding changed to match Microsoft Windows code page 1252

✦ Text fields may now have either dotted or solid underlines

✦ Character variables changed to be two bytes long

Changes in Version 3.2
Features added to version 3.2 include:

✦ Function to append data to the clipboard without erasing its current contents

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 38

39Chapter 2 ✦ Understanding the Palm OS

✦ Alert dialog for runtime errors, to be used when a runtime error is not the
application’s fault (for instance, in networking applications)

Changes in Version 3.3
Features added to version 3.3 include:

✦ Support for the Euro currency symbol

✦ New Serial Manager introduced, adding more flexible serial connection capa-
bilities, such as serial connections via infrared and support for the IrCOMM
standard

✦ Login script enhancements for connecting to remote systems that use token-
based authentication

✦ Faster HotSync operations, as well as HotSync operations via infrared

Changes in Version 3.5
Features added to version 3.5 include:

✦ Color screen and drawing support

✦ New data type definitions (for example, UInt16 instead of Word)

✦ Command bar containing buttons for commonly used menu items

✦ Slider and repeating slider controls

✦ Graphical controls

✦ Overlay manager to allow easier localization of applications without requiring
complete recompilation

✦ New security routines to allow changing hidden record status from within an
application, instead of having to rely on the Security applet

✦ New table routines to implement masked records

Features changed from earlier versions include:

✦ Extended gadget support, including the ability to assign a callback function
to a gadget to handle gadget events

✦ Text fields allow double taps to select words, or triple taps to select lines
of text

✦ Menus may be displayed by tapping an application’s title bar

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 39

40 Part I ✦ Getting Started

Summary
This chapter gave you a whirlwind tour of the features of the Palm OS, and it
explained a little about how many of them work. You should now know the following:

✦ The Palm OS power management scheme works in such a way that the device
is never really “off,” only resting.

✦ Palm OS applications respond to launch codes when they start, and if the
code calls for a normal launch, they enter an event loop to process the system
event queue.

✦ Memory in the Palm OS is divided into dynamic and storage areas, each with
its own unique limitations.

✦ A Palm OS application is composed of resources, some of which are built by
the development environment, and some of which must be supplied by the
developer.

✦ User interface elements abound in the Palm OS, and if none of the provided
elements will do the job in your application, you can always make your own
using the gadget resource.

✦ The Palm OS provides numerous protocols for communicating with other
devices.

✦ If your application uses features that were introduced in a recent version of
the Palm OS, it can easily check its environment to see what features are avail-
able before calling a potentially unsupported function.

✦ ✦ ✦

4676-7 ch02.f.qc 9/29/00 12:46 PM Page 40

Introducing the
Development
Environments

A great number of development environments exist
for creating Palm OS applications. Of the many tools

available, C and C++ are the most common languages used
to develop applications for Palm Computing platform.

This chapter introduces two suites of tools for C/C++ Palm
development. Metrowerks CodeWarrior for Palm Computing
platform runs on both Mac OS and Windows systems. The
GNU PRC-Tools are a free alternative, available on both the
Windows and Unix platforms.

The myriad other Palm OS development systems are out-
lined in Appendix C, “Developing in Other Environments.”

Using CodeWarrior for Palm OS
Metrowerks CodeWarrior for Palm Computing platform is an
integrated development environment (IDE), containing all the
tools you need to develop Palm OS applications in a single
interface. CodeWarrior is the official development environ-
ment supported by Palm Computing; in fact, the Palm OS doc-
umentation and tutorial provided by Palm assume you are
using CodeWarrior to make your applications.

The CodeWarrior package contains a number of tools:

✦ Constructor for Palm OS. Constructor is a resource edi-
tor with a graphical interface. You use Constructor to
build the user interface elements of your application,
which the other CodeWarrior tools then combine with
your source code to create a finished program.

Cross-
Reference

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introduction to
Metrowerks
CodeWarrior for
Palm Computing
platform

Introduction to the
GNU PRC-Tools

Organizing projects
in CodeWarrior

Compiling and
linking with
CodeWarrior

Compiling and
linking with the
GNU PRC-Tools

Using make to build
applications

✦ ✦ ✦ ✦

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 43

44 Part II ✦ Creating Palm OS Applications

Complete details of using Constructor to create and edit Palm OS resources are
available in Chapter 6, “Creating and Understanding Resources”; Chapter 7, “Build-
ing Forms”; and Chapter 8, “Building Menus.”

✦ CodeWarrior IDE. The CodeWarrior IDE is the interface for all the CodeWarrior
tools except for Constructor. From within the IDE, you can edit source code,
compile and link applications, debug your program, and organize your pro-
ject’s source code and resource files. Many of the tools in CodeWarrior for
Palm Computing platform are plugins that attach to the IDE. The IDE also con-
tains CodeWarrior’s source-level debugger, which can debug applications run-
ning on either the Palm OS Emulator, or on a real Palm OS handheld connected
to the computer via a serial cable.

✦ CodeWarrior Compiler for Palm OS. CodeWarrior’s compiler for Palm OS
turns ANSI C/C++ code into object code for Motorola 68000–series processors.

✦ CodeWarrior Linker for Palm OS. The linker used by CodeWarrior to link
compiled object code is actually the same linker used in other versions of
CodeWarrior to create Mac OS programs.

✦ CodeWarrior Assembler for Palm OS. The Assembler for Palm OS creates
executable code from Motorola 68000 assembly instructions. CodeWarrior’s
C/C++ compiler also supports inline assembly statements.

✦ PalmRez. The PalmRez plugin changes the linked object code generated by
other parts of CodeWarrior into a .prc file suitable for installation and execu-
tion on a Palm device or in the Palm OS Emulator.

✦ Palm OS Simulator. Available only in the Mac version of the CodeWarrior
for Palm Computing platform tools, the Palm OS Simulator allows you to exe-
cute and test a Palm OS application. Building an application to run under the
Simulator is different from building a finished Palm OS executable program.
Simulator applications contain a library, added at link time, that allows them
to run as independent applications on a Mac OS computer. When the Code-
Warrior tools were first released, the Palm OS Simulator was the only way to
test Palm OS applications, short of downloading them to an actual device.

✦ Palm OS Emulator. Also known as POSE, the Palm OS Emulator imitates most
of the hardware and software functions of an actual Palm OS handheld. Among
other things, POSE accurately emulates the actual processors used in Palm OS
devices. You can load real Palm OS applications into POSE, without needing to
specially compile them as you would for the Palm OS Simulator. POSE also hap-
pens to be available for Windows, Mac OS, and Unix systems. Greg Hewgill,
with help from other developers, originally wrote POSE as “Copilot.” POSE
receives a lot of development attention from both Palm Computing and other
developers; check Palm’s Web site (www.palmos.com) for newer versions than
the one that ships with CodeWarrior.

Cross-
Reference

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 44

45Chapter 3 ✦ Introducing the Development Environments

CodeWarrior was originally designed as a Macintosh development tool. This is good
news for many Macintosh developers. Chances are pretty good that if you have
done any software development work on the Mac OS, you were using CodeWarrior,
so you will have little trouble adapting to the few new things added to CodeWarrior
for Palm Computing platform.

Unfortunately, very little in the CodeWarrior interface changed when Metrowerks
ported the development tools to Windows. Developers used to Windows may find
CodeWarrior’s interface quirky and non-intuitive, if not downright irritating. The
Windows version of CodeWarrior is still a very effective and dependable Palm OS
development tool, but it may take some getting used to if you have a lot of experi-
ence with the Windows environment. The instructions in this section of the book
are applicable to both the Mac OS and Windows versions of CodeWarrior for Palm
Computing platform. Screen shots of CodeWarrior in this book only depict the
Windows version, but the differences between the two interfaces are minor.

Familiarizing Yourself with the IDE
The CodeWarrior IDE, pictured in Figure 3-1, is a multiple document interface (MDI)
that provides a container for the IDE’s various menus, buttons, and windows. It is
possible to work on more than one application’s components at a time in the IDE,
making it easy to borrow source code and resources from one program to use in
another.

Figure 3-1: The CodeWarrior IDE

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 45

46 Part II ✦ Creating Palm OS Applications

CodeWarrior organizes application development into projects. A project contains ref-
erences to all the different source code and resource files that make up a particular
application. You also use projects to save settings for building your application in
different ways. Each different way to build an application is called a target. Having
multiple targets within a single project is a useful way to generate both debug and
release versions of an application, or to easily create many versions localized for
various languages. Different targets may compile entirely different files or use com-
pletely different compiler and linker settings.

Opening a project
All the information about a particular CodeWarrior project resides in a project file,
which has an .mcp extension in Windows. To open an existing project file, select
File ➪ Open or press Ctrl+O. You may also use CodeWarrior’s recently opened file
list to open a project or source code file that you worked on in a previous session.
Select File ➪ Open Recent to access the most recently used file list.

Creating a new project
When creating a new project, you can choose to either create an empty project, or
you can use CodeWarrior’s project stationery. Project stationery is a template for
creating a particular kind of application, containing boilerplate code for common
parts of the application. After creating a project from stationery, you then add your
own code to the appropriate parts of the source files that CodeWarrior generates.

Start the project creation process by selecting File ➪ New Project or by pressing
Ctrl+Shift+N. CodeWarrior presents you with the New Project dialog box, pictured
in Figure 3-2.

Figure 3-2: The New Project dialog box

To create an empty project, select “Empty Project” in the Project Stationery tree
control, then press OK. Leave the Create Folder check box checked if you want
CodeWarrior to create a folder to contain the new project. Find the location in
which you wish to create the new project, give it a filename, and press Save.

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 46

47Chapter 3 ✦ Introducing the Development Environments

To create a project from stationery, expand the “Palm OS” group in the Project
Stationery list to display the different kinds of project stationery available. Select
the stationery you wish to use, then press OK. CodeWarrior prompts you for the
filename and location where you wish to create the new project. Once you have
entered the appropriate information, press Save.

Which method of creating a project is better? At first glance, it looks like a stationery
project should save you a lot of time. Projects created from stationery already con-
tain a lot of the code necessary for a basic Palm OS application, which saves having
to type a lot of code that you will use over and over again for different Palm OS appli-
cations. Stationery projects provide a rudimentary resource framework, with a single
form and the beginnings of a menu system in place. Using stationery also configures
project settings to compile a Palm OS application properly; the default settings in an
empty project do not work. The stationery code also has the distinct advantage of
working. Before you add your own code to it, a stationery project compiles without
error, giving you a bug-free baseline on which to base your project.

Unfortunately, CodeWarrior’s Palm OS stationery invariably creates a project called
“Starter,” whose file names are also based on the word “Starter” instead of the name
you assigned to the new project. There are a few things in the automatically gener-
ated source code and resource files that are undesirable for many applications. For
example, the stationery project implements a menu command to display an about
box, but it uses the Palm OS AbtShowAbout function, which displays only the Palm
Computing–specific about box shared by the built-in applications. The resources in
the generic “Starter” application may not meet the needs of your program, either.
As if that weren’t enough, you still need to edit the target settings to properly set
things like output file names and PalmRez options. By the time you finish renaming
the files, changing the resources, ripping out unwanted code, and modifying target
settings, you may not save any time over creating the whole project from scratch.

What the stationery does particularly well is to serve as a source of raw materials.
Even when creating an empty project, I have found it practical to create a throw-
away stationery project, cut and paste useful chunks of its source code into the
“real” project I am working on, then delete the stationery project when I have
stripped it of everything I need. This “strip-mining” approach still benefits from the
correctness of the boilerplate code, while avoiding the annoyance of having to
weed inappropriate bits of code from your project.

Exploring the project window
Once you have created or opened a project, CodeWarrior displays the project win-
dow, shown in Figure 3-3. From the project window, you can control which source
files a particular project contains, how CodeWarrior compiles and links those files,
and what build targets are available.

Tip

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 47

48 Part II ✦ Creating Palm OS Applications

Figure 3-3: The project window

The drop-down in the upper left of the project window is for selecting the current
build target. Changing the target displayed in the drop-down changes the rest of
the window’s display to reflect the settings for that particular target. Also, when the
project window has the focus, the currently displayed target in this drop-down is
what CodeWarrior will build when running a Make, Debug, or Bring Up To Date com-
mand from the Project menu.

The project window has three views: File, Segment, and Target. To display a partic-
ular view, select the appropriate tab at the top of the project window.

Managing files in the file view
The File view gives you control over what source code and resource files are part of
a project. Figure 3-4 shows the File view for a simple application.

Figure 3-4: The project
window’s File view

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 48

49Chapter 3 ✦ Introducing the Development Environments

The columns in the File view, from left to right, are described below:

✦ Touch column. The column with a check mark at the top indicates which files
have been changed, or touched, since the last build, and therefore need to be
compiled when building the project. Touched files have a check mark next to
them. You can toggle whether a file is touched or not by clicking next to that
file in the touch column. In Windows, holding down Alt while clicking in this
column toggles the touch status of all the files in the project. Holding down
the Option key performs the same action in the Mac OS.

✦ File column. This column lists all the files contained in the project. You can
use groups to organize files. Selecting Project ➪ Create New Group... creates a
new group, and selecting Project ➪ Add Files... presents you with a dialog to
select new files to add to the project. You may change the order in which files
are displayed, as well as which groups files occupy, by dragging them around
the project window. Double-clicking a file, or pressing Enter if the file is cur-
rently selected, opens the file for editing. Groups may also contain subgroups
if your project is complex enough to require that kind of organization.

✦ Code column. Code shows the size of the compiled object code associated
with a particular source file or group of source files. A zero (“0”) in this col-
umn indicates code that CodeWarrior has not compiled yet. The total of the
values does not necessarily add up to the total size of the compiled program.
When linking, CodeWarrior may not use all the object code from a particular
source, leaving out dead code that the rest of the project does not reference.

✦ Data column. The Data column shows the size of any non-executable data
residing in the object code for a particular source file. If the source file is
uncompiled, or if it contains no data section, this column displays a zero (“0”).

✦ Target column. Target has a bull’s-eye with an arrow pointing to it at the head
of the column. CodeWarrior displays this column only if a project contains
multiple targets, so many simple Palm OS applications will never need this
column. A black dot in this column indicates that a particular file is part of
the currently selected target.

✦ Debug column. Indicated by a small green bug, the debug column displays
a dot next to any file that should contain debugging information when built.
Clicking in this column toggles whether or not CodeWarrior includes debug-
ging information in a file when building it.

✦ Interface pop-up column. The column full of small buttons with downward-
pointing arrows is the interface pop-up column. Clicking one of these buttons
displays a pop-up menu that performs different functions, depending on the
type of item displayed in that row:

• For file groups, the pop-up list contains a list of all the files in that group.
Choosing a file from this list opens that file for editing.

• For files, the pop-up list shows a list of header files included by that
source file. Picking one of the files from the list opens it for editing. The
interface pop-up menu also offers an option to touch or untouch that file.

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 49

50 Part II ✦ Creating Palm OS Applications

Removing files from the project may be accomplished by selecting them, then
either choosing the menu command Project ➪ Remove Selected Items or pressing
Ctrl+Del.

You may also remove a file in Windows by right-clicking it, then selecting Remove
Selected Items from the pop-up menu that appears. In the Mac OS, holding down
Control while clicking a file opens the same pop-up menu.

Controlling link order with the segment view
The Segment view of the project window, pictured in Figure 3-5, controls the order
in which CodeWarrior links your project’s source files together. The linker follows
the same order, from top to bottom, that is displayed in the Segment view. To
change the link order, simply drag the files in the list until they are in the appro-
priate positions.

Figure 3-5: The project window’s Segment view

Within the Segment view, you may group files into different segments. In a small
application, segments are mostly just a way to organize the project into logical
groups, and they function similarly to file groups in the project window’s File view.
For large applications composed of more than 64KB of compiled code, segments
must be used to partition your source code into smaller chunks, resulting in a
multi-segment application. Most Palm OS applications should be small enough
to not require segmentation.

Full details on building multi-segment applications are available in Chapter 20,
“Odds and Ends.”

Cross-
Reference

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 50

51Chapter 3 ✦ Introducing the Development Environments

Creating different builds in the target view
The Target view of the project window, pictured in Figure 3-6, is where you define
different build targets for the application. Any project must contain at least one tar-
get, and CodeWarrior generates a target with the same name as the project file
when you create a new project.

Figure 3-6: The project window’s Target view

To create a new target, select Project ➪ Create New Target. The New Target dialog,
shown in Figure 3-7, appears.

Figure 3-7: The New Target dialog

The New Target dialog prompts you for a name to call the target you are creating.
You can also choose to create an empty target by selecting the Empty target option,

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 51

52 Part II ✦ Creating Palm OS Applications

or copy the settings from an existing target by choosing the Clone existing target
option. Once you have named and determined the contents of the new target,
press OK.

Since the default settings of an empty target do not work for compiling a Palm OS
application, you can save yourself a lot of time by cloning an existing target whose
settings already work. Before adding new targets to a project, change all the set-
tings in your project’s first target to appropriate values, then clone it when you add
more targets to the project.

Once you have all the targets you need for your application, you may assign files to
those targets from the File view of the project window. You may also assign targets for
a particular file from the Project Inspector window, described later in this chapter.

Saving a project
CodeWarrior automatically saves changes to the project when you perform any of
the following actions:

✦ Close the project.

✦ Change the Preferences or Target Settings of the project.

✦ Add files to or delete files from the project.

✦ Compile any file in the project.

✦ Edit any groups in the project.

✦ Remove any object code from the project.

✦ Quit the CodeWarrior IDE.

When saving changes to your project, CodeWarrior saves the names of your pro-
ject’s files and their locations, all the configuration options for the project, depen-
dency information and touch state for all files, and the object code compiled from
the project’s source files. Since CodeWarrior saves all this information automati-
cally, even when closing the IDE, you never have to manually save your project.
Should you wish to copy your project, you can use the File ➪ Save A Copy As com-
mand to do so.

Changing Target Settings
The target settings dialog, pictured in Figure 3-8, is where you can change a wide
variety of options that affect how the compiler and linkers assemble your project’s
code for a specific target. To access the target settings dialog, select Edit ➪ target

Tip

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 52

53Chapter 3 ✦ Introducing the Development Environments

settings, where target represents the name of the current target selected in the pro-
ject window. Double-clicking the target’s name in the project window’s Target view
also opens the target settings dialog, and in Windows, you can also press Alt+F7.

Figure 3-8: The target settings dialog

The left pane of the target settings dialog, labeled Target Settings Panels, shows a
list of all the different settings panels, which appear in the right pane of the dialog.
Select an item from the list to display its panel. There are a bewildering number of
options in the target settings dialog, not all of which are directly applicable to Palm
OS development. The CodeWarrior documentation does a good job of describing all
the bells and whistles, so only selected panels and those settings that are critical
for the compiling of a normal Palm OS application appear in the discussion below.

The Factory Settings button returns all the panels in the target settings dialog to
their default state. After you make any changes to settings, the Revert Panel button
becomes active. Clicking Revert Panel restores the current settings panel to the
state it was in the last time you saved the settings. Click Save to save changes you
have made to the target settings.

The default state of the panels in the target settings dialog box does not properly
compile working Palm OS applications. The Factory Settings button is a useful fea-
ture for other versions of CodeWarrior that target different platforms, but you
should never need to use it when developing for the Palm OS. If you did not use
project stationery to create your project, or if you created an empty target, be sure
to copy the settings from a stationery project to avoid compilation errors.

Caution

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 53

54 Part II ✦ Creating Palm OS Applications

The first panel listed is Target Settings, underneath the Target category. This panel
controls very general settings for the current target. You can rename the target in
the Target Name text box. The drop-downs allow you to choose the linkers Code-
Warrior should use to link the application. For Palm OS development, Linker should
be set to “MacOS 68K Linker,” Pre-linker should be “None,” and Post-linker should
be “PalmRez Post Linker.” Checking the Save project entries using relative paths
check box allows you to move a project to another location without disturbing the
paths saved in the project file.

Farther down the Target category, and visible only if Linker in the Target Settings
panel is set to “MacOS 68K Linker,” is the 68K Target panel, shown in Figure 3-9. For
Palm OS applications, the Project Type drop-down should read “PalmOS Applica-
tion,” and the File Name text box should contain something like “project.tmp”,
where project is the name of the project.

Figure 3-9: The 68K Target panel

The last panel with important Palm OS development settings is PalmRez Post Linker,
under the Linker group. This panel, pictured in Figure 3-10, controls the settings for
PalmRez, which is responsible for converting the Motorola 68000 code compiled by
CodeWarrior into the .prc format understood by the Palm OS. The Mac Resource
Files text box should contain the same file name you supplied for the File Name text
box in the 68K Target panel. Enter the file name for the .prc file that will contain the

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 54

55Chapter 3 ✦ Introducing the Development Environments

finished application in the Output File text box. Type should be set to “appl” for a
standard Palm OS application. The Creator field should contain your application’s
Creator ID, a four-byte code that uniquely identifies your application.

Figure 3-10: The PalmRez Post Linker panel

Every database on a Palm OS device, including each application, has a database
name, which you can set in the Database Name field. Applications and databases
must have unique names. Setting the application’s database name using the Database
Name field is optional, though; if you leave this field blank, CodeWarrior will strip
the .prc from the end of the file name in the Output File field and use that as the
database name for the application. Just be sure to pick a file name that will be
unique once it is on the handheld.

Checking the Set ‘Reset’ bit check box signals the Palm OS to reset the device after
this application has been installed through a HotSync operation. This feature is
needed only by applications that modify basic operating system behavior; most
applications do not need the system to reset the device when they are installed.
The Set backup bit check box controls whether or not the HotSync Manager should
copy this .prc file to the user’s backup folder when synchronizing with the desk-
top. Copy-protect (OS 3.0), when checked, prevents Palm OS version 3.0 or later
from beaming the application to another device via the infrared port. It has no
effect on versions of the Palm OS that do not include IR beaming.

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 55

56 Part II ✦ Creating Palm OS Applications

Compiling and Linking in CodeWarrior
CodeWarrior gives you the option to compile source files one at a time, a few at a
time, or every source file all at once. Compiling produces only the object code for
the appropriate source files, without linking them into a complete application. To
compile one or more source files, select the desired files in the project window,
then do one of the following:

✦ Select Project ➪ Compile.

✦ Press Ctrl+F7.

✦ In Windows, right-click the selected file or files and choose Compile from the
pop-up menu. In the Mac OS, hold down Control while clicking to access the
same menu.

If you have changed or added many files, you may wish to update the entire project
at once. To do this, select Project ➪ Bring Up to Date. This command compiles all
source code that has either not been compiled or has not been touched.

CodeWarrior sometimes does not recognize that you have made changes to a file.
To force recompiling, touch the file first, then compile it.

To link all the object code in your project into a completed binary file, select
Project ➪ Make, or press F7. Running the Make command first checks for newly
added, modified, or touched files and compiles them. Then, Make runs the compiled
object code through the linkers to produce a finished executable program.

Note

What Is a Creator ID?

All Palm OS applications and databases have a four-byte Creator ID to uniquely identify them
to the operating system. To prevent your application from conflicting with others, you need to
register a Creator ID with Palm Computing, which maintains a database of registered IDs.
Creator ID registration is simple; just point your browser at http://www.palmos.
com/dev and follow the Quick Index to Creator ID. From there, you may browse the list of
registered Creator IDs and choose one that is not already in use.

Creator IDs are case-sensitive, composed of four ASCII characters in the range 33-127, dec-
imal. Palm Computing has reserved Creator IDs composed entirely of lowercase letters
for their own use, so your own Creator IDs must have at least one capital letter or symbol
character.

Any application you release to the public, or even within a corporation, should have its own
unique Creator ID. Applications with identical Creator IDs wipe each other out when
installed to the same device, and data corruption is a definite possibility.

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 56

57Chapter 3 ✦ Introducing the Development Environments

Since the CodeWarrior IDE allows you to work on multiple projects containing multi-
ple targets, determining which files CodeWarrior compiles and links can be confusing.
When running a global command like Bring Up to Date or Make, CodeWarrior
determines which target from which project to build based on the following rules:

✦ If a project window has the focus, CodeWarrior builds the currently selected
target in that project window’s target drop-down.

✦ If a different window has the focus, such as a source code editing window,
CodeWarrior relies on its default project and default target settings.

To set the default project, select Project ➪ Set Default Project, then select the appro-
priate project file. Likewise, to set the default target, select Project ➪ Set Default
Target, then select the appropriate target.

Using the GNU PRC-Tools
When Metrowerks first released the development tools for Palm OS development,
the only supported platform was the Mac OS. The open source development com-
munity, never willing to let a small obstacle like lack of development tools get
between them and creating code for a new device, immediately began work on a
free set of tools for Palm OS programming. The result is the GNU PRC-Tools, avail-
able for both Unix and Windows systems.

The GNU PRC-Tools package contains a modified version of the GNU C compiler
(gcc), one of the most popular C/C++ compilers in the Unix world, and also used by
many Windows developers. Often referred to as just GCC by Palm OS developers,
the PRC-Tools have expanded to include a complete suite of code-editing and
debugging utilities. The following are included in the GNU PRC-Tools:

✦ M68K GNU C Compiler. The heart of the PRC-Tools, this compiler transforms
C/C++ source code into Motorola 68000 object code.

✦ PilRC. The PilRC tool is a resource compiler that transforms text descriptions
of user interface and other resources into the correct binary format expected
by the Palm OS.

✦ PilrcUI. The PilrcUI program provides a visual preview of the resources
described in a PilRC source file.

Complete details of using PilRC and PilrcUI to create and edit Palm OS resources
are available in Chapter 6, “Creating and Understanding Resources”; Chapter 7,
“Building Forms”; and Chapter 8, “Building Menus.”

✦ build-prc. This utility converts the Motorola 68000 code into the .prc format
expected by the Palm OS, and also combines that code with PilRC-created
resources to produce a finished executable program.

Cross-
Reference

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 57

58 Part II ✦ Creating Palm OS Applications

✦ gdb. The GNU debugger is a tool for debugging Palm OS applications at the
source code level.

✦ Copilot. The first true Palm OS device emulator, Copilot accurately imitates a
Palm OS device’s hardware and operating system. You can install actual Palm
OS programs in Copilot, and they behave almost exactly as they would on a
real device. This, combined with its ability to connect to GDB for source-level
debugging, makes Copilot an invaluable tool for Palm OS programming.
Development of Copilot has passed from Greg Hewgill, its creator, to Palm
Computing, which now releases it as POSE, the Palm OS Emulator. POSE is
more up-to-date than Copilot and contains more useful features, so it is well
worth the download time to pick up the latest version of POSE from Palm
Computing’s developer Web site.

Since its original release for Unix operating systems, developers in the open source
community have also ported the GNU PRC-Tools to Windows, using the Cygnus
Win32 version of gcc as a base. Palm Computing actually provides official support
for the PRC-Tools, alongside the commercial CodeWarrior package.

Just to add a little confusion to the nomenclature surrounding Palm OS develop-
ment, the term “GCC” can be read three different ways. In its original form, GCC
stood for “GNU C Compiler.” Open source developers, in response to adding Java
and other language compilers to the GNU development tools, changed the GCC
acronym to stand for “GNU Compiler Collection.” The Palm development commu-
nity, looking for a shorter name than “GNU PRC-Tools,” often refers to the entire
Palm OS development suite as GCC. (Originally, the package was called the “GNU
Palm SDK,” which you might also see in older Web sites or mailing list discussions
about these tools.) Most of the time, if you are reading material in mailing lists,
Web sites, and newsgroups devoted to Palm development, GCC specifically refers
to the GNU PRC-Tools, not the generic GNU development tools. In this book,
“GCC” is interchangeable with “GNU PRC-Tools.” When talking about the original,
generic GNU C compiler, I will use the lowercase “gcc” instead.

Both the Unix and Windows versions of the PRC-Tools are available on Palm
Computing’s developer Web site, at http://www.palmos.com/dev/tech/
tools/gcc. The PRC-Tools are distributed as both GNU/Linux and Windows
binaries, and also as source code.

Besides the PRC-Tools package, you will also need PilRC, a resource compiler
that transforms text descriptions of user interface and other resources into the
correct binary format expected by the Palm OS. PilRC also comes with PilrcUI,
a program that provides a visual preview of the resources described in a PilRC
source file. You may download PilRC from http://www.ardiri.com/index.
cfm?redir=palm&cat=pilrc.

Note

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 58

59Chapter 3 ✦ Introducing the Development Environments

Both Windows and Unix versions of the GNU PRC-Tools are included on the
CD-ROM accompanying this book.

Compiling and Linking with the PRC-Tools
Compiling and linking a Palm OS application requires the use of a number of differ-
ent command line tools:

✦ m68k-palmos-gcc. This is the actual C/C++ compiler that turns source code
into Motorola 68000 binary code.

✦ m68k-palmos-obj-res. This utility breaks the single binary file produced by
m68k-palmos-gcc into separate code resources that may be included in a
.prc file.

✦ PilRC. Discussed later in Chapter 6, “Creating and Understanding Resources,”
PilRC makes binary resources from a text file, usually with an .rcp extension.

✦ build-prc. The build-prc tool combines all the resources created by the other
three tools into a .prc file, suitable for running on the Palm OS.

Compiling with m68k-palmos-gcc
Since the m68k-palmos-gcc compiler is just a modified version of the generic gcc
compiler, it has many, many options, most of which are not particularly relevant
to Palm OS development. Table 3-1 lists some common options used in compiling
a Palm OS application. Note that all options are case-sensitive.

Table 3-1
m68k-palmos-gcc Compiler Options

Option What It Does

-c Compiles the sources without linking. This option produces raw object code
from the source without linking it together into a larger executable. A common
approach to compiling multiple source files is to run them through the compiler
once with the -c option to produce an object code file for each source code
file, then run all the object code files through the compiler again without the -c
option to link them all together.

-o file Places output in the file specified by file. Without the -o option, the compiler
puts object code in files named with .o extensions, and it produces a file
named a.out when linking multiple object files into an executable.

-On Performs optimization of code when compiling. n represents an integer value
from 0 to 3, with 0 meaning no optimization and 3 meaning as much optimi-
zation as possible. Level 2 is adequate for most applications, resulting in a
good balance between speed of execution and size of the application.

Continued

On the
CD-ROM

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 59

60 Part II ✦ Creating Palm OS Applications

Table 3-1 (continued)

Option What It Does

-g Adds debugging information to the program for debugging with GDB. Without
the -g option, GDB cannot provide source-level debugging of an application.
This option adds a small amount of code to the compiled executable.

-S Stops the compiler right after compiling but before assembling the code into a
binary form. With this option set, the compiler produces an assembler code file.
By default, this file has the same name as the input file, but with an .s suffix.

File extensions of input files passed to m68k-palmos-gcc determine how the com-
piler compiles those files. The compiler treats files with a .c extension as standard
C source files, and files with a .cc, .cxx, .cpp, or .C extension as C++ source. A file
with an .h extension is a header file, which m68k-palmos-gcc does not compile.

A typical command line for compiling a single C source file to object code looks
like this:

m68k-palmos-gcc -O2 -c hello.c -o hello.o

To link multiple object files into a single executable, use a command line like the
following:

m68k-palmos-gcc -O2 *.o hello

Breaking the code apart with m68k-palmos-obj-res
Once m68k-palmos-gcc has diligently assembled all your source files into a nice lump
of Motorola 68000 code, you must run m68k-palmos-obj-res to separate the code into
individual resources that the Palm OS understands. The m68k-palmos-obj-res post-
processor generates files of the form typeXXXX.yourfile.grc, where type repre-
sents the kind of resource (“code” or “data”, for example), XXXX is the resource ID of
the resource contained in the file, and yourfile is the name of the code file you passed
to m68k-palmos-obj-res.

For example, the following command line breaks the hello executable code file
into individual system resources:

m68k-palmos-obj-res hello

The files resulting from running the previous command line are:

code0000.hello.grc
code0001.hello.grc
data0000.hello.grc
pref0000.hello.grc
rloc0000.hello.grc

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 60

61Chapter 3 ✦ Introducing the Development Environments

Creating other resources with PilRC
The rest of an application’s resources, primarily those that define its user interface,
come from the PilRC tool. PilRC generates a file with a .bin extension for each
resource it compiles.

See Chapter 6, “Creating and Understanding Resources,” for details about using
PilRC.

Assembling the application with build-prc
After you have created all the application’s resources, the only thing you need to
do to make a finished application is combine those resources into a .prc file with
build-prc. The build-prc tool uses the following syntax:

build-prc <Destination.prc> <Database name> <Creator ID>
<Resource 1> [Resource 2] [Resource 3] ...

The Destination.prc parameter specifies the file name of the completed .prc file.
Database name is both the name of the application’s database and the name that
appears next to the application’s icon in the launcher. Creator ID is the four-character
unique identifier for your application. The build-prc tool treats everything else on its
command line as the file name of a resource to include in the finished application.

The following example compiles all the .grc and .bin resources in a directory into
a .prc file called hello.prc:

build-prc hello.prc “Hello” LFhe *.grc *.bin

Automating Builds with Make
In even a simple application, manually running the tools to create an application
can easily become tedious. Fortunately, you can use the GNU make tool to auto-
mate the process. The Windows version of GCC installs make automatically; on
Unix systems, make is a standard part of the GNU development tools. The make util-
ity is powerful and complex. There are easily enough different options in make to
warrant an entire book all by itself, so this book will cover only the basics.

For small projects on a Windows machine, it is also possible to automate builds by
using a simple batch file. Batch files are not as flexible or powerful as the make
utility, but they are quite sufficient for very simple applications. An example batch
file is on this book’s CD-ROM.

The make tool follows a series of directives you provide in a makefile to run the var-
ious tools necessary to produce a Palm OS application. Unless you have a particu-
larly large and complex program, a single makefile will suffice for compiling most
Palm OS programs. A makefile consists of rules and commands. Each rule tells make
the name of a target and the dependencies required to create that target, and the

On the
CD-ROM

Cross-
Reference

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 61

62 Part II ✦ Creating Palm OS Applications

commands attached to that rule define the actual actions that make should take to
create the target. For example, consider the following rule:

hello.o : hello.c
m68k-palmos-gcc -c hello.c -o hello.o

This rule says that in order to create the file hello.o, the file hello.c must exist. If
hello.c exists and it is newer than hello.o, make runs m68k-palmos-gcc with the
specified options to create hello.o.

All commands in a makefile must begin with an actual tab character (ASCII 9, dec-
imal). Some text editors replace tabs with spaces, which will cause make to fail. Be
sure your editor inserts real tabs at the beginning of makefile commands.

When you run make, it looks for a file in the current directory called makefile or
Makefile and begins to process it. The first rule in a makefile is the default goal,
which make will attempt to process by default if you call make by itself, like this:

make

You can also call make with a specific target, which will process the appropriate
rule in the makefile for that target. For example, the following command line tells
make to update hello.o according to the rule in the preceding example:

make hello.o

If a dependency is also the target of another rule, make processes the other rule
first to make sure the dependency is up-to-date. Expanding upon the previous
example, take a look at the following:

hello : hello.o hi.o
m68k-palmos-gcc hello.o hi.o -o hello

hello.o : hello.c
m68k-palmos-gcc -c hello.c -o hello.o

hi.o : hi.c
m68k-palmos-gcc -c hi.c -o hi.o

clean :
rm hello hello.o hi.o

The first rule in this example links the object files hello.o and hi.o into the exe-
cutable hello. If either of the .o files needs to be updated, make runs the com-
mands associated with one or the other of the two last rules, depending on which
object file needs to be updated.

Caution

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 62

63Chapter 3 ✦ Introducing the Development Environments

The fourth rule in the example is a utility rule for cleaning the executable and its
object code from the directory. Since the clean target is not a dependency of any
other rule, make normally does not process its rule. To run the clean rule, invoke
make with the following command line:

make clean

Make runs each command in a separate shell. When running a command, make
always looks for the shell /bin/sh. If you install the Windows version of GCC
using the default setup options, the GCC installer makes a copy of the bash shell
called sh.exe and places it in C:\bin. This can cause a problem if you install
GCC to another drive, such as D:, since the GCC installer isn’t smart enough to
change the drive to which it copies sh.exe. If you install GCC to a drive other than
C:, be sure to make a \bin directory on that drive and copy bash.exe from the
GCC bin directory to the newly created \bin, renaming bash.exe to sh.exe.

Using variables to simplify the makefile
In a large project containing many source files, having to type every single source
and object file multiple times in the makefile becomes tedious and error-prone. For
this reason, make allows you to define variables. The following example creates a
variable named OBJS that contains all the object filenames in the project:

OBJS = hello.o hi.o

Now, with the variable OBJS defined, you may simplify the hello and clean rules
from earlier examples like this:

hello : $(OBJS)
m68k-palmos-gcc $(OBJS) -o hello

...
clean :

rm hello ($OBJS)

Using pattern rules
You can simplify the makefile even further by using pattern rules. A pattern rule can
use wildcard values to represent more than one file at a time. Consider the following:

%.o : %.c
m68k-palmos-gcc -c $< -o $@

This takes the place of the hello.o and hi.o rules in previous examples. The per-
cent sign (%) in this rule tells make that, in order to build a file with an .o extension,
make should look for a dependency file with the same stem and a .c extension.
The automatic variables $< and $@ stand for the dependency file and target file,
respectively.

Tip

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 63

64 Part II ✦ Creating Palm OS Applications

On Windows, you may encounter problems running make because of the different
processing that Windows performs on command-line arguments from the way
most Unix shells handle a command line. Unix shells expand wildcards in a com-
mand-line argument before passing them to a program, like make, but Windows
does not perform any expansion, or globbing, instead passing the wildcard charac-
ters to the program intact, which confuses make. If you have this problem in
Windows, add the following environment variable to your AUTOEXEC.BAT file (in
Windows 95 or 98) or your system environment settings (in Windows NT or 2000):

MAKE_MODE = UNIX

Putting it all together
Given the few simple rules explained above, it is possible to write much more com-
plex makefiles than the examples earlier in this chapter. Listing 3-1 shows the make-
file for the Hello World application from the next chapter. Notice that the makefile
is built in such a way that with only a few simple changes to its variables, it can be
reused to build an entirely different application.

A generic makefile, which you may use to compile any Palm OS application with
only a few modifications, is on the CD-ROM accompanying this book.

Listing 3-1: The Hello World makefile

APP = hello
ICONTEXT = “Hello”
APPID = LFhe
RCP = $(APP).rcp
PRC = $(APP).prc
SRC = $(APP).c

CC = m68k-palmos-gcc
PILRC = pilrc
OBJRES = m68k-palmos-obj-res
BUILDPRC = build-prc

Uncomment this if you want to build a debug version for GDB
CFLAGS = -O0 -g
CFLAGS = -O2

all: $(PRC)

$(PRC): grc.stamp bin.stamp;
$(BUILDPRC) $(PRC) $(ICONTEXT) $(APPID) *.grc *.bin
ls -l *.prc

On the
CD-ROM

Tip

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 64

65Chapter 3 ✦ Introducing the Development Environments

grc.stamp: $(APP)
$(OBJRES) $(APP)
touch $@

$(APP): $(SRC:.c=.o)
$(CC) $(CFLAGS) $^ -o $@

bin.stamp: $(RCP)
$(PILRC) $^ $(BINDIR)
touch $@

%.o: %.c
$(CC) $(CFLAGS) -c $< -o $@

touch $<
Enable the previous line if you want to compile EVERY time.

depend dep:
$(CC) -M $(SRC) > .dependencies

clean:
rm -rf *.o $(APP) *.bin *.grc *.stamp *~

veryclean: clean
rm -rf *.prc *.bak

Summary
In this chapter, you took a look at the two most popular C/C++ development envi-
ronments for Palm OS programming. After reading this chapter, you should know
the following:

✦ Metrowerks CodeWarrior is a commercial IDE for Palm OS development, offi-
cially supported by Palm Computing. CodeWarrior runs on Windows and the
Mac OS.

✦ The GNU PRC-Tools, also known as GCC, is an open source, free alternative for
Palm OS development that runs on both Unix and Windows systems.

✦ CodeWarrior stores information about an application and how it should be
built in a project, which may contain multiple targets to direct the CodeWarrior
tools to build the project in different ways.

✦ You control how CodeWarrior compiles and links an application by changing
settings in the project window and target settings dialog.

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 65

66 Part II ✦ Creating Palm OS Applications

✦ GCC uses a series of command line tools (m68k-palmos-gcc, m68k-palmos-
obj-res, PilRC, and build-prc) to compile and link source code into a finished
Palm OS executable file.

✦ The make tool is the easiest way to automate the steps required to produce a
Palm OS application with the PRC-Tools.

✦ ✦ ✦

4676-7 ch03.f.qc 10/16/00 8:27 AM Page 66

Writing Your
First Palm OS
Application

The previous chapter showed you the tools for building
applications for the Palm OS. Now it is time to look under

the hood of a simple application and see what makes it work.
In the long-standing tradition of computer language examples,
this chapter will walk you through the code of a “Hello, World”
program, introducing you to the general layout of a Palm OS
application. Along the way, you will also learn about how the
Palm OS starts your application, how the application responds
to events, how to handle callback functions in the gcc com-
piler, and how to properly manage memory.

Looking at the Hello World User
Interface

Before delving into the code in the Hello World application, a
quick description of what the program looks like and what it
does is in order. Because user interaction is such an integral
part of the Palm OS, this example program does a little more
than simply print an impersonal “Hello World” on the screen.
Hello World has a text field for the user’s name; Figure 4-1
shows the application’s main form after a little text has been
entered into the field.

Figure 4-1: The Hello World
application

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Looking at the Hello
World application

Learning how the
Palm OS starts your
application

Running through the
main event loop

Setting up callback
event handlers

Managing memory

✦ ✦ ✦ ✦

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 67

68 Part II ✦ Creating Palm OS Applications

Buttons at the bottom of the form display alerts when tapped, customized with a
string entered by the user in the name field. The program also has an about box to
display a little information about the program; the about box may be accessed from
the application’s menus. Figure 4-2 shows the alerts that appear when the user taps
the Say Hello or Say Goodbye buttons, or when the user selects the About Hello
World menu item.

Figure 4-2: Alerts in the Hello World application

Hello World also implements the standard Palm Edit menu to provide text-editing
commands for the form’s name field. An Options menu offers an About Hello World
item to display the application’s about box. Figure 4-3 shows the menus in the Hello
World application.

Figure 4-3: Menus in the Hello World
application

The resources for the Hello World application’s form, alerts, and menus are defined
in separate files from the source code shown in this chapter. These files, and the
processes used to generate them, are different between the CodeWarrior and GNU
Palm SDK environments.

Creating resources is covered in detail in Chapter 6, “Creating and Understanding
Resources.”

Walking Through the Hello World Code
Now that you have some idea what the Hello World application is supposed to do, it
is time to take a close look at how it works. The file hello.c contains the bulk of
the code for the Hello World application. A complete listing of hello.c is at the end
of this chapter in Listing 4-3. This section will deal with a small piece of the applica-
tion code at a time.

Cross-
Reference

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 68

69Chapter 4 ✦ Writing Your First Palm OS Application

The complete code for Hello World is also available on the CD-ROM attached to
this book.

Including Header Files
At the top of hello.c are the following #include directives:

#include <PalmOS.h>

#ifdef __GNUC__
#include “callback.h”
#endif

#include “helloRsc.h”

The PalmOS.h file contains further includes for most of the include files in the Palm
OS. In the CodeWarrior environment, PalmOS.h includes a prebuilt header to assist in
faster compilation. Because Hello World is a very simple application, the includes in
PalmOS.h are more than sufficient for everything the application must accomplish.

Prior to Palm OS 3.5, the main include file for the Palm OS SDK was called
Pilot.h. If you are compiling an application using headers that are older than
the 3.5 SDK, you should use Pilot.h instead of PalmOS.h. See the sidebar titled
“Moving Applications to Palm OS 3.5” later in this chapter for more details on the
differences between 3.5 and earlier versions of the Palm OS headers.

The file callback.h contains macro definitions needed by older versions of the
GNU PRC-Tools to properly compile callback functions. The #ifdef prevents the
GCC-specific callback code from compiling under CodeWarrior.

More details on the macros in callback.h and their use are included later in this
chapter, under “Using Callback Functions with GCC.”

Hello World also includes the file helloRsc.h, which defines resource constants
used throughout the application to identify menus, controls, alerts, and other
resources. For example, the constant MainNameField identifies the text field in
Hello World’s main form.

In the CodeWarrior environment, the Constructor tool generates helloRsc.h auto-
matically. Listing 4-1 shows an example of a resource constant file generated by
Constructor. In the GNU PRC-Tools, you normally create the resource constant file
yourself. Listing 4-2 shows how this handmade file looks.

Cross-
Reference

Note

On the
CD-ROM

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 69

70 Part II ✦ Creating Palm OS Applications

Listing 4-1: The helloRsc.h file, as generated by Constructor

// Header generated by Constructor for Pilot 1.0.2
//
// Generated at 3:26:43 PM on Monday, 23 August, 1999
//
// Generated for file: D:\Bible\code\ch04\cw\hello.rsrc
//
// THIS IS AN AUTOMATICALLY GENERATED HEADER FILE FROM
// CONSTRUCTOR FOR PALMPILOT;
// - DO NOT EDIT - CHANGES MADE TO THIS FILE WILL BE LOST
//
// Pilot App Name: “Hello”
//
// Pilot App Version: “1.0”

// Resource: tFRM 1000
#define MainForm 1000
#define MainHelloButton 1002
#define MainGoodbyeButton 1003
#define MainNameField 1001
#define MainUnnamed1099Label 1099

// Resource: Talt 1000
#define HelloAlert 1000
#define HelloOK 0

// Resource: Talt 1100
#define GoodbyeAlert 1100
#define GoodbyeOK 0

// Resource: Talt 1200
#define AboutAlert 1200
#define AboutOK 0

// Resource: MBAR 1000
#define MainMenuBar 1000

// Resource: MENU 1000
#define MainEditMenu 1000
#define MainEditUndo 1000
#define MainEditCut 1001
#define MainEditCopy 1002
#define MainEditPaste 1003
#define MainEditSelectAll 1004
#define MainEditKeyboard 1006
#define MainEditGraffitiHelp 1007

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 70

71Chapter 4 ✦ Writing Your First Palm OS Application

// Resource: MENU 1100
#define MainOptionsMenu 1100
#define MainOptionsAboutHelloWorld 1100

Listing 4-2: The helloRsc.h file, made by hand for the
GNU environment

// Main form
#define MainForm 1000
#define MainNameField 1001
#define MainHelloButton 1002
#define MainGoodbyeButton 1003

// Menubar
#define MainMenuBar 1000

// Menu commands
#define MainEditUndo 1000
#define MainEditCut 1001
#define MainEditCopy 1002
#define MainEditPaste 1003
#define MainEditSelectAll 1004
#define MainEditKeyboard 1006
#define MainEditGraffitiHelp 1007

#define MainOptionsAboutHelloWorld 1100

// Alerts
#define HelloAlert 1000
#define GoodbyeAlert 1100
#define AboutAlert 1200

Entering the Application
The first code the Palm OS executes in your application is the PilotMain routine,
which looks like this in Hello World:

UInt32 PilotMain(UInt16 launchCode, MemPtr cmdPBP,
UInt16 launchFlags)

{
Err err;

switch (launchCode) {
case sysAppLaunchCmdNormalLaunch:

if ((err = StartApplication()) == 0) {
EventLoop();

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 71

72 Part II ✦ Creating Palm OS Applications

StopApplication();
}
break;

default:
break;

}

return err;
}

The first parameter to PilotMain is a launch code telling your application how
to start itself. In a normal application launch, the Palm OS passes the constant
sysAppLaunchCmdNormalLaunch to the PilotMain routine.

During a normal launch, the cmdPBP and launchFlags parameters are not used.
They contain extra parameters and flags used when the operating system calls the
application with a different launch code. For example, the sysAppLaunchCmdFind
launch code, sent by the OS during a global find, passes a pointer to the text to
search for in the cmdPBP parameter. Table 4-1 lists some common launch codes
and what they indicate.

Table 4-1
Selected Palm OS Launch Codes

Launch Code Description

sysAppLaunchCmdAddRecord Adds a record to the application’s database

sysAppLaunchCmdDisplayAlarm Tells the application to display a specified alarm
dialog or perform other lengthy alarm-related
actions

sysAppLaunchCmdFind Finds a text string somewhere in the application’s
stored data

sysAppLaunchCmdGoto Goes to a specific record in the application’s
database

sysAppLaunchCmdNormal Launches the application normally

sysAppLaunchCmdSystemReset Allows the application to respond to a system
reset

The Palm OS supports many other launch codes. Fortunately, your application does
not need to respond to all of them. If a particular launch code is inappropriate for
your application, simply leave that code out of your application’s PilotMain routine.

A complete list of launch codes is available in Appendix A, “Palm OS API
Reference.”

Cross-
Reference

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 72

73Chapter 4 ✦ Writing Your First Palm OS Application

PilotMain in the Hello World application deals only with the sysAppLaunchCmdFind
launch code. When it receives this code, it passes execution to StartApplication.

Starting the Application
The StartApplication routine in Hello World is listed below:

static Err StartApplication(void)
{

FrmGotoForm(MainForm);
return 0;

}

StartApplication is where more complex programs would perform database initial-
ization and retrieval of user preferences prior to running the rest of the application.
Because Hello World does not save any data between the times the user runs it, its
StartApplication routine is quite brief. In Hello World, this routine has only one
responsibility: starting up the main form that contains the application’s interface.
The FrmGotoForm function tells the currently open form to close, and then puts
frmLoadEvent and frmOpenEvent events into the event queue, signifying the
specified form to load itself and open.

Closing the Application
Skipping ahead a bit, the StopApplication routine runs when the EventLoop routine
has exited and the application is shutting down. Here is StopApplication from Hello
World:

static void StopApplication(void)
{
}

Because Hello World does not need to perform any cleanup before closing down, its
StopApplication routine is empty. Normally, this routine contains code to close the
application’s database, save user preferences, and perform other tasks prior to the
program ending execution.

Handling Events
After PilotMain calls StartApplication to initialize the program, execution passes to
the EventLoop routine:

static void EventLoop(void)
{

EventType event;

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 73

74 Part II ✦ Creating Palm OS Applications

UInt16 error;

do {
EvtGetEvent(&event, evtWaitForever);
if (! SysHandleEvent(&event))

if (! MenuHandleEvent(0, &event, &error))
if (! ApplicationHandleEvent(&event))

FrmDispatchEvent(&event);
} while (event.eType != appStopEvent);

}

The event loop is responsible for processing events received by the application.
Incoming events enter the event queue, which EventLoop processes one event at a
time. EventLoop grabs events from the queue with the EvtGetEvent function, and
then dispatches those events to the event handling routines. Each of the four event
handlers gets an opportunity to process the event in turn, in this order:

1. SysHandleEvent handles system events.

2. MenuHandleEvent takes care of menu events.

3. ApplicationHandleEvent loads form resources and sets up form-specific
event handlers.

4. FrmDispatchEvent passes the event to the application’s own event handler,
or lets the operating system perform default actions for that event.

Once the event has been handled, the event loop starts over again, retrieving the
next event from the event queue and repeating the process. The EventLoop routine
continues until it pulls an appStopEvent from the queue, at which point it stops
and passes execution back to PilotMain.

The EvtGetEvent function warrants further discussion. Its first parameter merely
provides an address at which the function should put the next event it retrieves.
The second parameter to EvtGetEvent is a time-out value in ticks, or hundredths
of a second. If no event enters the queue for before the time-out value elapses,
EvtGetEvent returns the value nilEvent in the first parameter.

Most applications should pass the constant evtWaitForever (equal to -1) as the
second parameter of EvtGetEvent, which puts the system into doze mode to con-
serve power until another event enters the queue. Time-out values greater than or
equal to zero are primarily useful in applications that must animate screen images,
such as games.

Animation is detailed in Chapter 10, “Programming System Elements.”Cross-
Reference

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 74

75Chapter 4 ✦ Writing Your First Palm OS Application

Processing system events in SysHandleEvent
The first event handler that receives an event from the event loop is SysHandle
Event, which gives the OS an opportunity to handle important system events. The
system handles such things as Graffiti input, hardware button presses, and taps on
the silk-screened buttons. SysHandleEvent also takes care of low battery notifica-
tions, the global find function, and other system-wide events that may interrupt
whatever the application is currently doing.

Depending on the event, SysHandleEvent often puts more events back into the
queue. For example, when the user enters strokes into the Graffiti area, the system
interprets the resulting Graffiti events and places corresponding key events into the
queue. The event loop eventually pulls these key events out of the queue and pro-
cesses them.

If it handles the event completely, SysHandleEvent returns true. The event loop
then calls EvtGetEvent to process the next event in the queue.

Handling menu events in MenuHandleEvent
If the system was not interested in handling an event, MenuHandleEvent gets the
next crack at it. MenuHandleEvent cares about only two kinds of events:

✦ Any taps from the user that invoke a menu, in which case MenuHandleEvent
displays the appropriate menu.

✦ Taps inside a menu that activate a menu item, which cause MenuHandle
Event to erase the menu from the screen and put events corresponding to
the selected command into the event queue.

Like SysHandleEvent, MenuHandleEvent also returns true if it completely pro-
cesses an event.

Preparing forms in ApplicationHandleEvent
Events that make it this far into the event loop are of potential interest to the appli-
cation itself. ApplicationHandleEvent is a function you must write yourself, and its
only purpose is to handle the frmLoadEvent. In the ApplicationHandleEvent func-
tion, your program loads and activates form resources. This function is also where
the application sets up a callback function to serve as an event handler for the cur-
rent active form.

ApplicationHandleEvent and callback event handlers are covered in more detail
later in this chapter.

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 75

76 Part II ✦ Creating Palm OS Applications

Dealing with form events in FrmDispatchEvent
The FrmDispatchEvent function is like a miniature event loop within the more com-
plicated EventLoop. FrmDispatchEvent first passes the event to the active form’s
event handler, which was set up previously in ApplicationHandleEvent. Because
Hello World has only one form, FrmDispatchEvent will pass events to the Main
FormHandleEvent callback function. If the form event handler fully processes
the event, it returns true, causing FrmDispatchEvent to return execution to the
event loop.

FrmDispatchEvent passes events not handled by the application to FrmHandleEvent,
a function that lets the system perform default processing of the event. This process-
ing usually involves standard user interface actions, such as highlighting a button
tapped by the user. In any case, all events not previously handled in the event loop
meet their final resting place in the FrmHandleEvent function, which does not return
any value.

Setting Up Forms
Events not handled by SysHandleEvent or MenuHandleEvent make their way
to ApplicationHandleEvent. Unlike the first two event handlers, Application
HandleEvent is not part of the Palm OS. You must provide this function yourself,
because its contents will vary from program to program. The ApplicationHandle
Event function from Hello World is listed as follows:

static Boolean ApplicationHandleEvent(EventPtr event)
{

FormPtr form;
UInt16 formID;
Boolean handled = false;

if (event->eType == frmLoadEvent) {
formID = event->data.frmLoad.formID;
form = FrmInitForm(formID);
FrmSetActiveForm(form);

switch (formID) {
case MainForm:

FrmSetEventHandler(form, MainFormHandleEvent);
break;

}
handled = true;

}

return handled;
}

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 76

77Chapter 4 ✦ Writing Your First Palm OS Application

ApplicationHandleEvent is responsible for two things:

✦ Initializing form resources

✦ Setting callback event handlers for forms

The ApplicationHandleEvent function accomplishes the first of these two goals by
calling two system functions, FrmInitForm and FrmSetActiveForm. FrmInitForm
loads the form resource into memory and initializes its data structure, returning a
pointer to that form. Then FrmSetActiveForm takes the pointer to the newly initial-
ized form and makes that form into the active form. Only one form may be active at
a time in the Palm OS. The currently active form receives all input from the user,
both pen and key events, and all drawing occurs within the active form.

Now that the form has been initialized and activated, it needs an event handler so it
knows what to do with all the input it will soon be receiving. ApplicationHandleEvent
sets the form’s event handler with the FrmSetEventHandler function. Each form’s
event handler is a separate callback function that you provide. Once this event han-
dler is set, the OS passes all events that are not handled by the system or the menu
manager to this form event handler.

In Hello World, there is only one form, and its event handler is MainFormHandle
Event. In more complex applications, ApplicationHandleEvent sets a different
event handler for each form in the application.

Responding to Form Events
The MainFormHandleEvent function in Hello World processes input to the applica-
tion’s main form. MainFormHandleEvent looks like this:

static Boolean MainFormHandleEvent(EventPtr event)
{

Boolean handled = false;

#ifdef __GNUC__
CALLBACK_PROLOGUE;

#endif

switch (event->eType) {
case frmOpenEvent:
{

FormType *form = FrmGetActiveForm();

FrmDrawForm(form);
FrmSetFocus(form, FrmGetObjectIndex(form,

MainNameField));
handled = true;

}
break;

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 77

78 Part II ✦ Creating Palm OS Applications

case ctlSelectEvent:
switch (event->data.ctlSelect.controlID) {

case MainHelloButton:
SaySomething(HelloAlert);
handled = true;
break;

case MainGoodbyeButton:
SaySomething(GoodbyeAlert);
handled = true;
break;

default:
break;

}
break;

case menuEvent:
handled =

MainMenuHandleEvent(event->data.menu.itemID);
break;

default:
break;

}

#ifdef __GNUC__
CALLBACK_EPILOGUE;

#endif

return handled;
}

This function receives events from FrmDispatchEvent in the event loop. Hello
World actually begins doing some real work in this function instead of relying on
the system to take care of everything.

MainFormHandleEvent handles the frmOpenEvent by drawing the form on the
screen with the FrmDrawForm function. Because there is a text field on the screen,
it is also a good idea to put the focus in that field so the user may immediately
begin entering text without first tapping in the field. The FrmSetFocus function
performs this task.

If the user taps and releases either of the buttons on the main form, a ctlSelect
Event enters the queue and eventually makes its way to MainFormHandleEvent.
Depending on which button was tapped, MainFormHandleEvent displays one
of two alerts using the SaySomething function, which is explained later in this
chapter.

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 78

79Chapter 4 ✦ Writing Your First Palm OS Application

The MainFormHandleEvent function can also handle menu events. To keep the
function small and easy to read, though, MainFormHandleEvent defers menu han-
dling to MainMenuHandleEvent, another function provided by the application
instead of the operating system.

You may be wondering what all the #ifdef __GNUC__ stuff is for in this function.
The macros in these conditional compilation statements are required for callback
functions to properly compile using GCC, because the GNU compiler handles call-
backs a little differently from CodeWarrior. For more information, see the sidebar
“Using Callback Functions with GCC.”

Using Callback Functions with GCC

The Palm OS and early versions of the GNU PRC-Tools (0.5.0 and earlier) make different
assumptions about how some registers will be used during the life of an application. GCC
sets the A4 register, through which it accesses an application’s global variables, and the
compiler expects that the contents of A4 will remain untouched. However, the contents of
A4 are not sacred to the Palm OS, and if the system calls a GCC-compiled function as a call-
back, the A4 register may be altered, causing the application to crash when the callback
tries to access global variables.

To work around this problem, Ian Goldberg, one of the contributors to the GNU PRC-Tools,
wrote a pair of macros that set the A4 register when starting a callback function, and then
restore the register when the callback exits. These macros reside in a convenient header
file, callback.h, which you can #include in your own application:

#ifndef __CALLBACK_H__
#define __CALLBACK_H__

/* This is a workaround for a bug in the current version of gcc:

gcc assumes that no one will touch %a4 after it is set up in
crt0.o. This isn’t true if a function is called as a callback
by something that wasn’t compiled by gcc (like
FrmCloseAllForms()). It may also not be true if it is used as
a callback by something in a different shared library.

We really want a function attribute “callback” which will
insert this prologue and epilogue automatically.

- Ian */

register void *reg_a4 asm(“%a4”);

Continued

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 79

80 Part II ✦ Creating Palm OS Applications

Continued

#define CALLBACK_PROLOGUE \
void *save_a4 = reg_a4; \
asm(“move.l %%a5,%%a4; sub.l #edata,%%a4” : :);

#define CALLBACK_EPILOGUE reg_a4 = save_a4;

#endif

When writing a callback function, you must put the CALLBACK_PROLOGUE macro at the
beginning of the function, just after its variable declaration. Just before the function returns,
insert the CALLBACK_EPILOGUE macro into your code. The MainFormHandleEvent func-
tion from Hello World shows proper placement of the macros.

Be careful not to access global variables in your callback functions before the
CALLBACK_PROLOGUE macro. A common mistake is to declare a variable and initialize it
with the value of a global variable at the top of the code. The following example will cause
an application to crash:

static int BadCallback ()
{

int localVariable = gGlobalVariable; // error
CALLBACK_PROLOGUE
...

}

Instead, set the value of the variable after CALLBACK_PROLOGUE has been called:

static int GoodCallback()
{

int localVariable;
CALLBACK_PROLOGUE
localVariable = gGlobalVariable;
...

}

Likewise, be sure your code runs CALLBACK_EPILOGUE before returning. The easiest way
to ensure this is to make sure your function returns at the bottom. If you must have your
function return somewhere in the middle, be sure to put another occurrence of
CALLBACK_EPILOGUE into your code:

static Boolean ReturnFromMiddle(Boolean foo)
{

Boolean handled = false;
CALLBACK_PROLOGUE

if (foo) {
handled = true;

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 80

81Chapter 4 ✦ Writing Your First Palm OS Application

Handling Menu Events
MainFormHandleEvent passes menu events to another function, MainMenu
HandleEvent, which is shown in the following example:

static Boolean MainMenuHandleEvent(UInt16 menuID)
{

Boolean handled = false;
FormType *form;
FieldType *field;

form = FrmGetActiveForm();
field = FrmGetObjectPtr(form,

FrmGetObjectIndex(form, MainNameField));

switch (menuID) {
case MainEditUndo:

FldUndo(field);
handled = true;
break;

case MainEditCut:
FldCut(field);
handled = true;
break;

case MainEditCopy:
FldCopy(field);
handled = true;
break;

case MainEditPaste:
FldPaste(field);

CALLBACK_EPILOGUE // epilogue macro required here...
return handled;

}

CALLBACK_EPILOGUE // ...and also here
return handled;

}

At the time I’m writing this, PRC-Tools 2.0 has successfully solved the callback problem. The
2.0 version is based on the newer EGCS (Experimental GNU Compiler System), and it
no longer suffers from the callback problem exhibited by version 0.5.0 or earlier of the
PRC-Tools. If you are using the GNU PRC-Tools 2.0 or later, you can safely leave the
CALLBACK_PROLOGUE and CALLBACK_EPILOGUE macros out of your code, and callback
functions will still work properly.

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 81

82 Part II ✦ Creating Palm OS Applications

handled = true;
break;

case MainEditSelectAll:
FldSetSelection(field, 0,

FldGetTextLength(field));
handled = true;
break;

case MainEditKeyboard:
SysKeyboardDialog(kbdDefault);
handled = true;
break;

case MainEditGraffitiHelp:
SysGraffitiReferenceDialog(referenceDefault);
handled = true;
break;

case MainOptionsAboutHelloWorld:
FrmAlert(AboutAlert);
handled = true;
break;

default:
break;

}

return handled;
}

The Edit menu commands handled by MainMenuHandleEvent are standard menu
items, which you should implement in all your forms and dialogs that contain text
fields. Because the Palm OS provides simple system functions to deal with the stan-
dard field actions, there is no excuse for not including them in your application.
There are few things more frustrating than a text field that will not allow copying
and pasting, and users may find your application difficult to use if Graffiti help,
supplied by the SysGraffitiReferenceDialog function, is not available.

The SysKeyboardDialog and SysGraffitiReferenceDialog functions are indige-
nous to Palm OS version 2.0 and later. The system-wide Graffiti reference does not
exist in version 1.0, and the version 1.0 function for calling up the keyboard dialog
is SysKeyboardDialogV10, which has no parameters. Keep this in mind when
writing applications that must run on Palm OS 1.0.

The only other menu option handled by MainMenuHandleEvent is the applica-
tion’s about box, which is an alert resource. The menu-handling function displays
the about alert with the FrmAlert function.

Caution

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 82

83Chapter 4 ✦ Writing Your First Palm OS Application

Displaying Alerts and Using the Text Field
MainFormHandleEvent calls the SaySomething function when the user taps one of
the main form’s two buttons. SaySomething is listed in the following example:

static void SaySomething(UInt16 alertID)
{

FormType *form = FrmGetActiveForm();
FieldType *field;
MemHandle h;

field = FrmGetObjectPtr(form, FrmGetObjectIndex(form,
MainNameField));

if (FldGetTextLength(field) > 0) {
FldCompactText(field);
h = FldGetTextHandle(field);
if (h) {

Char *s;

s = MemHandleLock((void *)h);
FrmCustomAlert(alertID, s, NULL, NULL);
MemHandleUnlock((void *)h);

}
} else {

// No text in field, so display a “whoever you are”
// dialog.
FrmCustomAlert(alertID, “whoever you are”, NULL, NULL);

}
}

SaySomething takes a single argument, the resource ID of an alert that it should dis-
play. Instead of popping up a static alert box with FrmAlert, as MainMenuHandle
Event did for the application’s about box, SaySomething customizes the alerts it
displays by using the FrmCustomAlert function. FrmCustomAlert replaces up to
three special characters in the alert resource it displays with strings supplied in
three of its arguments. Hello World needs to fill in only one piece of custom text in
each alert, so SaySomething passes NULL for the third and fourth arguments to
FrmCustomAlert.

More information on displaying custom alerts is in Chapter 7, “Building Forms.”

In order for SaySomething to grab the string entered in the form’s text field, the
function needs a pointer to that field. SaySomething accomplishes this with the
FrmGetObjectIndex and FrmGetObjectPtr functions. FrmGetObjectIndex takes the
resource ID of the text field and returns its object index. Every object on a form has
a unique object index, starting at zero. FrmGetObjectPtr takes the object index
obtained by FrmGetObjectIndex and returns a pointer to the field.

Cross-
Reference

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 83

84 Part II ✦ Creating Palm OS Applications

The construct FrmGetObjectPtr(form, FrmGetObjectIndex(form, objectID))
is very common in Palm OS programming, and you will find yourself using it through-
out your applications. If you wish to save some typing while writing your code, a
function similar to the following may come in handy:

static VoidPtr GetObjectPtr (Word objectID)
{

FormPtr form;

form = FrmGetActiveForm();
return (FrmGetObjectPtr(form,

FrmGetObjectIndex(form, objectID)));
}

Now that SaySomething has a pointer to the field, the function checks to see if
the field contains any text by calling the system function FldGetTextLength. The
FldGetTextLength function returns the number of bytes of text contained in a field.
If there is no text in the field, SaySomething fills in an appropriate generic name,
“whoever you are”, so the alert will have something to display to the user.

Because the text in a field may change size dynamically as the user edits it, the
Palm OS uses a moveable chunk of memory to store the field’s text. The system
uses handles to keep track of a moveable chunk’s location instead of pointers,
which indicate specific, immobile chunks of memory. Allowing chunks of memory
to be mobile ensures that the OS can relocate memory as it sees fit to make room
for more memory allocations, a very useful feature indeed on a platform with so
little dynamic memory available.

Before retrieving a handle to the text in the field, SaySomething calls FldCompactText
to release any unused space in the memory chunk containing the field’s text. As a
user enters text in a field, the system increases the size of the field’s text chunk sev-
eral bytes at a time to avoid having to expand the field as each and every new charac-
ter is entered. This may result in a few empty bytes, so FldCompactText can be used
to shrink the text chunk to take up as little space as possible.

After the field’s text chunk has been compacted, SaySomething retrieves a handle to
the memory holding the field’s text by calling FldGetTextHandle. Once the field’s text
handle is retrieved, SaySomething locks the handle in place with MemHandleLock.
Without locking the chunk containing the field’s text, the operating system could very
well move the chunk before the application is done reading or modifying it, so it is
important to lock handles before using their contents. MemHandleLock returns a
pointer to the locked memory chunk, which SaySomething uses to retrieve the field’s
contents and pass them to FrmCustomAlert. Then SaySomething calls MemHandle
Unlock to free the handle, allowing the operating system to move that chunk again.

If you only need to read data from a text field, you can also directly retrieve a
pointer to the field’s contents with the FldGetTextPtr function. However, you
should only use FldGetTextPtr if you do not need to alter the contents of the field,
since it treats the text field’s memory chunk as a fixed pointer, rather than a move-
able handle.

Note

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 84

85Chapter 4 ✦ Writing Your First Palm OS Application

SaySomething also fills in an appropriate generic name, “whoever you are”, when
the user has not entered any text into the field. Notice that this occurs in two differ-
ent places in the function. The code that detects an empty string for the contents of
the field, if (*s != ‘\0’), is the obvious case; a string containing only a trailing
null character must be empty. However, the OS will not allocate a handle for the text
field until the user enters some text. If the form has just been opened (such as when
the application first starts), no handle exists for the field yet, thus necessitating the
use of a second “whoever you are” in the code to take care of this situation.

Using Memory in the Palm OS
One of the most common errors in programming is accidentally writing to the
wrong memory address. In a desktop computer, this can cause some spectacular
application crashes, but it usually won’t affect permanently stored data, because
that resides on a separate storage device from the system’s main memory. Because
Palm OS devices use the same RAM for storage that they use for dynamic memory,
a more stringent system of memory management is necessary to prevent badly
written applications from corrupting permanently stored data.

The memory manager in the Palm OS provides just such a facility. Allocation and
manipulation of memory cannot be accomplished on a Palm OS device without the
appropriate Palm OS memory APIs. You can put away malloc and free, because you
won’t need them for Palm OS programming.

Most memory manipulation functions in the Palm OS fall into two categories:
pointer functions and handle functions. Palm OS uses the functions MemPtrNew
and MemPtrFree instead of the C standard library calls malloc and free to allocate
and deallocate pointers. Other than this syntactic difference, most pointer use
should be about what you expect from a standard C application. However, pointers
use only unmovable chunks of memory, which doesn’t allow them to take advan-
tage of the operating system’s ability to efficiently manage the small amount of
dynamic RAM available.

Handle functions allow you to manipulate chunks of memory that may be moved by
the operating system. Whenever the operating system needs to allocate more mem-
ory, it will move handles around until there is enough free contiguous memory for
the new allocation. This scheme allows for much more effective use of the limited
memory on a Palm OS device.

You can allocate a new memory handle with the MemHandleNew function. This
function takes an argument specifying the size of the memory chunk to allocate,
in bytes. The following code allocates a new, 32-byte handle:

VoidHand newHandle = MemHandleNew(32);

Because the operating system may freely move the memory connected to a handle,
you must first lock a handle with MemHandleLock before you can read data from

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 85

86 Part II ✦ Creating Palm OS Applications

or write data to it. Once you have finished using the handle, unlock it with Mem
HandleUnlock so the operating system can once again move that handle’s chunk
around. You’ve already seen MemHandleLock and MemHandleUnlock in action in
the SaySomething function of Hello World.

The Palm OS keeps track of how many times you have locked a particular chunk
of memory with a lock count. Every time you call MemHandleLock on a particular
handle, the operating system increments the lock count on that handle’s memory
chunk. Likewise, each call to MemHandleUnlock decrements the lock count by one.
Only when the lock count reaches zero is the chunk actually unlocked and free to
be moved by the OS again.

Because the operating system cannot move a locked chunk of memory, you must
be sure to unlock a chunk as soon as possible after it has been locked. Otherwise,
memory fragmentation may occur, possibly preventing further memory allocation
because the Palm OS cannot locate a large enough area of contiguous memory.

Each chunk of memory in the Palm OS contains a lock:owner byte. The high nibble
of this byte contains the lock count for that particular chunk of memory. A value of
15 in the lock count field indicates an unmovable chunk. Because of this, a chunk
may be locked only 14 times; the fifteenth call to MemHandleLock will result in an
error.

The other half of the lock:owner byte stores the owner ID of the application that
owns this particular chunk of memory. When an application exits, the operating
system automatically deallocates all chunks of memory with that application’s
owner ID. This garbage collection prevents a careless programmer from creating a
memory leak, which would be a serious problem on a platform with, at most, 96KB
of dynamic RAM.

Relying on the Palm OS to clean up your memory for you is sloppy programming.
Be sure to explicitly free memory that you have allocated.

It may be more convenient to unlock a chunk of memory using the MemPtrUnlock
function. Instead of having to pass the chunk’s handle around between different
routines in your application, MemPtrUnlock will unlock a chunk given a pointer to
that chunk, rather than a handle.

When you are through using a chunk of memory, call MemHandleFree to dispose
of a moveable chunk, or MemPtrFree to deallocate an unmovable chunk:

MemHandleFree(someHandle);
MemPtrFree(somePointer);

You can retrieve the size of a particular chunk with the MemHandleSize and
MemPtrSize functions:

ULong sizeOfHandle = MemHandleSize(someHandle);
ULong sizeOfPointer = MemPtrSize(somePointer);

Note

Caution

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 86

87Chapter 4 ✦ Writing Your First Palm OS Application

Resizing a moveable chunk is also possible, using the MemHandleResize function:

switch (MemHandleResize(someHandle, newSize)) {
case memErrInvalidParam:

// Invalid parameter passed
case memErrNotEnoughSpace:

// Not enough free space in the current heap
// to grow the chunk

case memErrChunkLocked:
// The chunk passed to MemHandleResize is locked

case 0:
// Resizing was successful

}

MemHandleResize works only on an unlocked chunk of memory. It first looks for
more memory immediately following the current chunk, so the chunk will not have to
be moved. If there is not enough free space directly following the chunk, the operat-
ing system will move the chunk to a new location that does contain enough contigu-
ous space. There is also a MemPtrResize function that will work on a locked chunk of
memory, but only if there is enough free space available right after that chunk. Both
MemHandleResize and MemPtrResize always succeed when shrinking the size of
the chunk.

The Palm OS also has a few utility functions for manipulating the contents of mem-
ory. MemMove will move a certain number of bytes from one location in memory
to another, handling overlapping ranges as appropriate:

MemMove(void *destination, void *source,
ULong numberOfBytes);

MemSet will set a certain number of bytes at a particular memory location to a
specific value:

MemSet(void *changeThis, ULong numberOfBytes, Byte value);

Finally, MemCmp can be used to compare the values of two different memory
locations:

Int difference;
difference = MemCmp(void *a, void *b, ULong numberOfBytes);
if (difference > 0) {

// a is greater than b
} else if (difference < 0) {

// b is greater than a
} else {

// The two blocks are the same
}

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 87

88 Part II ✦ Creating Palm OS Applications

Moving Applications to Palm OS 3.5

With the release of Palm OS version 3.5, Palm Computing made significant changes to the
header files in the Palm OS SDK. For starters, prior to the 3.5 headers, the basic file to
include in a Palm OS application was Pilot.h; in 3.5, this file is called PalmOS.h.

Within the header files themselves, there are different type definitions, intended by Palm
Computing to improve clarity and consistency. For example, the 3.5 headers use UInt32
instead of DWord and Int16 instead of Int to better indicate the size of particular data
types, and whether or not those types are signed. Also, early versions of the headers made
typedef declarations of the form FooPtr, where FooPtr is simply a pointer to a FooType
structure. Palm Computing has retired this convention in favor of using the standard C con-
vention of FooType * to refer to a pointer to a FooType structure.

If you are working with code originally written using headers earlier than those included
with Palm OS SDK 3.5, you will need to search for the older-style data types and replace
them with their new equivalents. There is also a file called PalmCompatibility.h in the
3.5 SDK, which maps the older-style data types to their new names. You can include
PalmCompatibility.h in an older project to help it deal with compilation under the 3.5
headers, but you are probably better off in the long run to bite the bullet and search and
replace the data types yourself. Your code will be easier to read and less likely to break in
the future if you fix it properly instead of patching it with PalmCompatibility.h.

The PalmCompatibility.h file does make a good reference for what needs to be
changed in your source files, though. The following section of PalmCompatibility.h
points out the key differences in data types between the Palm OS 3.5 headers and earlier
versions of the SDK:

typedef Int8 SByte;
typedef UInt8 Byte;

typedef Int16 SWord;
typedef UInt16 Word;

typedef Int32 SDWord;
typedef UInt32 DWord;

// Logical data types
typedef Int8 SChar;
typedef UInt8 UChar;

typedef Int16 Short;
typedef UInt16 UShort;

typedef Int16 Int;
typedef UInt16 UInt;

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 88

89Chapter 4 ✦ Writing Your First Palm OS Application

typedef Int32 Long;
typedef UInt32 ULong;

// Pointer Types
typedef MemPtr VoidPtr;
typedef MemHandle VoidHand;

typedef MemPtr Ptr;
typedef MemHandle Handle;

// Because “const BytePtr” means “const pointer to Byte” rather
// than “pointer to const Byte”, all these XXXXPtr types are
// deprecated: you’re better off just using “Byte *” and so on.
// (Even better, use “UInt8 *”!)

typedef SByte* SBytePtr;
typedef Byte* BytePtr;

typedef SWord* SWordPtr;
typedef Word* WordPtr;
typedef UInt16* UInt16Ptr;

typedef SDWord* SDWordPtr;
typedef DWord* DWordPtr;

// Logical data types
typedef Boolean* BooleanPtr;

typedef Char* CharPtr;
typedef SChar* SCharPtr;
typedef UChar* UCharPtr;

typedef WChar* WCharPtr;

typedef Short* ShortPtr;
typedef UShort* UShortPtr;

typedef Int* IntPtr;
typedef UInt* UIntPtr;

typedef Long* LongPtr;
typedef ULong* ULongPtr;

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 89

90 Part II ✦ Creating Palm OS Applications

Putting It All Together
The complete code listing for Hello World’s hello.c file follows in Listing 4-3.

Listing 4-3: The hello.c file from Hello World

#include <PalmOS.h>

#ifdef __GNUC__
#include “callback.h”
#endif

#include “helloRsc.h”

static Err StartApplication (void)
{

FrmGotoForm(MainForm);
return 0;

}

static void StopApplication (void)
{
}

static void SaySomething (UInt16 alertID)
{

FormType *form = FrmGetActiveForm();
FieldType *field;
MemHandle h;

field = FrmGetObjectPtr(form, FrmGetObjectIndex(form,
MainNameField));

if (FldGetTextLength(field) > 0) {
FldCompactText(field);
h = FldGetTextHandle(field);
if (h) {

Char *s;

s = MemHandleLock((void *)h);
FrmCustomAlert(alertID, s, NULL, NULL);
MemHandleUnlock((void *)h);

}
} else {

// No text in field, so display a “whoever you are”

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 90

91Chapter 4 ✦ Writing Your First Palm OS Application

// dialog.
FrmCustomAlert(alertID, “whoever you are”, NULL, NULL);

}
}

static Boolean MainMenuHandleEvent (UInt16 menuID)
{

Boolean handled = false;
FormType *form;
FieldType *field;

form = FrmGetActiveForm();
field = FrmGetObjectPtr(form,

FrmGetObjectIndex(form, MainNameField));

switch (menuID) {
case MainEditUndo:

FldUndo(field);
handled = true;
break;

case MainEditCut:
FldCut(field);
handled = true;
break;

case MainEditCopy:
FldCopy(field);
handled = true;
break;

case MainEditPaste:
FldPaste(field);
handled = true;
break;

case MainEditSelectAll:
FldSetSelection(field, 0,

FldGetTextLength(field));
handled = true;
break;

case MainEditKeyboard:
SysKeyboardDialog(kbdDefault);
handled = true;
break;

case MainEditGraffitiHelp:
SysGraffitiReferenceDialog(referenceDefault);
handled = true;
break;

Continued

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 91

92 Part II ✦ Creating Palm OS Applications

Listing 4-3 (continued)

case MainOptionsAboutHelloWorld:
FrmAlert(AboutAlert);
handled = true;
break;

default:
break;

}

return handled;
}

static Boolean MainFormHandleEvent (EventPtr event)
{

Boolean handled = false;

#ifdef __GNUC__
CALLBACK_PROLOGUE;

#endif

switch (event->eType) {
case frmOpenEvent:
{

FormType *form = FrmGetActiveForm();

FrmDrawForm(form);
FrmSetFocus(form, FrmGetObjectIndex(form,

MainNameField));
handled = true;

}
break;

case ctlSelectEvent:
switch (event->data.ctlSelect.controlID) {

case MainHelloButton:
SaySomething(HelloAlert);
handled = true;
break;

case MainGoodbyeButton:
SaySomething(GoodbyeAlert);
handled = true;
break;

default:
break;

}
break;

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 92

93Chapter 4 ✦ Writing Your First Palm OS Application

case menuEvent:
handled =

MainMenuHandleEvent(event->data.menu.itemID);
break;

default:
break;

}

#ifdef __GNUC__
CALLBACK_EPILOGUE;

#endif

return handled;
}

static Boolean ApplicationHandleEvent (EventPtr event)
{

FormType *form;
UInt16 formID;
Boolean handled = false;

if (event->eType == frmLoadEvent) {
formID = event->data.frmLoad.formID;
form = FrmInitForm(formID);
FrmSetActiveForm(form);

switch (formID) {
case MainForm:

FrmSetEventHandler(form, MainFormHandleEvent);
break;

default:
break;

}
handled = true;

}

return handled;
}

static void EventLoop (void)
{

EventType event;
UInt16 error;

Continued

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 93

94 Part II ✦ Creating Palm OS Applications

Listing 4-3 (continued)

do {
EvtGetEvent(&event, evtWaitForever);
if (! SysHandleEvent(&event))

if (! MenuHandleEvent(0, &event, &error))
if (! ApplicationHandleEvent(&event))

FrmDispatchEvent(&event);
} while (event.eType != appStopEvent);

}

UInt32 PilotMain (UInt16 launchCode, MemPtr cmdPBP,
UInt16 launchFlags)

{
Err err;

switch (launchCode) {
case sysAppLaunchCmdNormalLaunch:

if ((err = StartApplication()) == 0) {
EventLoop();
StopApplication();

}
break;

default:
break;

}

return err;
}

Summary
In this chapter, you were introduced to the inner workings of a simple Palm OS
application. After reading this chapter, you should understand the following:

✦ All Palm OS applications begin execution in the function PilotMain, which
handles launch codes and starts the application’s event loop.

✦ The event loop of a Palm OS application is responsible for dispatching events
from the event queue to the appropriate event handlers.

✦ Most events can be handled by the system, using the functions SysHandle
Event, MenuHandleEvent, and FrmHandleEvent.

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 94

95Chapter 4 ✦ Writing Your First Palm OS Application

✦ The ApplicationHandleEvent function, which is not provided by the OS, ini-
tializes forms and sets event handlers for them. These event handlers are call-
back functions that you write.

✦ You manage memory in the Palm OS by calling the operating system’s mem-
ory API functions. Much of memory management involves locking a handle to
a chunk of memory, using that memory, and then unlocking the handle so the
OS is able to move that memory as it sees fit.

✦ ✦ ✦

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 95

4676-7 ch04.f.qc 9/29/00 12:48 PM Page 96

Debugging Your
Program

Between contributions from Palm Computing and
the Palm OS development community, there is a

rich set of tools available for debugging Palm OS applications.
Emulators, source-level debuggers, an assembly-level debug-
ger, and some developers’ aids built into the Palm OS itself all
help to make the Palm OS a programmer-friendly environment
for writing bug-free applications. This chapter takes a look at
tools and Palm OS features designed to make your life easier
when it comes time to hunt down and squash bugs in your
applications.

Using the Palm OS Emulator
Debugging your Palm OS applications would be a frustrating
and laborious process if you were forced to install the applica-
tions to an actual handheld for testing. The debugging process
usually involves a repeated cycle of compilation, testing, and
fixing code before all the bugs have been worked out of a pro-
gram. Installing an application on an actual Palm OS device
is rather slow, which bogs down the testing portion of the
debugging cycle.

Fortunately, the Palm OS Emulator (POSE) provides a much
faster alternative. Based on Copilot, an emulator written by
Greg Hewgill, POSE emulates a Palm OS handheld at the
hardware level, right down to the Motorola DragonBall or
DragonBall EZ processor. POSE can do almost anything
that an actual handheld is capable of doing, with only a few
omissions because of differences in hardware between a
desktop system and a handheld device. Because POSE runs
on the same system you use to do your development work,
installing and testing applications is fast and simple. POSE
even looks just like a Palm OS handheld; Figure 5-1 shows
POSE as it appears on the desktop.

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using POSE

Debugging at the
source level

Resetting a Palm
OS handheld

Using developer
Graffiti shortcuts

Using the Palm OS
error manager

✦ ✦ ✦ ✦

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 97

98 Part II ✦ Creating Palm OS Applications

Figure 5-1: The Palm OS Emulator

In addition to simple emulation, POSE also provides a wealth of useful debugging
features:

✦ The ability to enter text using the desktop computer’s keyboard instead of
having to use Graffiti or the on-screen keyboard

✦ Support for source-level debugging in external debuggers, such as
CodeWarrior and GDB, both of which are described later in this chapter

✦ Configurable memory size, up to 8MB

✦ Automated random testing facility (Gremlins)

✦ Profiling code to determine what routines it spends the most time in, which
is very useful for optimization

✦ Extensive monitoring of memory actions, to ensure that your application does
not try to access memory that it should leave alone, such as low memory or
hardware registers

✦ Complete logging of all application activity, including handled events, called
functions, and executed CPU operation codes

✦ Easy screen shot facility, great for showing off an application on Web sites
(or in programming books)

✦ Redirection of network library calls to the host system’s TCP/IP stack

✦ Redirection of serial I/O to the host system’s own serial ports

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 98

99Chapter 5 ✦ Debugging Your Program

If you have read any of Palm Computing’s documentation, there is a good chance
you have seen mention of the Palm OS Simulator. Do not confuse the Simulator
with the Palm OS Emulator; they are not the same tool. The Simulator is available
as part of the Mac OS version of CodeWarrior only. Simulator allows you to build a
standalone Macintosh application that simulates your application. If you have
POSE for Mac OS, you can probably ignore Simulator entirely; POSE is a newer and
much more versatile debugging tool.

Palm Computing supports versions of POSE for both Windows and Mac OS; both
versions, as well as their source code, are available as free downloads. There is
also a Unix source code distribution, which still enjoys excellent response time
from developers at Palm Computing and in the Palm OS development community,
despite the Unix version’s official status as unsupported software. With the source
code at your disposal, you can also alter the Emulator to your own tastes. If you
come up with a modification (or a bug fix) that might be useful to other developers,
be sure to send the changes back to Palm Computing so they can roll them into the
main POSE code base. Much of POSE has actually been developed in this way, from
contributions by programmers outside of Palm Computing; this spirit of coopera-
tion, combined with outstanding efforts on the part of Palm Computing, has made
POSE an indispensable tool for Palm OS development.

In addition to the wonderful features mentioned previously, POSE is an economical
way for you to test software on a variety of different Palm OS systems without hav-
ing to drop a large amount of cash on several pieces of hardware. POSE can emulate
the hardware side of most Palm OS devices on the market (including limited support
for third-party hardware, such as the Visor, the TRGPro, and Symbol’s SPT series),
and Palm Computing provides ROM images for every release of the Palm OS since
version 1.0.

Even though POSE is able to perform most of the testing required to make a reason-
ably bug-free Palm OS application, there are subtle differences between POSE and an
actual hardware Palm OS device. As a final step in testing an application, you should
install it on an actual Palm OS handheld to make sure it works in a real environment,
rather than just the virtual environment provided by POSE. In particular, POSE does
have the following limitations:

✦ Graffiti input is difficult using a mouse, trackball, or touch pad. Though
POSE allows easy text input using the desktop computer’s keyboard, if your
application needs to deal with Graffiti input at a lower level, such as process-
ing individual stylus strokes, it can be difficult to test such input using POSE.

✦ POSE has no way to simulate an infrared port. You can perform some infrared
testing by setting POSE in infrared loopback mode using the “t” shortcut, or
by switching the Emulator into serial IR mode with the “s” shortcut (see the
“Using Developer Graffiti Shortcuts” section later in this chapter for details).
However, in the final equation, the only real way to fully test IR beaming is
with a pair of suitably equipped Palm OS handhelds.

Note

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 99

100 Part II ✦ Creating Palm OS Applications

✦ Execution speed in POSE is directly affected by the speed of the desktop
system, and by whatever other processes you might be running on that
system. This means that POSE may run slower or faster than an actual
handheld, which makes code optimization very tricky.

POSE is under constant development, and the folks at Palm Computing release
new versions very rapidly. Keep an eye on the Palm Computing Platform
Development Zone Web site for information on the latest release of POSE, or
better yet, subscribe to the Emulator Forum mailing list for an up-to-the-minute
view of POSE development. See Appendix B, “ Finding Resources for Palm OS
Development,” for more information about the Development Zone Web site and
the Emulator Forum mailing list.

Controlling POSE
Interacting with applications running in POSE is very simple. Just use the mouse
as if it were a stylus, and POSE will respond the same way a real Palm OS handheld
would. POSE also recognizes Graffiti characters drawn in its silk-screened Graffiti area.
Because it is rather difficult (and time-consuming) to use a mouse for Graffiti input,
you may also type on the desktop computer’s keyboard to enter text into POSE.

Clicking the hardware buttons on the POSE display is also identical to pressing
hardware buttons on a real device. You can even press and hold the buttons to
perform actions such as continuous scrolling. As an example, try clicking and
holding down the power button for a few seconds to activate POSE’s “backlight.”
In addition to using the mouse with the on-screen buttons, you can use keyboard
shortcuts for these buttons, as outlined in Table 5-1. These keyboard shortcuts
are identical to clicking the on-screen buttons in the Emulator display.

Table 5-1
POSE Hardware Button Keyboard Shortcuts

Button Keyboard Shortcut

Power Esc

Date Book F1

Address Book F2

To Do List F3

Memo Pad F4

Scroll Up Page Up

Scroll Down Page Down

Tip

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 100

101Chapter 5 ✦ Debugging Your Program

In addition to these shortcuts, POSE also understands a number of Control key
combinations that send special virtual character codes, which the Palm OS
interprets to perform special actions, such as displaying a menu bar. Table 5-2
describes some of these shortcuts.

Table 5-2
POSE Control Key Shortcuts

Shortcut Description

Ctrl+A Sends a menuChr character, opening the menu bar on the current form

Ctrl+B Sends a lowBatterChr character, which the system normally sends
when battery power is low as a notification to the current application
that it should respond accordingly to the low power condition

Ctrl+C Sends a commandChr character, which is the special Graffiti command
stroke that allows for rapid activation of menu commands

Ctrl+D Sends a confirmChr character

Ctrl+E Sends a launchChr character, which starts the system application
launcher program

Ctrl+F Sends a keyboardChr character, which displays the on-screen
keyboard dialog

Ctrl+M Sends a linefeedChr character (a simple linefeed)

Ctrl+N Sends a nextFieldChr character, which moves entry to the next
text field in applications that handle nextFieldChr

Ctrl+S Sends an autoOffChr character, which the system sends when the
auto-off timeout has been reached

Ctrl+T Sends a hardContrastChr character, which launches the contrast
adjustment screen on the Palm V and other devices that support
software contrast adjustment

Ctrl+U Sends a backlightChr character, which toggles the backlight on
and off on devices that have a backlight

To control POSE-specific functions, the Palm OS Emulator has a menu. On Windows
and Unix, the menu is a pop-up, which you can open by right-clicking anywhere in
the POSE display, or by pressing the F10 key. On the Mac OS, the menu is presented
as a menu bar that floats just above the main POSE display. Menu commands on the
Mac OS menu bar are separated into four menus: File, Edit, Gremlins, and Profile.
Figure 5-2 shows the pop-up menu in the Windows version of POSE.

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 101

102 Part II ✦ Creating Palm OS Applications

Figure 5-2: The POSE pop-up menu in Windows

Running POSE for the First Time
When you start POSE for the first time, or if the Caps Lock key is active, the Emulator
presents you with the dialog shown in Figure 5-3, but only if you are running POSE on
a Windows system. A Mac OS system displays the New Configuration dialog, instead;
see Figure 5-4 for the Windows version of the New Configuration dialog, which is
very similar to the Mac OS version. Unix POSE does not have an automatic startup
sequence.

Figure 5-3: The POSE startup dialog

The New button fires up the New Configuration dialog, shown in Figure 5-4, which
prompts you for all the parameters required to start a brand new Emulator session;
the “Installing a ROM Image” section later in this chapter has more information
about the New Configuration dialog. The Open button opens a file dialog, prompting
you to select a saved emulator session to load; see the “Saving and Restoring
Configurations” section of this chapter for more details. Clicking the Download

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 102

103Chapter 5 ✦ Debugging Your Program

button begins the process of downloading a ROM image from a handheld connected
to the desktop machine by cradle; see the “Downloading an Image from an Actual
Handheld” section for more details. If you click Exit, POSE quits.

Figure 5-4: The New Configuration dialog in POSE

Installing a ROM Image
POSE emulates only the hardware of a Palm OS handheld. In order for the emulator
to be truly useful, it needs a ROM image containing the Palm OS system software.
Palm Computing has ROM images for all major releases of the Palm OS available
for download from its Web site. ROM image files have a .rom extension.

You must be a member of the free Palm Solution Provider Program to be able
to download ROM images. See Appendix B, “Finding Resources for Palm OS
Development,” for more details about joining the Palm Solution Provider Program.

For most versions of the Palm OS, Palm Computing provides both release and
debug versions of each ROM image. Release ROM images are identical to the
ROM contents of an actual Palm OS handheld. Debug ROM images contain extra
debugging code to help you track down hard-to-find errors in your code, such
as illegal attempts to access protected memory areas.

Be sure to test your application on debug ROM images if they are available for
the platforms you intend to support. The release images run a bit faster on
the Emulator (particularly for Palm OS 3.5), but release code is designed to fail
gracefully and quietly if anything goes wrong, which will prevent you from seeing
some kinds of errors, particularly memory leaks. It is well worth the effort to test
an application on the debug ROM images, because they produce very useful
debugging information.

If you click the New button in the POSE startup dialog, or if you choose the New
item from the POSE menu, the New Configuration dialog appears, as shown in
Figure 5-4.

From this dialog, you can choose the hardware and amount of memory you want to
emulate, the appearance of POSE on the desktop, and a ROM image file. Clicking the
Device button presents a drop-down menu, from which you should select the hard-
ware device that you want to emulate.

Tip

Cross-
Reference

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 103

104 Part II ✦ Creating Palm OS Applications

The Skin button allows you to customize the appearance of POSE by applying a
skin, or bitmap image, to the Emulator. Depending on what hardware you have
selected, different skins are available. The “Default” skin is always an option and
results in a generic PalmPilot-shaped case graphic with “Palm OS Emulator” written
across it, as pictured in Figure 5-1. The “Standard - English” skin gives you a graphic
that looks exactly like the type of hardware you have selected, and the “Standard -
Japanese” draws the emulator as an equivalent IBM Workpad with the Japanese
language silkscreen area. In POSE version 3.0a5 and later, you can even skin the
emulator as a Symbol SPT 1700 or a Handspring Visor (in different colors!).
Figure 5-5 shows off POSE as a Japanese IBM Workpad c3; the settings required
to make POSE look like this are the Device selection of “Palm IIIx” and the
“Standard - Japanese” skin.

Figure 5-5: By wearing different skins, POSE
can look like almost any Palm OS handheld.

Set the size of the memory available to the Emulator with the RAM Size button’s
drop-down menu. You can set the size at various values between 128KB and 8MB.
By setting the memory size, you can duplicate the memory available on actual
Palm OS handhelds or see what happens when your application is running on
a device with very little memory to spare.

Finally, click the Browse button next to ROM File to open a file dialog and browse
for an appropriate .rom file to install. Make sure the ROM image you choose will
run on the hardware you have selected. Otherwise, POSE will display an error
dialog if you choose a ROM file that is incompatible with the hardware you have
selected, such as trying to load a Palm IIIx ROM onto an emulated Palm VII device.

You can also install a ROM image by dragging the .rom file onto POSE with the
mouse. Doing so opens the New Configuration dialog (as shown in Figure 5-4)
with the appropriate ROM file preselected.

Tip

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 104

105Chapter 5 ✦ Debugging Your Program

Instead of using a ROM image from Palm Computing, you can download the ROM
from an actual Palm OS handheld. As of this writing, this is the only way to get
ROM images for some third-party handhelds, such as the Handspring Visor.

To perform a ROM transfer from a handheld to the desktop, you must first inst
all the ROM Transfer.prc file to the handheld as you would any other Palm OS
application. This .prc file contains ROM Transfer, a utility program that handles
the handheld side of the ROM transfer.

Once you have ROM Transfer installed, leave the handheld in its cradle. Make sure
the HotSync Manager is not running, because the ROM image transfer cannot take
place if the serial connection is busy. Then, follow these steps to transfer the ROM
to the desktop computer:

1. On the handheld, start the ROM Transfer application.

2. If you are running the Windows version of POSE for the first time, click the
Download button in the POSE startup dialog (as shown in Figure 5-3). On
Windows, as well as on Unix, you can also select the Transfer ROM option
from the pop-up menu. If you are running POSE on the Mac OS, select File ➪
Transfer ROM from the POSE menu bar. POSE displays the Transfer ROM
dialog, shown in Figure 5-6.

Figure 5-6: The Transfer ROM dialog in POSE

3. Select an appropriate serial port and connection speed in the Transfer
ROM dialog.

4. On the handheld, select the same connection speed from the Transfer Speed
pop-up list that you set on the desktop.

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 105

106 Part II ✦ Creating Palm OS Applications

5. Click the Begin button in the Transfer ROM dialog on the desktop.

6. Tap the Begin Transfer button on the handheld.

7. Wait a few minutes while the transfer takes place.

8. Once the transfer is complete, POSE will present you with a file dialog,
prompting you for a file name and location to save the transferred
ROM image.

After following these steps, you should have a .rom file containing an image of
your handheld’s ROM. Install this ROM image the same way you would install a
debug ROM downloaded from Palm Computing, as described earlier in this section.

Installing Applications
Because performing an actual HotSync operation to install files to the Emulator
would be a waste of time, POSE allows you to install Palm OS applications and
databases in a much more direct fashion. On Windows and Unix, select the Install
Application/Database menu item; on the Mac OS, select File ➪ Install Application/
Database. POSE presents you with a standard file dialog, from which you may
select any .prc, .pdb, or .pqa files that you want to install.

POSE cannot install a new copy of a database that already exists in POSE if the
old database is in use. If you are running an application in POSE and you want to
overwrite it (or its database) with a new version, switch to another application in
POSE before installing. The Calculator or the other four built-in applications are
good choices, because you need to click only once to launch them.

Once you have installed the applications you want to test, you can open them just
as you would on a real handheld by clicking on the application launcher button,
and then selecting the appropriate icon.

The system application launcher does not update its icons in response to the
installation of a new application in POSE, so a new application’s icon will not
immediately appear if the launcher is open when you install the new application.
Switch to another application, and then re-open the launcher, and the new icon
will appear.

You can also install applications and databases by dragging-and-dropping them
onto POSE. To save even more time, you can select as many .prc, .pdb, and
.pqa files as you want, and drag all of them at once for a single mass installation.

Saving and Restoring Configurations
If you have POSE set up just the way you want it, you can take a snapshot of POSE’s
current state and save it for later retrieval. Saving a POSE session keeps track of
all aspects of the Emulator, including the selected hardware type and skin, all the
currently installed applications and databases, and even the exact state of the
emulated RAM.

Tip

Note

Note

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 106

107Chapter 5 ✦ Debugging Your Program

To save a session in Windows or Unix POSE, select the Save or Save As menu
options from the pop-up menu. In Mac OS POSE, select the File ➪ Save or File ➪
Save As menu commands. If the current session is loaded from a saved position,
the Save command overwrites the currently open session file. Otherwise, Save
does the same thing as Save As, which is to present you with a standard file dialog
to prompt you for a file name and location to use for saving the current session.
POSE saves Emulator session files with an extension of .psf.

To open a saved session in Windows or Unix, select Open from the pop-up menu;
on the Mac OS, select File ➪ Open. POSE presents you with a file dialog, from which
you can select the .psf file that contains the desired emulator session.

To save time when testing an application on multiple platforms, create a “clean”
session for each ROM image you want to test. Right after creating a new configu-
ration in the New Configuration dialog (as shown in Figure 5-4), and before
installing any applications or data, save the session with a descriptive name, such
as Palm IIIx 3.5 debug.psf. Then you can quickly retrieve saved sessions by
using the Open menu command. You can also drag a .psf file onto POSE to open
a particular saved session.

Adjusting POSE Settings
The Palm OS Emulator is incredibly configurable. Most of the configuration options
for POSE are located under the Settings option in the pop-up menu on Windows or
Unix, or under the Edit menu in the Mac OS version of POSE. Among other options,
you can change the way POSE looks, how POSE communicates with the desktop,
when POSE should break execution, and how strictly POSE should monitor dif-
ferent kinds of memory access.

Setting properties
The Settings ➪ Properties menu command on Windows and Unix (Edit ➪ Preferences
on Mac OS) opens the Properties dialog, shown in Figure 5-7.

From the Properties dialog, you can control several different kinds of POSE behav-
ior. The different parts of the dialog are described as follows:

✦ Serial Port: Use this drop-down list to select a serial port on the desktop
computer. POSE redirects serial port calls from applications on the Emulator
through the selected serial port on the desktop machine, which allows you
to test serial communications by connecting a serial cable between the appro-
priate port and whatever device POSE should talk to. You can even connect a
pair of serial ports on the desktop machine with a null modem cable to allow
POSE to communicate with a terminal program on the same computer.

Tip

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 107

108 Part II ✦ Creating Palm OS Applications

Figure 5-7: The Properties dialog in POSE

✦ Redirect NetLib calls to host TCP/IP: When checked, this option redirects
network library calls in POSE to the TCP/IP stack on the host computer. This
option is a fantastic way to test Internet-enabled Palm OS applications without
having to wait for a connection through a handheld modem.

✦ Enable sounds: If this is checked, POSE attempts to provide audio feedback
from the Palm OS through the desktop computer. This sound reproduction is
not faithful to what you would hear on an actual Palm OS handheld; in fact,
depending on your desktop system, POSE might be capable of only primitive
beeps and clicks through the system’s speaker. For applications where sound
is an important part of the program, such as music or game programs, test
the sound on a real handheld.

✦ Closing/Quitting: The radio buttons in this section of the dialog control
how POSE saves the current session when it closes. If Always save session
is selected, POSE automatically overwrites the current session file with the
emulator’s current state when the emulator exits. If Ask to save session is
selected, POSE prompts you to save the session, and if Never save session
is selected, POSE simply exits without saving.

✦ HotSync User Name: This text box gives you a place to specify the HotSync
name to use when emulating a HotSync operation in POSE. Normally, every
Palm OS handheld has a name saved in it to identify its user, which comes
in handy when multiple organizers are synchronized with the same desktop
machine. See the “Emulating a HotSync Operation” section later in this
chapter for more details.

Setting debug options
Selecting Settings ➪ Debug Options on Windows or Unix, or Edit ➪ Debug Options
on the Mac OS, presents you with the Debug Options dialog, shown in Figure 5-8.

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 108

109Chapter 5 ✦ Debugging Your Program

Figure 5-8: The Debug Options dialog in POSE

In this dialog, you can set how sensitive POSE is to certain actions a program might
perform that are either illegal or counter to recommended Palm OS programming
practice. By default, POSE leaves all these options enabled, and so should you for
most applications. If you happen to be writing an application that cannot strictly
conform to Palm Computing’s programming guidelines, such as low-level system
hacks that are intended to run only on a single, very specific hardware model,
you can disable warnings that you do not want to see.

POSE is most useful with all of the debug options enabled. If you leave the Debug
Options dialog alone, POSE can help you make sure your application not only runs
properly on current Palm OS handhelds but also on future devices by following
Palm Computing’s recommendations.

Changing POSE’s appearance
On Windows or Unix, the Settings ➪ Skins menu command opens the Skins dialog,
shown in Figure 5-9. You can open this dialog in the Mac OS version of POSE from
the Edit ➪ Skins menu option.

Figure 5-9: The Skins dialog in POSE

Tip

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 109

110 Part II ✦ Creating Palm OS Applications

From the Skins dialog, you can set the skin that POSE uses to display the emulated
handheld. There are also other appearance-related options at the bottom of the dialog:

✦ Double scale: When checked, this option doubles the size of POSE on the
screen. The double scale mode is particularly useful for making fine adjust-
ments to screen layout during the design stages of an application, because
you can count individual pixels without having to squint at an Emulator the
size of a real handheld. If you run your desktop machine at 1600 × 1200 or
greater resolution, double scale might simply be a necessity if you want
the POSE display to be legible at all.

✦ White Background: When checked, this option replaces the usual LCD green
display background with basic white. This option makes for much cleaner
screen shots, and you might simply prefer it over the green background,
because it improves contrast significantly.

Setting breakpoints
In the Windows version of POSE, you can set breakpoints in your code, places
where a program will suspend execution and pass control to a debugger. You
can set breakpoints in the Breakpoints dialog (as shown in Figure 5-10), which
is available from the Settings ➪ Breakpoints menu command. Breakpoints are not
available in the Mac OS or Unix versions of POSE. When POSE breaks execution
while connected to an external debugger, such as CodeWarrior or GDB, POSE
sends notification to the debugger that a breakpoint has been hit, and the
debugger handles the break. If POSE is not connected to a debugger, it displays
an error message when it hits a breakpoint, which typically displays something
like “TRAP $0 encountered.”

Using POSE to set breakpoints requires working knowledge of assembly code
and the Motorola 68k processor family architecture. POSE breakpoints are not for
inexperienced developers or the faint of heart. For most debugging purposes, it is
much easier to set breakpoints in CodeWarrior or GDB, which are described later
in this chapter.

From the Breakpoints dialog, you can set up to six conditional code breakpoints
and a single data breakpoint. To set a code breakpoint, select a breakpoint from the
list and click Edit, or just double-click the desired breakpoint in the list. The Code
Breakpoint dialog, shown in Figure 5-11, appears.

Specify the address of the code breakpoint, in either decimal or hexadecimal (0x)
format, in the Address text box. Set the condition that must be true to generate a
break by entering the condition in the Condition text box. If the program counter
reaches the specified address, and the condition specified is true, POSE generates
a break. Conditions must have the following format:

<register> <condition> <constant>

Note

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 110

111Chapter 5 ✦ Debugging Your Program

Figure 5-10: The Breakpoints dialog in POSE

Figure 5-11: The Code Breakpoint dialog in POSE

For register, you must specify one of the following registers: A0, A1, A2, A3, A4, A5,
A6, A7, D0, D1, D2, D3, D4, D5, D6, or D7. The condition value may be one of the fol-
lowing operators: ==, !=, <, >, <=, or >=. The constant value may be any decimal
or hexadecimal constant value.

To set a data breakpoint, check the Enabled check box in the Breakpoints dialog.
The data breakpoint causes a break if the contents of a specific range of memory
change while POSE is running. Set the beginning address of the range in either
decimal or hexadecimal format in the Start address text box, and define the size
of the range by entering the number of bytes in the Number of bytes text box.

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 111

112 Part II ✦ Creating Palm OS Applications

Handling Gremlins
Structured functional testing is a good way to make sure that all the parts of
an application are working the way they are supposed to be working. However,
sometimes the best way to find obscure bugs in an application is by randomly
banging on it until something breaks. Gremlins are a testing feature built into
POSE that allow you to perform random tests on your application to shake out
those bugs that functional testing might not find. More importantly, each Gremlin
test is completely reproducible, so you can run the same Gremlin again and get
the same error, making it much easier to see what went wrong.

Gremlins use several techniques to torture test an application. While they are
running, Gremlins simulate taps on random areas of the screen, but areas that
contain actual user interface elements, such as buttons and pop-up triggers,
particularly attract them. Gremlins also enter Graffiti text into the application,
both random strings of garbage and occasional quotes from Shakespeare.

An individual Gremlin has a seed value from 0 to 999, and each produces its own
unique series of random stylus and key input events. You can restrict a Gremlin to
stay within a particular application or group of applications; this is particularly
useful when you want to concentrate on hammering your own code without
wasting time in other programs.

Gremlins may also be run in Gremlin hordes. A Gremlin horde will run multiple
Gremlins, giving your application a real workout. Setting up a Gremlin horde to
run overnight is a good way to ensure that a program has been thoroughly tested.

To set up Gremlins select the Gremlins ➪ New menu command. POSE displays the
New Gremlin Horde dialog, shown in Figure 5-12.

Figure 5-12: The New Gremlin Horde dialog in POSE

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 112

113Chapter 5 ✦ Debugging Your Program

The parts of the New Gremlin Horde dialog are described as follows:

✦ Gremlin Range: Set the Gremlins that make up the beginning and end of a
Gremlin horde in the From and To text boxes. Enter a number from 0 to 999
into each box, and POSE will run each Gremlin in this range. To run just a
single Gremlin, enter the same value into both boxes.

✦ Switch after: If this is checked, POSE will switch to a new Gremlin in the horde
when the currently running Gremlin generates the specified number of events;
this number of events is called the switching depth. If this box is not checked,
POSE will not switch to a new Gremlin in the horde until each Gremlin hits the
number of events specified in the Stop after text box. Because a particular
Gremlin always repeats the same series of events each time it runs, making
Gremlins take turns at attacking your application can add more of a random
element to your testing.

✦ Save after: If this is checked, POSE saves a snapshot of the Emulator as a
.psf file after the specified number of events. You can open the .psf file in
POSE later to examine the state of POSE at that particular moment in time, or
to begin debugging again from a specific point. Make sure you have sufficient
disk space if you set Save after to a low value, because this option can fill your
hard drive very quickly with .psf files.

✦ Stop after: If this is checked, POSE stops each Gremlin when it generates
the specified number of events. Without this box checked, a Gremlin will
run indefinitely, or until it encounters an error.

✦ Choose applications to launch: Select an application or group of applications
to restrict the Gremlin horde to while it is running. You can select multiple
applications by holding down the Ctrl key (Control on a Macintosh) while
clicking items in the list.

✦ Logging Options: Click this button to change exactly what events, actions,
and errors Gremlins will write to a log file. The default options are sufficient
for most debugging purposes, but you may also wish to check other options
if your application performs special actions. For example, enabling the Serial
Activity and Serial Data options may help you discover the cause of bugs in
an application that uses the serial port.

✦ OK: Click this button to launch the Gremlin horde.

✦ Cancel: Click this button to exit the dialog without starting a new Gremlin
horde.

When running a Gremlin horde, POSE steps through the following sequence of events:

1. POSE saves the current state of the Emulator to a .psf file.

2. POSE starts the first Gremlin, indicated by the value of the From text box.

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 113

114 Part II ✦ Creating Palm OS Applications

3. The first Gremlin runs until it posts a number of events equal to the Switch
after value, at which point POSE saves the Emulator’s state and suspends that
Gremlin. If the Gremlin encounters an error before it hits the switching depth
value, POSE terminates the current Gremlin instead of suspending it.

4. POSE loads the original saved state of the Emulator.

5. The second Gremlin begins execution and runs until it hits the switching
depth or encounters an error.

6. POSE runs each Gremlin in the horde until each one has been suspended
or terminated.

7. Now POSE returns to the first suspended Gremlin in the horde and reloads
its saved Emulator state. The Gremlin then runs from where it left off the last
time. POSE skips over Gremlins that have been terminated because of errors,
restarting only those that were suspended after reaching the switching depth.

8. The entire process repeats itself, with POSE suspending Gremlins as they
reach the switching depth again, or terminating those that produce errors.
Each Gremlin runs until it has finished. A Gremlin is finished when POSE has
terminated it because of an error, or when the Gremlin reaches a total number
of events equal to the Stop after value specified in the New Gremlin Horde
dialog.

While POSE is running Gremlins, the Gremlin Control dialog, shown in Figure 5-13,
appears. The Gremlin Control dialog allows you to control the execution of Gremlins
more directly, and it displays the current event that is executing, the number of the
current Gremlin, and the total elapsed time that the Gremlin horde has been run-
ning. Clicking the Stop button pauses execution of the Gremlin horde, and clicking
Resume continues the horde where it left off. When a horde is stopped, you can
also click the Step button to step through a few Gremlins at a time.

Figure 5-13: The Gremlin Control dialog
in POSE

Try running Gremlins when you have a source-level debugger hooked up to POSE,
such as CodeWarrior or GDB. If your application generates an error while a
Gremlin is playing with it, the debugger will drop straight to the line of code
responsible for the error.

Tip

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 114

115Chapter 5 ✦ Debugging Your Program

Emulating a HotSync Operation
Any application that has a close relation with desktop data eventually needs to be
tested to see how it behaves during a HotSync operation. Setting up POSE to prop-
erly communicate with the desktop during a HotSync operation is somewhat tricky,
but it can be done. There are two ways to set up POSE for a HotSync operation:

✦ Set POSE to use one of the desktop system’s serial ports and the HotSync
Manager to use a different serial port, and then connect the two ports with
a null modem cable. This setup is cumbersome and requires a machine with
two free serial ports, which can be a problem if, as is common on many PCs,
one of the serial ports is in use by a mouse or other peripheral. However, this
setup is the only way to test HotSync operations in POSE with a ROM image
containing Palm OS 3.0 or earlier.

✦ Set up POSE and the HotSync Manager for a Network HotSync operation.
This is a much simpler way to test HotSync connections, because it does
not require an extra cable connection at the back of the computer. However,
it works only with the Windows version of the HotSync Manager. Also, you may
only perform a Network HotSync operation with a Palm OS 3.1 or later ROM
image, or with a 3.0 image and the NetSync.PRC application. NetSync.PRC adds
Network HotSync capability to Palm OS 3.0, and the program is available for
download from http://www.palm.com/custsupp/downloads/netsync.
html. If you want to set up Network HotSync on a Palm OS 3.0 ROM image,
begin by installing NetSync.PRC on the Emulator, and then reset POSE by
right-clicking the Emulator and choosing Reset.

To set up POSE to use the serial port for HotSync operations, follow these steps:

1. In POSE, open the Properties dialog (shown in Figure 5-7). Set POSE to use
one of the host machine’s serial ports.

2. Make sure the HotSync Manager running on the desktop is set to use a
different serial port from the one set up in POSE.

3. Connect the two serial ports with a null modem cable.

To set up POSE to use the Network HotSync configuration, follow these steps:

1. Click the HotSync icon in the system tray, and select Network from the pop-up
menu that appears if Network does not already have a check mark next to it.

2. Open the Properties dialog in POSE by selecting the Settings ➪ Properties
menu command from POSE’s pop-up menu. Check the Redirect NetLib calls
to host TCP/IP check box and click OK.

3. Open the HotSync application in POSE.

4. Select the Options ➪ Modem Sync Prefs menu command. In the Modem Sync
Preferences dialog that appears (as shown in Figure 5-14), select the Network
push button. Tap the OK button.

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 115

116 Part II ✦ Creating Palm OS Applications

Figure 5-14: The HotSync application’s
Modem Sync Preferences dialog

5. Select the Options ➪ LANSync Prefs menu command. In the LANSync
Preferences dialog that appears (as shown in Figure 5-15), select the
LANSync push button. Tap the OK button.

Figure 5-15: The HotSync application’s
LANSync Preferences dialog

6. Select the Options ➪ Primary PC Setup menu command. In the Primary
PC Setup dialog that appears (as shown in Figure 5-16), enter the network
address 127.0.0.1 into the Primary PC Address text field. Tap the OK button.

Figure 5-16: The HotSync application’s
Primary PC Setup dialog

7. Depending on which version of the Palm OS is running in POSE, you will need
to do one of the following:

• On Palm OS 3.1, tap the Select Service selector trigger under the Modem
Sync icon to open the Preferences dialog (as shown in Figure 5-17). Tap
the Phone selector trigger, enter two zeroes (00) into the Phone # field,
and then tap the OK button. Tap the Done button.

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 116

117Chapter 5 ✦ Debugging Your Program

• On Palm OS 3.3 and later, tap the Modem push button, and then tap the
Select Service selector trigger under the HotSync icon to open the
Preferences dialog. Tap the Phone selector trigger, enter two zeroes (00)
into the Phone # field, and then tap the OK button. Tap the Done button.

Figure 5-17: The HotSync application’s service
Preferences dialog

Note that you do not actually have to set up any information for a service profile
in Step 7; you need only have a service selected. POSE should now be ready for a
network HotSync operation.

Telling POSE to start a HotSync operation is easy. Either select the HotSync menu
command in Windows or Unix (or the File ➪ HotSync command on the Mac OS), or
open the HotSync application in POSE and tap the HotSync button in the center of
the screen (or the Modem HotSync button, if you are using a Network HotSync
setup on Windows).

The HotSync Manager is very processor intensive, which can cause very slow
HotSync operations when both the HotSync Manager and POSE are fighting for
resources on the same machine. To speed up HotSync operations in POSE, click
the POSE window to bring it to the foreground after starting a HotSync operation.

POSE uses the value you set for HotSync User Name in the Properties or Preferences
dialog (shown in Figure 5-7) as the user name to identify the emulated handheld.
When you first synchronize POSE with the desktop, the HotSync Manager will
prompt you for a user profile with which to synchronize.

Synchronizing POSE with your own personal data is a sure way to cause all sorts of
trouble, including lost data or duplicate records. Your best bet is to create a brand
new user profile on the desktop, exclusively for use with POSE.

Taking Screen Shots
Making screen shots of Palm OS applications in POSE is simplicity itself. Once you
have the screen you want a picture of visible in the Emulator’s window, select the
Save Screen menu option in Windows or Unix (File ➪ Save Screen on the Mac OS).
POSE presents you with a file dialog, where you can specify the file name and loca-
tion to save the image file. POSE saves screen shots as 160 × 160 pixel .bmp files
on Windows systems, or as SimpleText images on the Mac OS.

Caution

Tip

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 117

118 Part II ✦ Creating Palm OS Applications

To make screen shots more legible, open the Skins dialog (shown in Figure 5-9)
and check the White Background option before capturing the screen.

Handling Errors in POSE
When POSE encounters an error during execution of an application, it displays
an error dialog box, shown in Figure 5-18. The text of the error message may be
different from what is pictured here, of course, as the text depends on what the
actual error is.

Figure 5-18: The Palm OS Emulator error dialog

Depending on the type of error POSE has encountered, the Continue or Debug
buttons may be grayed out and thus unusable. The buttons have the following
effects when clicked:

✦ Continue: POSE tries to continue executing application code, if possible.

✦ Debug: POSE hands over execution to an external debugger, such as
CodeWarrior or GDB, if one is running.

✦ Reset: POSE performs a soft reset of the emulated device, which may allow
you to continue running the Emulator without having to start an entirely new
session. You can force a soft reset at other times by selecting the Reset menu
command in Windows and Unix, or the File ➪ Reset command on the Mac OS.
Forcing a reset can be useful in testing an application that is designed to react
to a soft reset through the sysAppLaunchCmdSystemReset launch code.

Debugging at the Source Level
Source-level debugging is one of the most effective ways to track down and fix bugs
in an application. Instead of trying to guess which part of your code is causing an
error, you can step through the code line by line and find out exactly what is caus-
ing a bug. The CodeWarrior IDE has a built-in debugger that can debug applications
running on an actual serial-connected handheld or on POSE, and the GDB debugger
that ships with the GNU PRC-Tools can debug applications running on POSE.

Tip

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 118

119Chapter 5 ✦ Debugging Your Program

Debugging with CodeWarrior
To perform source-level debugging in the CodeWarrior environment, you must
first enable the debugger. Select the Project ➪ Enable Debugger menu command
to enable debugging; if Project ➪ Disable Debugger is displayed in the menu, the
debugger is already enabled, because this menu item toggles between Enable
Debugger and Disable Debugger.

You may also want to select the Debug ➪ Show Breakpoints menu command, if it
has not already been selected, to display the breakpoint column in the project’s
code windows. Figure 5-19 shows a CodeWarrior code window with the breakpoint
column displayed. By clicking in the breakpoint column, you can enable or disable
a breakpoint on a particular line of code; breakpoints are designated with a red dot.

Figure 5-19: A CodeWarrior code window with the breakpoint column displayed

Setting up a debugging target
Because CodeWarrior can debug applications in both POSE and on an actual
handheld, you need to set up a target for the debugger to connect to. To set the
target, you need to open the IDE Preferences dialog, shown in Figure 5-20, by select-
ing the Edit ➪ Preferences menu command, and then selecting the Palm Connection
Settings panel in the IDE Preferences Panels list at the left of the dialog. To connect
to POSE for debugging, choose “Palm OS Emulator” from the Target drop-down list,
as shown in Figure 5-20. You must also set the Emulator text box to the path and
file name of POSE on your system; use the Choose button to look for the Emulator
using a standard file dialog. Tap the Save button to save the debugger settings,
and then close the dialog.

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 119

120 Part II ✦ Creating Palm OS Applications

Figure 5-20: The CodeWarrior IDE Preferences dialog, set up to connect to POSE
for debugging

To connect to an actual Palm OS handheld, set the Target drop-down to “Palm OS
Device.” You must also set the Connection drop-down to the serial port where the
handheld is connected, and select an appropriate Baud Rate for the connection.
Figure 5-21 shows a proper configuration for connecting to a handheld hooked
up to COM1.

Figure 5-21: The CodeWarrior IDE Preferences dialog, set up to connect to an
actual Palm OS handheld

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 120

121Chapter 5 ✦ Debugging Your Program

Running the debugger
To start debugging, select the Project ➪ Debug menu command, or press F5. If you
are debugging in POSE, make sure POSE is already running before you start the
debugging session, or CodeWarrior will complain and display an error dialog.

One more step is necessary to debug on an actual handheld. When you run the
Debug command, CodeWarrior shows you the dialog shown in Figure 5-22, prompting
you to put the handheld into console mode with a special Graffiti shortcut sequence.

Figure 5-22: The CodeWarrior console mode
prompt dialog

Enter the console mode debugging shortcut on the handheld, and then click OK to
start debugging. See the “Using Developer Graffiti Shortcuts” section later in this
chapter for more details about the console mode debugging shortcut.

If the application you want to debug is already running in POSE or on the connected
handheld, CodeWarrior can have trouble downloading the application to the device.
To avoid this problem, start a different application in POSE or on the handheld
before starting the debugger.

Controlling the debugger
When the debugger finishes downloading the application to POSE or to an actual
handheld, CodeWarrior stops at the first line of code in the application and displays
a debugging window, shown in Figure 5-23.

The buttons across the top of the debugging window, from left to right, have the fol-
lowing functions, also accessible via shortcut keys and menu commands:

✦ Run: Runs application code until it hits a breakpoint or an error. This button
is disabled when the application is not stopped. The Run command is also
available from the menus as Project ➪ Run, or by pressing F5.

✦ Stop: Stops execution of application code. This button is disabled for debug-
ging Palm OS applications, and is useful only if CodeWarrior is debugging
applications for other platforms.

✦ Kill: Kills the debugger and soft-resets POSE or the attached handheld. Use
this command to end a debugging session. The Kill command is also available
from the Debug ➪ Kill menu command, or by pressing Shift+F5.

Note

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 121

122 Part II ✦ Creating Palm OS Applications

Figure 5-23: CodeWarrior’s debugging window

✦ Step Over: Executes the next line of code, stepping over subroutine calls and
remaining in the current routine. Step Over is also available as Debug ➪ Step
Over and by pressing F10.

✦ Step Into: Executes the next line of code, stepping into subroutines. Step Into
is also in the menu command Debug ➪ Step Into, as well as being accessible
by pressing F11.

✦ Step Out: Executes the rest of the code in the current routine, and then stops
again in the current routine’s caller. You can also get to the Step Out command
by using the Debug ➪ Step Out menu command, or by pressing Shift+F11.

The debugging window also has a Stack section, which shows the call stack for the
application. Selecting a routine from the Stack list displays the code surrounding
that particular subroutine call, allowing you to trace which routines called each
other to get to the current breakpoint. A Variables list shows you values for all
the variables that are currently in scope in the application.

Debugging with GDB
The GNU Debugger (GDB) is part of the GNU PRC-Tools distribution, and it presents
a text-based interface for debugging at the source level. GDB runs from the command
line in Windows or Unix.

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 122

123Chapter 5 ✦ Debugging Your Program

Before you can use GDB to debug a Palm OS application, you must compile and link
the application using the -g flag to include debugging symbols in the application.

Use the following steps to set up a connection between POSE and GDB:

1. Start POSE and install your application.

2. Start GDB, passing it the name of your application’s linked file as a command-
line argument. The linked file should have the same name as the executable,
minus the .prc extension. For example, the following command line starts
GDB for debugging a project called myapp:

m68k-palmos-gdb myapp

3. Once GDB is running, it will display a prompt: (gdb). At the prompt, enter
the command target pilot localhost:2000 to connect GDB to POSE:

(gdb) target pilot localhost:2000

4. Start the application in POSE.

5. GDB stops the application at the first line of executable code, ready for
debugging.

Be sure to use the m68k-palmos-gdb version of GDB, not the ordinary gdb
version that comes with the Cygnus GNU tools or that comes standard on many
Unix systems. The m68k-palmos-gdb executable has been specially compiled to
work with a linked Palm OS symbol file, and you will be very frustrated if you try to
use gdb, because it does not understand Palm OS files and will simply return an
error when used with Palm OS applications.

GDB has been around for a while in Unix programming circles, so it has a lot of
features and commands. You can use the help command to get comprehensive
help about all of GDB’s many features. Here are a few basic commands to get
you started:

✦ continue: Continues execution of the program until it hits a breakpoint,
causes an error, or exits. You may shorten this command to cont.

✦ next: Executes the next line of code, stepping over subroutine calls.

✦ step: Executes the next line of code, stepping into subroutine calls.

✦ break [breakpoint]: Sets a breakpoint at the specified function or line num-
ber. To set a break at the beginning of a function, give break the function name:

break StartApplication

To set a break at a line number, give break the file name and line number to
break at:

break myapp.c:42

Tip

Note

4676-7 ch05.f.qc 9/29/00 12:48 PM Page 123

124 Part II ✦ Creating Palm OS Applications

✦ list: By itself, lists ten lines of code surrounding the current execution point.
You can also pass a line number in the current file, a line file name and line
number combination (myapp.c:42, just like break, in the previous example),
or a function name to list code near the start of a function.

✦ print expression [, expression2 [... , expressionN]]. Prints variable
values in the current scope. For example, you could use the print command
as follows:

print thisStructure.var, myString[4], *pointer

✦ backtrace. Prints a stack crawl, showing all the functions on the stack and
their arguments. You can also pass the parameter full to the backtrace
command to print out all the values of local variables at each step of the
stack crawl.

✦ quit. Exits GDB. If the application is still running in POSE, GDB prompts
you before quitting; if you decide to quit anyway, GDB soft-resets POSE.

Figure 5-24 shows a short debugging session with GDB.

Figure 5-24: Debugging a Palm OS application with GDB

4676-7 ch05.f.qc 9/29/00 12:49 PM Page 124

125Chapter 5 ✦ Debugging Your Program

Resetting a Palm OS Handheld
When debugging applications on an actual Palm OS handheld, you will need to
reset the handheld from time to time. There are a number of different ways to reset
a handheld, depending on the situation:

✦ Soft reset. A soft reset clears the dynamic memory on the device, leaving the
storage memory alone, so applications and data on the device remain intact.
You can perform a soft reset by inserting a narrow blunt object, like the end
of an unfolded paper clip, into the hole on the back of the handheld to press
the reset button.

✦ Hard reset. A hard reset wipes out everything in RAM, both dynamic and
storage. To perform a hard reset, press the reset button while holding down
the power button. The system will ask you to confirm whether you want to
erase all data on the device before proceeding.

✦ No-notification reset. This kind of reset prevents the system from sending
the sysAppLaunchCmdSystemReset launch code to all the applications on
the device. If you have a bug in the PilotMain routine of your application, it
is possible for the application to crash the system before it even finishes a
reset, sending the device into a vicious cycle of continuous resets. Pressing
the reset button while holding the scroll up hardware button allows you to
reset the device without the system’s sending a launch code to the broken
application, allowing you to delete the offending program without resorting
to a hard reset.

Using Developer Graffiti Shortcuts
The Palm OS has a number of developer shortcuts built into it, which allow you to
perform a number of useful tasks from within any application. The shortcuts are all
accessed by writing the Graffiti shortcut character (a cursive lowercase “L”) in the
Graffiti area, followed by two taps (a period character) and the shortcut code.
Table 5-3 describes each available shortcut code.

Some of these shortcuts can leave the serial port open, draining the handheld’s bat-
teries. Others may cause data loss or damage to existing data. Use these shortcuts
carefully.

Though you do not need to write these shortcuts in an actual text field, the feed-
back you get from doing so is very useful. Since the Find dialog contains a text
field, and it is available from any application, tapping the Find silk-screened button
before entering a shortcut is a quick and easy way to see what you are writing
when using these shortcuts.

Tip

Caution

4676-7 ch05.f.qc 9/29/00 12:49 PM Page 125

126 Part II ✦ Creating Palm OS Applications

Table 5-3
Special Developer Graffiti Shortcuts

Graffiti Shortcut Description

.1 Enters debugger mode. The handheld opens the serial port
and waits for a connection from a low-level debugger, such
as the Palm Debugger that ships with the Palm OS SDK.
You must perform a soft reset to exit this mode and close
the serial port.

.2 Enters console mode. The handheld opens the serial port
and waits for a connection from a high-level debugger,
such as CodeWarrior. You must perform a soft reset to
exit this mode and close the serial port.

.3 Shuts off the auto-off feature. When this shortcut is made,
the device will no longer shut itself off automatically,
regardless of the current auto-off time set in the system
Prefs application. You must perform a soft reset to enable
auto-off again.

.4 Briefly displays the user name assigned to the device,
along with a number that HotSync uses internally to
identify the user

.5 Erases the user name and number assigned to the device.
At the start of the next HotSync operation, the HotSync
manager will treat the device as a brand new handheld
that has never been synchronized. This will cause duplicate
records to be copied to the handheld from the desktop
during the synchronization; to prevent this, you will need
to perform a hard reset.

.6 Displays the date and time at which the ROM was built in
the text field that has the focus.

.7 Toggles between alkaline and NiCd modes for keeping
track of remaining battery voltage, which is supposed to
change when low battery alerts are displayed to the user.
Historically, the NiCd mode has never been particularly
accurate; you should probably leave this shortcut alone.

.i Temporarily enables the device to receive incoming IR
transmissions, even if Beam Receive in the system
Preferences application is currently set to “Off.”

.s Toggles serial IR mode. When active, serial IR mode causes
all IR calls to go to the handheld’s serial port, instead, which
can be very useful for debugging low-level infrared code.

4676-7 ch05.f.qc 9/29/00 12:49 PM Page 126

127Chapter 5 ✦ Debugging Your Program

Graffiti Shortcut Description

.t Toggles loopback mode for the Exchange Manager.
When active, the loopback mode causes all IR beaming
operations to loop back to the device, allowing you to test
some beaming functions without using a second handheld.

Using the Palm OS Error Manager
The Palm OS error manager is an API that provides mechanisms for displaying
errors that might come up during application development. Error manager macros
are conditionally compiled, so they only become part of your compiled application
if you set certain special constants in your code. During development, the macros
are there to help you debug the application. Once you have finished development,
you can easily build a version of the application that does not include the error-
checking code, resulting in a smaller, faster executable.

There are three macros available in the error manager for displaying runtime
errors: ErrDisplay, ErrFatalDisplayIf, and ErrNonFatalDisplayIf. The ErrDisplay
macro always displays an error dialog, and the other two macros display a dialog
only if their first argument resolves to the value true. Error dialogs displayed by
these macros also include the line number and file name of the source code that
called the error macro, making it easier to find where the error occurred.

The ERROR_CHECK_LEVEL compiler defined controls which error macros the com-
piler includes in the compiled application. Table 5-4 shows the constants defined
in the Palm OS for each error level, and what each error level means.

Table 5-4
ERROR_CHECK_LEVEL Constants

Constant Value Description

ERROR_CHECK_NONE 0 The compiler does not compile in any
error macros.

ERROR_CHECK_PARTIAL 1 The compiler compiles only fatal error macros
(ErrDisplay and ErrFatalDisplayIf) into the
application.

ERROR_CHECK_FULL 2 The compiler compiles in all error macros.

4676-7 ch05.f.qc 9/29/00 12:49 PM Page 127

128 Part II ✦ Creating Palm OS Applications

When you are developing the application, an error-checking value of ERROR_CHECK_
FULL is appropriate to catch all the bugs you possibly can. Set ERROR_CHECK_LEVEL
to ERROR_CHECK_PARTIAL for alpha and beta tests; the non-fatal errors produced
by ErrNonFatalDisplayIf should probably have been handled at this point in the
development cycle, anyway, or at the very least should already be known to the
developer. The ERROR_CHECK_NONE level is appropriate for a final released product.

You can use the ErrDisplay macro to always display an error dialog. Use the
following syntax to call ErrDisplay:

ErrDisplay(“Insert error message here”);

The ErrFatalDisplayIf and ErrNonFatalDisplayIf macros take two arguments, the
first of which should resolve to a Boolean value. Only if the first argument is true
will these two macros display the error message indicated by their second argu-
ment. In general, the first argument will be an inline statement of some kind, which
makes for neat and tidy error-checking code that is still removed from compilation
when producing a final release build. For example, the following snippet calls a
hypothetical function called MyFunc and, if its return value is greater than 4,
generates a fatal error dialog:

UInt16 result = MyFunc();
ErrFatalDisplayIf(result > 4, “Illegal result from MyFunc”);

When ErrDisplay or ErrFatalDisplayIf displays an error dialog, the user can clear
the error only by tapping the supplied Reset button, causing a soft reset of the
handheld. The ErrNonFatalDisplayIf macro allows the user to continue execution
of the program, so ErrNonFatalDisplayIf should be used only in situations where
you want to check if a certain condition exists but that condition will not prevent
the application from continuing (more or less) normally.

Summary
In this chapter, you were given an overview of the most important debugging tools
available for Palm OS development. After reading this chapter, you should under-
stand the following:

✦ The Palm OS Emulator is a fantastic tool for debugging Palm OS applications
without going through the slow and painful process of repeatedly installing
a program to an actual handheld.

✦ POSE does have its limitations, particularly in the areas of IR support and
accurately representing execution speed on a real device, so you should still
make a final test pass for your application on an actual Palm OS handheld.

✦ POSE Gremlins let you give your application a really good working over,
randomly pounding parts of the program that might not be sufficiently
tested using more structured testing techniques.

4676-7 ch05.f.qc 9/29/00 12:49 PM Page 128

129Chapter 5 ✦ Debugging Your Program

✦ Source-level debugging with either CodeWarrior or GDB allows you to easily
find which line (or lines) of code in your application is causing a particular bug.

✦ There are multiple ways to reset a Palm OS handheld, including soft resets,
hard resets, and no-notification resets.

✦ Special developer Graffiti shortcuts give you access to some more obscure
settings of the operating system and hardware.

✦ Adding error manager macros to your application can be a useful debugging
tool during the program’s development, and the macros will not weigh down
the application when you release a final version to the public.

✦ ✦ ✦

4676-7 ch05.f.qc 9/29/00 12:49 PM Page 129

4676-7 ch05.f.qc 9/29/00 12:49 PM Page 130

Creating and
Understanding
Resources

A s you may recall from Chapter 2, “Understanding the
Palm OS,” resources fall into three categories: system,

catalog, and project. Because the compiler takes care of
creating system resources for you, like the application’s
executable code, you need to create only the catalog and
project resources to define things such as forms and applica-
tion icons. This chapter explains how to create most of these
resources, using the Constructor tool from CodeWarrior and
PilRC from the GNU PRC-Tools.

Before delving into the mechanics of creating resources,
though, a discussion about how those resources should be
used is in order. Palm Computing provides an extensive list
of user interface guidelines, which provide a framework for
making applications that are best suited to a handheld device.
The Palm OS guidelines also ensure that applications look and
operate the same way as the built-in Palm OS applications.
Emulating the way the standard applications work makes for
an application that users can immediately begin using with
little or no instruction, because they will already be familiar
with the interface.

Following Palm OS User
Interface Guidelines

Although the philosophy behind the Palm Computing platform
is responsible for many of Palm’s user interface guidelines,
many of these guidelines apply equally well to any program
running on any platform. User interface is the art of striking a
balance between screen space, utility, and ease of use that will
make an application useful to the largest number of people.

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Following Palm OS
user interface
guidelines

Creating resources
with Constructor

Compiling resources
with PilRC

✦ ✦ ✦ ✦

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 133

134 Part III ✦ Programming the Palm OS

The Palm OS user interface guidelines dictate three basic rules:

✦ Programs must be fast.

✦ Frequently used functions should be more accessible than infrequently
used functions.

✦ Programs should be easy to use.

Making Fast Applications
A fast application is more than just writing good algorithms and optimizing your
code. Good handheld applications have an efficient interface that makes it possible
to use them quickly. Navigating through different screens, activating commands,
and retrieving data should require very little time. For example, when the user
enters Graffiti strokes in the list view of the built-in Memo Pad application, the
application automatically creates a brand-new memo containing the newly entered
text; there is no need for the user to explicitly tap the New button to create a new
memo. Looking up information in all the standard Palm applications is just as
simple, often requiring only one hand, because the hardware buttons can scroll
through the most useful information without your having to use the stylus.

Always try to reduce the number of taps required to perform a particular action.
The best way to accomplish this is through intelligent selection of controls; some
user interface elements are faster at some tasks than others. Keep the following in
mind when designing the interface in your application:

✦ Buttons provide the quickest access to a program’s functions. They occupy
a fair amount of screen real estate, though, and having too many buttons
on a form is inefficient because it takes more time to visually search the
screen for the correct button.

✦ Because push buttons are faster than pop-up lists, requiring only one tap
instead of two to make a selection, use push buttons when you have enough
screen space for them.

✦ A check box is a fast way to change a setting that can be turned on or off,
because it requires only a single tap to toggle the box. Unless you need to fit
a lot of controls into a single screen, avoid using pop-up lists that contain only
two items; a single check box will perform the same action in half the number
of taps.

✦ A pop-up list is faster than Graffiti or on-screen keyboard input. If your appli-
cation can offer choices from a list instead of requiring the user to enter text
manually, the user will spend much less time entering data.

✦ Pop-up lists that contain a lot of elements are slower to use than short lists.
Just like having too many buttons on one form, too many list items are hard
to take in at a glance. Also, with enough list items, the user may have to scroll
the list to find the right item, requiring yet another tap.

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 134

135Chapter 6 ✦ Creating and Understanding Resources

Highlighting Frequently Used Functions
Commands in an application that the user will use frequently should be easier
to access than those that the user will need only occasionally. Not only should a
frequently used command be easy to spot on a form, but also the physical actions
the user must perform to activate the command need to be fast.

Something the user is likely to do several times in an hour, such as checking today’s
events in the Date Book, should be accessible with a single tap. If a particular action
may be performed a number of times in a single day, like adding an item to the To Do
List, a couple taps or a little bit of text entry is appropriate. Adding a repeating event
to the Date Book or other things that the user might need only a few times every
week can require several taps or an entire dialog devoted to the task.

The following tips can help you match accessibility to frequency of use:

✦ Important data that you expect a user to look at most of the time should be
the first thing displayed when the application starts. The built-in Date Book
is a good example of this because it shows today’s events when it first opens.
Just by launching the application, a user can check what is going on without
even having to use the stylus.

✦ Keep to a minimum the need to flip through different screens. The more
navigation required to get between particular views of the application’s data,
the more time it will take the user to retrieve that data. Not only is it impor-
tant to keep this in mind when designing user interface, but it is also vital
when determining how your application stores its data. Structure the data
so that retrieving records will not require a lot of navigation. Chapter 13,
“Manipulating Records,” deals with data structure concerns more fully.

✦ Use command buttons for the most common tasks that the user must perform.
All four of the major built-in applications have a New button for creating records,
because quickly adding a new record is a vital part of these programs. Command
buttons are also perfect for launching frequently used dialog boxes, such as the
Details dialog box from the Date Book and To Do List applications.

✦ Avoid using a dialog box if you don’t really need one. Notice that the built-in
applications do not prompt the user for a new record’s category when the
user taps the New button. Instead, the applications assign a reasonable
default category to the new item, usually based on the category currently
displayed in the list view, and immediately allow the user to start entering
data. If the user wants to change the category, another tap on the Details
button, or the category pop-up list, allows the user to perform this task. Try
to anticipate how someone will use an application, and design it accordingly.

✦ Except for very infrequently used features, try to avoid displaying a dialog
box from another dialog box. Digging back out of nested dialog boxes slows
down application use.

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 135

136 Part III ✦ Programming the Palm OS

Designing for Ease of Use
Ideally, a Palm OS application should be usable with little or no instruction. Within
five minutes of picking up a Palm OS device for the first time, a user ought to be able
to perform basic tasks and freely navigate between applications. More advanced
commands should still be easy to find and use, but they should not obscure the
most basic functions of a program.

Consistency is key to making a user interface that new users can learn easily.
Memorizing a completely new way of interacting with the device for each different
application is difficult and time-consuming. When every Palm OS application oper-
ates in a similar fashion, the skills learned from interacting with one application
will easily apply to any other program.

One of the best ways to ensure that your Palm OS applications are familiar to
users, both new and experienced, is to emulate the interface design of the built-in
applications. Study how the standard applications display data and offer choices,
and design your own user interface to parallel the placement of controls in the
built-in applications. Imitation is not only the sincerest form of flattery, but it
will also make your applications easier to use.

These suggestions will help you make applications that are easy to use:

✦ In the title bars of forms, let the user know what application is running, and
what view is currently displayed. This kind of context is necessary to prevent
the user from becoming lost while navigating between screens and different
applications.

✦ Use clearly labeled buttons for the most important commands. Not only are
buttons quick to use, they catch the eye like no other user interface element,
making them ideal for stressing key actions to perform. Make sure the label on
the button adequately describes its function, though. You must strike a balance
between saving screen space and providing enough text to avoid confusing the
user about the function of the button. One possibility for saving some screen
real estate with buttons is to label them with icons instead of words. For exam-
ple, a small picture of a trash can might replace a “Delete” caption. Be careful
using icons, though. What may be intuitive to you may leave your application’s
users hopelessly confused if they can’t make the same logical connection you
have made between an icon and its function.

✦ Keep the design of forms and dialog boxes clean and simple. You may be
tempted to put everything right up front on the screen to allow quick access
to as many commands as possible. However, doing so makes the application
more difficult to learn and can actually slow users down, forcing them to scan
the screen in search of the proper control. A few well-placed buttons that open
simple dialog boxes are preferable to trying to cram your entire interface into
a single screen.

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 136

137Chapter 6 ✦ Creating and Understanding Resources

✦ Make sure actions are consistent throughout the application. For example,
if pressing the hardware scroll buttons browses records a screenful at a time
in one view, but switches between entry fields in another view, the application
becomes harder to learn and use. Reduce the burden on the user’s memory by
making similar actions perform similar functions throughout an application.

✦ Navigation between different views in the application should be obvious to
the user. The best way to do this is by using command buttons. The address
view in the Address Book is a good example. The three buttons, Done, Edit,
and New, do what most users expect they will do when tapped: return to the
main list view, edit the currently displayed record, or make a new record,
respectively.

✦ Minimize the number of steps required to perform a particular task. This not
only speeds up use of the application but also reduces its complexity, making
it easier for the user to remember how to perform that task.

✦ Always provide the standard Edit menu whenever editable text fields are pre-
sent in a form or dialog box. This will ensure that the clipboard and text editing
commands are always available. More important, make sure the on-screen key-
board is accessible to those users who prefer it to Graffiti text entry. On Palm
OS version 2.0 and later, be sure to also provide access to the system Graffiti
reference dialog box from this menu.

The standard Edit menu is detailed in Chapter 8, “Building Menus.”

Maintaining Palm OS Style
There are a number of other considerations to keep in mind when designing an
application to fit the expectations of users of Palm OS devices. Anyone used to
the standard applications installed on such a handheld will count on certain things
working in a particular way. Also, some elements of Palm OS style are necessary to
ensure that your application is a good citizen and performs the way the operating
system expects.

Navigating within and between applications
Users switch applications by pressing the physical application buttons or using
the application launcher. If your application intercepts the hardware buttons for
its own purposes (a common occurrence in game programs), be sure to leave the
silk-screened application launcher button alone. Otherwise, there will be no way
to switch out of your application without resetting the device.

Depending on what information your application must display, it may be appropriate
to have two different views of its data — a list view and an edit view. The Memo Pad
application operates in this fashion. Figure 6-1 shows the list and edit views of the
Memo Pad application. The list view shows some or all of the application’s records

Cross-
Reference

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 137

138 Part III ✦ Programming the Palm OS

a screenful at a time, providing some useful information at a glance. Selecting a
record from the list view starts an edit view, where a user may change the data
in an individual record. Tapping the Done button in the edit view returns the user
to the list view. The Details button in the edit view provides a way to change settings
that affect the entire record, such as its category or whether it should be marked
private.

Figure 6-1: The Memo Pad
application provides two separate
views, list (left) and edit (right).

Even applications such as the Date Book and To Do List, which both display and
allow editing of a record in the same screen, have a Details button that operates in
similar fashion. Instead of going to an edit view when tapping on a record in these
applications, the program enters an editing mode. When in edit mode, the Details
button offers the same record-level settings changes that are possible in the Memo
Pad and Address Book applications.

If appropriate for your application, consider implementing user-defined categories
to allow users to organize the program’s data. A pop-up list in the upper right corner
of the screen provides category switching in the standard applications. The Palm
OS provides facilities to easily manage categories, including a dialog box to allow
adding, renaming, and removing categories.

See Chapter 12, “Manipulating Records,” for more information about implementing
categories.

Repeatedly pressing the hardware application button assigned to one of the built-in
applications causes the application to switch between displaying different categories
of data. If your application is one that a user might consider assigning to one of the
hardware application buttons by using the Preferences application, copying this
behavior is a good idea.

When providing a number of text entry fields on one screen, be sure your applica-
tion handles the next field and previous field Graffiti strokes, pictured in Figure 6-2.
You may identify these two characters in code with the constants nextFieldChr
and prevFieldChr. These strokes save time during data entry because the user
can just enter the appropriate navigation stroke instead of having to lift the stylus
from the Graffiti area and tap in another field. The built-in Address Book’s edit view
is a good example of using Graffiti strokes to switch fields. In the edit view, you can
jump from field to field without ever moving the stylus out of the Graffiti entry area.

Cross-
Reference

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 138

139Chapter 6 ✦ Creating and Understanding Resources

Figure 6-2: The next field (left) and previous field
(right) Graffiti strokes allow for rapid data entry on
forms containing more than one text field.

Because of the small size of the screen, users will often need to scroll the display,
both to display many records from a database and to display the information in
long records. For on-screen scrolling, provide either a pair of arrow-shaped repeat-
ing buttons or a scroll bar. Also, handle the pageUpChr and pageDownChr key
events to allow scrolling via the hardware scroll buttons. The hardware buttons
should scroll data a page at a time. Although Palm OS user interface guidelines
state that repeating buttons used for scrolling should scroll data a line at a time,
both the Address Book and To Do List applications scroll a page at a time when
the on-screen buttons are used. So, this is more a matter of what works well with
your application’s data than a hard-and-fast rule.

Scrolling is a complex topic, covered in detail in Chapter 9, “Programming User
Interface Elements.”

Designing screen and dialog box layout
The screens and dialog boxes in a standard Palm OS program should follow certain
layout rules to achieve a consistent look between applications. The screen from
the built-in Memo Pad application shown in Figure 6-3 is a fine example of how
to design a screen for a Palm OS application.

Figure 6-3: Screen layout in the Memo Pad application

The numbers in the following guidelines refer to the Memo Pad screen shown in
Figure 6-3:

1. Each screen should have a title bar. If there is enough room, include the name
of the application and the name of the current view. The title bar’s text should
not only let users know what application they are looking at, but should also
provide context within the program. Carefully worded title bars prevent users
from becoming lost in applications that contain many different views.

5 6

4

21 3

Cross-
Reference

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 139

140 Part III ✦ Programming the Palm OS

2. If the application uses categories to organize records, put a category pop-up
list in the upper-right corner. In a screen that displays multiple records, this
pop-up should change the view to display records from different categories;
in a screen that displays a single record, the category pop-up should change
the category of the currently displayed record.

3. Use the whole screen, all the way out to the edge. There is little enough
screen real estate on a Palm OS handheld that wasting even a couple pixels
to draw a border will make it difficult to fit user interface elements on the
screen without crowding them. The hardware case surrounding the screen
makes a perfectly suitable frame.

4. Whenever possible, use the standard Palm OS user interface resources.
Unless your application has unique interface requirements (for example,
games tend to have special interface elements), sticking with the default
buttons, fields, and other parts of the default Palm OS provides users with
a familiar environment. Familiarity makes the program easier to use.

5. Command buttons should be lined up along the bottom of the screen, left-
justified. In particular, any buttons used to navigate between screens in
an application will be quicker to use if they are all in a consistent location
because users will be able to tap in the same region of the screen without
moving the stylus very far.

6. In buttons and other places where text is contained in a border, be sure to
leave at least one pixel above and one pixel below the height of the text. Many
letters in the Palm OS fonts are difficult to read when a line touches them.

Palm Computing also provides recommended settings for individual user interface
elements. These guidelines are detailed with their appropriate resources in
Chapter 9, “Programming User Interface Elements.”

Dialog boxes serve a different function from screens in a Palm OS program. A dialog
box provides a place for the application to query the user for input, or for the user
to change record and application settings. The dialog box from the To Do List appli-
cation shown in Figure 6-4 demonstrates good dialog box design principles.

Figure 6-4: Dialog box layout from the
To Do List application

2

43

1

5

Cross-
Reference

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 140

141Chapter 6 ✦ Creating and Understanding Resources

Numbered guidelines below refer to the To Do List dialog box shown in Figure 6-4:

1. The Palm OS provides facilities for online help in dialog boxes. Tips, accessed
from the “i” icon in the upper right corner of a dialog box, are an easy way to
provide users with details about what all the interface elements in a dialog
box actually do.

Adding tips to a dialog box is easy, and requires no code at all; simply create a
string resource and associate it with the dialog box form. Chapter 7, “Building
Forms,” tells you how.

2. Labels in a dialog box should be right-justified, followed by left-justified
elements that may be edited. Use bold text for the labels and nonbold text
for editable items to visually differentiate them.

3. Unlike screens, which have no border, dialog boxes need three pixels of
space between buttons and the edge of the dialog box.

4. Particularly in alerts that prompt the user to make a decision, be sure to
put positive response buttons on the left and negative responses on the right.
Maintaining this kind of consistency speeds use of the program and helps to
prevent the user from making errors.

5. Dialog boxes should always be aligned with the bottom of the screen.
Placing those that are shorter than the height of the entire screen at the
bottom ensures that the title bar of the screen behind the dialog box is still
visible, thereby reminding users of what application is currently running
and where they are within that program.

Keeping other Palm guidelines in mind
There are a number of other considerations to keep in mind that will ensure your
application looks and behaves like other Palm OS applications:

✦ Every application should have an icon to identify it in the launcher, as well as
a short name to identify the icon. For programs running on Palm OS version
3.0 or later, you should also provide a small icon for the launcher’s list view.
Adding icons and icon names is covered later in this chapter.

✦ Palm applications contain a version resource, which the launcher in Palm
OS version 3.0 and later can display from the Options ➪ Info menu command.
Version resources are also useful if you wish to write multiple applications
that cooperate with one another or share data. Should the data format of one
of the applications change between versions, the other programs can query
that application to determine its version and act accordingly. Adding version
resources is also detailed later in this chapter.

Cross-
Reference

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 141

142 Part III ✦ Programming the Palm OS

✦ All functions of an application that require tapping the screen should be
accessible with single taps. Double-clicking in a desktop environment can
be difficult for some users to manage, because a mouse tends to move around
a bit when its buttons are clicked, and double-tapping on a handheld can be
even more difficult because the device is usually held in the off hand instead
of on a stable surface. Double taps are also counterintuitive. Without explicit
instruction, it is impossible to tell from looking at an application that certain
commands are activated by double taps.

✦ Where possible, make buttons large enough to allow finger navigation.
Navigating between different views in the application should be possible
without the user’s having to pull out the device’s stylus. The buttons in
the Palm OS built-in applications are a good size for this purpose.

✦ If a menu item or user interface element is currently disabled or not available,
remove it from the screen entirely. The Palm OS does not provide any facilities
for “graying out” controls and menus, and there is little enough screen space
available that removing the item entirely is preferable.

✦ Many desktop applications duplicate commands by making them accessible
from a button and from the application’s menus. Avoid this kind of duplication
in Palm OS applications. Not only does it increase the size of the program, but
it also goes against the paradigm of highlighting frequently used functions.
Important commands that the user will access regularly should be on the
screen itself; less often used commands should be relegated to menus.

✦ Likewise, provide Graffiti command shortcuts only for those menu items
that really need them. For example, cutting and pasting text are actions that
need to be performed quickly, so these commands are good candidates for
command shortcuts. On the other hand, an about box for an application is
something the user will look at only occasionally, so displaying it does not
require a shortcut.

Creating Resources with Constructor
Constructor is a graphical tool for resource creation. Its “what you see is what
you get” (WYSIWYG) approach to resource editing lets you see exactly what your
resources will look like during every step of their creation.

When it first opens, Constructor consists of only a title bar and a menu bar
underneath it, pictured in Figure 6-5. Only the Windows version of Constructor
is pictured in this book; however, the Mac OS version of Constructor is very
similar in appearance.

Figure 6-5: The Constructor menu bar

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 142

143Chapter 6 ✦ Creating and Understanding Resources

Constructor organizes all the resources for a particular application in a project.
To create a new project, select File ➪ New Project File, or press Ctrl+N.

Alternatively, you may open an existing project file by selecting File ➪ Open
Project File, or by pressing Ctrl+O. Constructor prompts you for the location
of the project file you wish to edit.

When you have finished making changes to the project, save your work to disk
with the File ➪ Save menu command, or press Ctrl+S. Constructor prompts you
for a location to which you would like to save the project.

Exploring the Project Window
The first window that Constructor displays when you open an existing project, or
when you create a new project, is the project window. The project window for the
Hello World application from Chapter 4 is displayed in Figure 6-6. Notice that the
project window is divided into two sections, the Resource Type and Name list and
the Project Settings box.

Besides listing project resources and settings, the project window also informs
you which resources or settings you have changed since the last time you saved
the project. Constructor indicates changed resources or settings with a small
black dot to the left of the appropriate item. When you save the project, all the
dots disappear.

Understanding Resource Forks

After saving a project on a Windows machine, you may be wondering why Constructor creates
a directory called Resource.frk in the same directory where you chose to save the project
file. Constructor does this to allow transfer of resource files between Windows and the Mac OS.
On the Mac OS, Constructor stores resource information in the resource fork of the project file.
Because Windows files do not contain a resource fork, Constructor saves an empty .rsrc file
to mimic the Mac OS data fork, and then creates the Resource.frk directory and saves the
resources themselves in that directory, using the same file name as the data file.

Keep in mind that if you wish to move your resource files around in Windows, you need to
copy both .rsrc files, and the resource fork file must be in a Resource.frk directory in
the same location as the data fork .rsrc file. Failure to copy both files correctly prevents
Constructor from working with the files.

When opening a project file for editing, you may select either of the .rsrc files. Constructor
is smart enough to figure out which file contains the data fork and which contains the
resource fork.

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 143

144 Part III ✦ Programming the Palm OS

Figure 6-6: Constructor’s
project window

Located at the bottom of the project window, the Project Settings box allows you to
change settings for the entire project. From top to bottom, the Project Settings box
contains the following items:

✦ Generate App Resources. This check box, when checked, tells Constructor
to generate application icon name and version resources for the project.
Unchecking Generate App Resources disables the Application Icon Name and
Version String fields, in case you want to generate other resource types with-
out creating icon name and version string resources. Leaving the Generate
App Resources check box unchecked can be useful if you use multiple resource
files to create different sections of a large application, because generating appli-
cation resources in multiple resource files will cause the compiler to complain
when it encounters duplicate resources for the icon name and version number
resources.

✦ Application Icon Name. This text field contains the name that will appear in
the launcher next to the program’s icon. The Application Icon Name field may
contain up to 31 characters, but you should use only half that to prevent the
icon name from overlapping other icon names in the launcher, which has very
little space available for icon names in both its list and icon views. Use the
Hex check box to toggle display of the icon name between hexadecimal and
normal text.

✦ Version String. The version string is handy for branding the application with
its current version. This field accepts up to 15 characters, and it is not limited
to just digits and decimal points. Allowing non-numerical characters permits
the use of interim version numbers, such as “1.2e,” or of beta version numbers,
such as “0.9b.”

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 144

145Chapter 6 ✦ Creating and Understanding Resources

✦ Default App Category. In this field, you can specify the name of a default
category that the application should be added to when the application
is installed on a handheld. If this category does not already exist on the
handheld, the system will create it. If this field is left blank, the application
becomes part of the Main category on the handheld by default.

✦ Application Icon. This field contains the resource ID number of the application’s
icon, which is displayed in the launcher. If you have not created an icon for the
current project, the button next to the ID number is labeled Create, and clicking
the button will open a bitmap editor and allow you to create the icon. If an icon
with resource ID 1000 already exists in the project, the button is labeled Edit, and
clicking it will open the existing icon in a bitmap editor. Note that changing the
ID number from 1000 is a bad idea; the Palm OS assumes that an application’s
icon has an ID of 1000, and if no icon with that ID exists, the OS displays
a blank spot in the launcher instead of an icon.

✦ Auto Generate Header File. Checking this check box tells Constructor to
automatically create a header file containing #define statements that map
constant definitions to resource ID numbers. Using resource constants is
much easier than trying to remember the four-digit number assigned to each
resource in an application, so keeping this option checked will save you a lot
of headaches later on. The following two lines in the Project Settings box do
not do anything if Auto Generate Header File is not checked.

✦ Header file name. This text field contains the name of the header file to
generate if the Auto Generate Header File box is checked. If you do not specify
a header file name here, Constructor will provide one for you. On Windows, this
name is composed of the name of the project file with _res.h appended to it;
on the Mac OS, the name consists of just the name of the project file with .h
appended to it. Likewise, if the file name you enter here does not have an .h
extension, Constructor will tack .h onto the end of the name you entered
when you save the project.

✦ Include Details in header. Checking this box will add comments to the auto-
matically generated header file, describing individual properties of each of
the resources listed in the header. This option is strictly optional because
it has no bearing at all on how CodeWarrior will compile the resources.

✦ Keep IDs in sync. When this box is checked, Constructor will maintain consis-
tent resource IDs. In particular, Constructor will keep form resource IDs the
same as its own internal form IDs, and when you change the resource ID of a
form, Constructor will change all object IDs of objects in that form to match
the beginning of the form’s ID. In general, you should keep this box checked
unless you really want mismatched object and form IDs.

The Resource Type and Name list shows all the project resources in an application,
including forms, alerts, strings, menus, bitmaps, and other resources. Each gray bar
represents a different type of resource. Constructor lists underneath that category’s
gray bar all of the resources in the project that belong to a particular category.

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 145

146 Part III ✦ Programming the Palm OS

You create new project resources by selecting one of the gray bars and then select-
ing the Edit ➪ New Type Resource menu command, where Type represents the kind
of resource you have selected. A quicker way is to select the appropriate bar and
press Ctrl+K.

Alternatively, you may also select Edit ➪ New Type Resource, or press Ctrl+R, to
open the Create New Resource dialog box. The Create New Resource dialog box
is pictured in Figure 6-7. Clicking the Create button in this dialog box makes a
new resource with the properties you set in the dialog box.

Figure 6-7: The Create New Resource dialog box

The two commands on the Edit menu for creating new resources look almost
identical. Use the first, Edit ➪ New Type Resource, with the shortcut key Ctrl+K, to
quickly create a new resource based on the currently selected resource type in
the project window. The second command, Edit ➪ New Type Resource, with the
shortcut key Ctrl+R, simply opens the Create New Resource dialog box.

To confuse matters further, when no resource type is selected in the project
window, both commands open the Create New Resource dialog box. Either
command is perfectly valid, but the Ctrl+K method is much quicker to use.

You can change the name or resource ID of any resource in the project window by
clicking once on its name or ID, and then typing the new name or ID number. To edit
a particular resource, either double-click it, or select it and press Enter. An editor
window appropriate to the type of resource appears. You may also use the Edit ➪
Edit Resource command to open the editor for a selected resource.

Delete resources by selecting them and choosing Edit ➪ Clear Resource or pressing
either the Delete or Backspace key.

Most of the resources you can create from the project window are detailed in the
following sections. Forms and menus are complex enough that they merit their
own chapters.

For detailed information about making form and menu resources, see Chapter 7,
“Building Forms,” and Chapter 8, “Building Menus.”

Cross-
Reference

Note

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 146

147Chapter 6 ✦ Creating and Understanding Resources

Strings
A string resource simply contains a string of text characters. String resources are
the usual way to provide online help in your applications, and they can also serve
to contain default values for text fields or other miscellaneous text that remains
constant between different executions of an application. Figure 6-8 shows the
string editor window.

Figure 6-8: The string editor window

You may edit the string’s text in the lower half of the editor window. The View As
Hex check box converts the contents of the window to hexadecimal, and the View
As pop-up list allows you to select the font in which to display the text. Note that
these two “View As” controls have no effect on the actual resource that Constructor
generates; they are for display purposes only.

String lists
A string list is an indexed list of text strings with a specific prefix string. Figure 6-9
shows the string list editor window, which has the same “View As” capabilities as
the string editor.

Figure 6-9: The string list editor window

You can use the SysStringByIndex API function to access string list resources
from your application. SysStringByIndex returns the string list’s prefix string,
concatenated with a specific string from the list.

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 147

148 Part III ✦ Programming the Palm OS

Constructor starts listing string list indices at 1, but the SysStringByIndex function
uses 0 to indicate the first string in the list. Keep this in mind to avoid off-by-one
errors in your code.

To enter the prefix string, click to the right of “Prefix:” in the window and type
the prefix string. Note that a prefix string is not required, and in some cases,
not desired because the SysStringByIndex function tacks the prefix string to
the front of every string it returns.

To add individual strings to the list, select Edit ➪ New String, or press Ctrl+K.
You can also change the order of items in the list by clicking the index number
of a string you wish to move and dragging it to its new location in the list. To
delete a particular string, select it, and then select Edit ➪ Clear String or press
either the Delete or Backspace key.

App info string lists
An app info string list holds the initial categories for an application. The
CategoryInitialize function uses this information to set default values for an
application’s categories. The Palm OS category manager expects to find static
category names at the top of an app info string list. If your application will have
categories that the user cannot edit, such as the “Unfiled” category common to
most of the Palm built-in applications, be sure to put these category names at
the beginning of the list.

Figure 6-10 shows the app info string editor window, which is quite similar to the
string list editor window.

Figure 6-10: The app info string editor window

Except for the lack of a prefix item, you can add, edit, and delete items in an app
info string list using the same techniques listed above for regular string lists.

Caution

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 148

149Chapter 6 ✦ Creating and Understanding Resources

Constructor lets you enter as much text as you like for each category, but the Palm
OS allows only 15 characters for a category name. Be sure not to exceed this limit
when entering category names.

Alerts
The alert editor window, pictured in Figure 6-11, provides you with everything you
need to make alert dialog boxes. It also shows a preview of what the alert will look
like in the finished application.

Figure 6-11: The alert editor window

From top to bottom, the alert editor window contains the following items:

✦ Alert Type. This pop-up list allows you to select one of the four alert types:
information, confirmation, warning, or error.

✦ Help ID. This field contains the resource ID of a string resource that will serve
as the online help for this alert. If you have not assigned a string resource to
this alert yet, the resource ID displayed is 0, and the Create button to the right
of the ID is disabled. If you set Help ID to a value that does not correspond to
any existing string resource, the Create button becomes enabled, and clicking
it will open a string editor window to allow you to create a new string resource.
If you set the Help ID to the resource ID of an existing string resource, the but-
ton’s caption changes to Edit, and clicking the button opens that string
resource in a string editor window.

Caution

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 149

150 Part III ✦ Programming the Palm OS

✦ Default Button. You can set the default button for the alert dialog box in this
field. When dismissing an alert, usually because of switching from the displayed
alert’s application to another application, the Palm OS simulates a tap on the
default button, allowing you to execute appropriate default code on the way out
of the dialog box. The Default Button field is disabled if the alert contains only
one button.

✦ Title. Enter in this field the text to display in the alert’s title bar.

✦ Message. Whatever message the alert should display goes into this field.

✦ Button Titles. Clicking on the arrow in the left of this item hides or displays
the list of buttons for the alert resource. Each button on the form is listed
as Item Text n, where n is the index number of the button; an index of 0 repre-
sents the leftmost button. To add more buttons to the alert, select an existing
button title, and then choose Edit ➪ New Button Title or press Ctrl+K. A
new button title appears below the selected button title. You can also insert
a new button before the first button by selecting the gray Button Titles bar
and then creating a new button as described above. You may delete a selected
button by selecting the Edit ➪ Clear Button Title command, or by pressing
Backspace. Constructor will allow you to add more buttons than the Palm OS
can actually display in an alert at run time, so be sure to keep the number of
buttons
reasonable, say only three or four, with short captions.

Unlike other places in the Windows version of Constructor, where pressing Delete
will delete an item, Delete does nothing at all. Use the Backspace key instead if
you want to use a keyboard shortcut instead of selecting the menu option.

Multibit icons
The multibit icon editor window, pictured in Figure 6-12, is the place to create and
edit both black-and-white and grayscale icons.

Figure 6-12: The multibit icon editor window

Note

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 150

151Chapter 6 ✦ Creating and Understanding Resources

A multibit icon actually contains two different icons: one in black and white, and
another in grayscale. Prior to version 3.0, the Palm OS does not support grayscale
icons. However, if you include a black and white version in a multibit icon, earlier
versions of the OS can read the black and white part without difficulty. The editor
displays a preview of both the black and white icon and the grayscale icon, which
are labeled B&W and Color, respectively. Select the appropriate small preview
image to edit it in the canvas, or drawing area, of the editor window.

Starting with Palm OS 3.5, the operating system supports color icons in the
launcher application. To provide backward compatibility with older versions of
the Palm OS that do not support color, the version of Constructor that ships with
the Palm OS 3.5 SDK can be used to create app icon families, which hold multiple
copies of a single image at different color depths. If your application is intended
to run on Palm OS 3.5, you can skip creating normal or multibit icons entirely, and
instead create a number of bitmaps and add them to an app icon family. For more
details of this process, see “App icon families,” later in this chapter.

Every application should have two multibit icons to display in the launcher, both
a large icon for the regular icon view and a small icon for the launcher’s list view.
Table 6-1 shows the properties these icons must have.

Table 6-1
Launcher Icon Properties

Icon Resource ID Size

Large launcher icon 1000 22 × 22 pixels

Small launcher icon 1001 15 × 9 pixels

The canvas of the multibit icon editor window is conveniently sized at 22 × 22 pix-
els, making large icon creation straightforward. For the small icon, use the 15 × 9
pixel area in the upper-left corner of the canvas. The Palm OS ignores anything
outside this small area when displaying the small icon.

Although the multibit icon editor window provides a number of useful tools for
creating an icon, many of these tools do not work as described in the Metrowerks
Constructor documentation. Often, the editor can be downright random about how
it interprets your mouse clicks, leading to a lot of frustration when editing icons.
Fortunately, it is possible to create the icon in a bitmap editor of your choice,
copy it to the clipboard, and then paste it into the multibit icon editor.

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 151

152 Part III ✦ Programming the Palm OS

To paste a bitmap from the clipboard into the multibit icon editor, follow these steps:

1. Select the preview image of the icon you wish to paste into, either B&W
or Color.

2. Select the canvas to make it active.

3. Select Edit ➪ Paste, or press Ctrl+V, to paste the image into the canvas.

If the image you paste into the canvas is larger than 22 × 22 pixels, Constructor
will not resize it, but simply crop it at the edges. Fortunately, right after pasting,
you may drag the image around the canvas to control what part of it is cropped.

Icons
Constructor provides an editor window for standard black and white icons,
pictured in Figure 6-13. Note the similarity to the multibit icon editor.

Figure 6-13: The icon editor window

Before the introduction of multibit icons in Palm OS 3.0, the icon editor window was
the only way to create an application icon in Constructor. The icon editor window
allows creation and editing of black and white icons only, and its main function is
to provide backward compatibility with resources generated for earlier versions
of the Palm OS.

If you have a black and white icon from a project file created for a version of the
Palm OS prior to 3.0, you can convert it to the newer multibit icon resource by
following these steps:

1. Open the project file containing the old icon. The project window appears.

2. Open the icon by double-clicking it in the project window. The icon editor
window appears.

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 152

153Chapter 6 ✦ Creating and Understanding Resources

3. Choose Edit ➪ Select All, or press Ctrl+A, to select the entire canvas in the
icon editor window.

4. Select Edit ➪ Copy, or press Ctrl+C, to copy the icon to the clipboard.

5. Select Multibit Icons in the project window and choose Edit ➪ New icon
Resource, or press Ctrl+K, to create a new multibit icon. The multibit
icon editor window appears.

6. Select the B&W sample view in the multibit icon editor window, and then
select the canvas to make it active.

7. Select Edit ➪ Paste, or press Ctrl+V, to paste the old icon into the new
multibit icon.

8. Drag the B&W sample view onto the Color sample view to copy the black
and white icon into the grayscale portion of the multibit icon.

Bitmaps
The bitmap editor window, pictured in Figure 6-14, provides a space for editing
miscellaneous bitmaps to include in your application. Notice that the interface
for the bitmap editor is similar to the two icon editors; it is missing only the
small preview views to the right of the canvas.

Figure 6-14: The bitmap editor window

You can create black and white, grayscale, or color bitmaps in the bitmap editor
window. To change the color depth of the bitmap, choose an appropriate depth
from the Colors menu. The options available are Black & White (1-bit depth), 4
Grays (2-bit depth), 16 Grays (4-bit depth), and 256 colors (8-bit depth). A single
bitmap resource may only have one color depth, so if you need to have multiple
depths for a single image, you will need to create a bitmap family to contain a
number of bitmaps of varying depths. See the “Bitmap families” section later
in this chapter for details about how to create a bitmap family.

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 153

154 Part III ✦ Programming the Palm OS

To create a grayscale bitmap for use in Palm OS version 3.0 or 3.1, you must follow
specific naming conventions for your bitmap resources. Otherwise, the OS does not
recognize the images as grayscale and displays them as black and white. Table 6-2
shows the prefix codes to include at the beginning of the bitmap resource’s name,
depending on the type of bitmap you wish to create.

Table 6-2
Grayscale Bitmap Prefixes for Palm OS 3.x

Prefix Meaning

-1 1-bit (black and white) bitmap

-2 2-bit (four-color grayscale) bitmap

-c Uncompressed bitmap

The prefix codes must be surrounded by slash (/) characters, and they must be the
first part of the bitmap resource’s name. For example, to create an uncompressed
grayscale bitmap called “foo,” name the bitmap resource /-2 -c/foo. Without any
prefix at all, Constructor creates compressed black and white bitmaps, the equivalent
of a /-1/ prefix.

In order to create a bitmap resource that contains both 1-bit and 2-bit bitmaps,
you must use the prefix /-1 -2/. Just /-2/ will create a 2-bit bitmap.

By default, Constructor generates compressed bitmaps. Be sure to include -c as
part of the prefix if you want an uncompressed bitmap.

If your application is intended to run on Palm OS 3.5 or later, you can skip all
of the special naming conventions listed previously. Color support is much more
advanced in Palm OS 3.5, which has no difficulty with 2-bit and 4-bit grayscale
images, regardless of how they are named.

App icon families
An app icon family resource contains multiple copies of an image at different color
depths, for use as an application icon. If an application needs a color icon for the
Palm OS 3.5 application launcher, but it still needs to run under earlier versions of
the Palm OS, an app icon family allows the application to display an icon with an
appropriate color depth on older versions of the system launcher, which do not
support color.

To create an app icon family, you first need to create a number of bitmaps, one for
each color depth that will appear in the app icon family. Usually, you should create
four bitmaps, one each at 1-, 2-, 4-, and 8-bit color depths. These bitmaps should be
22 × 22 pixels in size for a large application icon, or 15 × 9 for a small icon.

Note

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 154

155Chapter 6 ✦ Creating and Understanding Resources

The next step is to add the bitmaps to an app icon family resource. In the app icon
editor window, pictured in Figure 6-15, you can add a new image by selecting Edit ➪
New Family Element, or by pressing Ctrl+K. An app icon family may contain a maxi-
mum of four images. Also, be sure to set the appropriate Width and Height values
for the app icon family.

Figure 6-15: The app icon family editor window

The quickest way to add all the images needed in an app icon family is to select
the Family Items line in the editor window, then press Ctrl+K once for each image
you need in the family. Using this process also automatically increments the Depth
field for each image, so you do not need to manually set the color depth for
images one at a time.

For each image, you can set a number of options:

✦ Depth. This option specifies the color depth of the bitmap image. There
should only be one bitmap of a particular color depth within a particular
app icon family.

Tip

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 155

156 Part III ✦ Programming the Palm OS

✦ Transparency. If checked, one of the colors in the icon is treated as transpar-
ent. Checking the Transparency check box enables the Transparency drop-
down, from which you may choose one of the colors in the image to be the
transparent color. Pixels in the image colored with the selected color are
treated as transparent.

✦ Compression. This drop-down allows you to select the style of compression
used for the image. In general, icons should be left uncompressed.

✦ Bitmap ID. Enter the resource ID of the appropriate bitmap image in this text
field. Once an ID has been entered, clicking the Edit button opens the selected
bitmap in the bitmap editor window.

Images in an app icon family must be entered from lowest bit depth to highest,
which usually means 1-bit (B&W) at the top of the list and 8-bit (256 colors) at the
bottom. Constructor does not enforce this policy; if you enter the images in the
wrong order, you will get unpredictable results when the launcher tries to display
your application’s icon.

Just like ordinary and multibit icons, you need to use resource ID numbers of 1000
and 1001 to represent the application’s large and small icons, respectively.

Bitmap families
Bitmap families function in exactly the same manner as app icon families, except
they are used for general bitmap images rather than an application’s launcher
icon. The interface for creating and editing a bitmap family is identical to that for
manipulating an app icon family. Also, the same caveat regarding color depth order
applies to bitmap families; be careful to list the individual images from lowest bit
depth to highest.

Creating Catalog Resources
Catalog resources are user interface elements that may be contained within a form,
such as buttons and scroll bars. To create a catalog resource in Constructor, you
must drag it from the Catalog window to an existing form editor window. Because
the Catalog window, pictured in Figure 6-16, is not available when you first start
Constructor, you must open it by selecting Window ➪ Catalog, or by pressing Ctrl+Y.

Once the Catalog window is open, you can drag user interface elements from the
Catalog window to any open form editor window to add those elements to the form.

The full details of adding catalog resources to a form are too lengthy to include
here; see Chapter 7, “Building Forms,” for more information.

Cross-
Reference

Caution

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 156

157Chapter 6 ✦ Creating and Understanding Resources

Figure 6-16: The Catalog window

Creating Resources with PilRC
PilRC uses a different strategy from Constructor’s to produce Palm OS resources.
Instead of graphically assembling the interface on-screen, you make a text file
describing the resources you want, which PilRC compiles into a form that the
GNU Palm tools can build into a working .prc file.

A PilRC resource file has an .rcp extension. To compile an .rcp file into resources,
use the following command line

pilrc file.rcp

where file.rcp is the resource file you wish to compile. You may also specify an
output directory, like this:

pilrc file.rcp C:\resources

The previous command line would compile resources from file.rcp and write
them to the directory C:\resources. If you omit the output path, PilRC writes
resources to the current directory.

Each resource that PilRC compiles becomes its own separate file with a .bin exten-
sion. Compiled resource file names are composed of the resource’s four-character
type, followed by the resource ID in hexadecimal. For example, a form (type tFRM)
with resource ID of 1000 becomes a file named tFRM03e8.bin.

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 157

158 Part III ✦ Programming the Palm OS

Creating Application Resources
The following sections detail the syntax required to create specific project
resources in PilRC. Words in ALL CAPS represent actual keywords that should
be typed as-is in the .rcp file. Words contained in angle brackets (“<” and “>”)
represent required fields for which you must provide a value, and anything
contained in square brackets (“[“ and “]”) represents an optional field.

Both C and C++ style comments work within .rcp files, provided you place them
between different resource commands in the file, not within them. For example,
the following lines will result in a PilRC error:

ALERT ID 1000
INFORMATION
// This comment will cause an error
BEGIN

TITLE “About Hello World”
MESSAGE “Hello World\nVersion 1.0”
BUTTONS “OK”

END

Many PilRC commands take string arguments. Within a string argument, PilRC
understands certain character escapes to indicate special characters. Table 6-3
outlines these special characters.

Table 6-3
PilRC Special Characters

Character Meaning

\t Tab character

\n Linefeed

\nnn nnn stands for a three-digit octal character code. For example, \141
represents a lowercase a.

Forms and the catalog resources they contain are covered later, in Chapter 7,
“Building Forms.” Menus are detailed in Chapter 8, “Building Menus.”

Application icon name
PilRC uses the following command to generate the application name that will
appear next to the application’s icon in the launcher:

APPLICATIONICONNAME ID <resourceID> <application name>

Cross-
Reference

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 158

159Chapter 6 ✦ Creating and Understanding Resources

For example, the following line will create an application icon name of “Hello” with
resource ID 100:

APPLICATIONICONNAME ID 100 “Hello”

Because the application icon name is a required parameter for the build-prc
tool, it is not strictly necessary to include an APPLICATIONICONNAME directive in
your .rcp files. The build-prc tool ignores the PilRC-generated application icon
name in favor of its command line argument.

Application icons
The command line for creating icons is

ICON <icon file name>

The ICON directive creates a standard Palm OS application icon with a resource
ID of 1000. icon file name should specify the file name of a Windows 32 × 32,
32 × 22, or 22 × 22 bitmap.

The following example creates an icon from the file largeicon.bmp:

ICON “largeicon.bmp”

To create a small icon for the list view of the application launcher, use the
SMALLICON command:

SMALLICON <icon file name>

For small icons, icon file name should be the file name of a Windows 15 × 9 bitmap.

In order to support multiple color depths, you can also create large and small icon
families, which contain multiple copies of the same image in different color depths.
The directive for creating a family of large icons is ICONFAMILY, whose syntax looks
like this:

ICONFAMILY <1-bit icon file name> <2-bit icon file name>
<4-bit icon file name> <8-bit icon file name>
[TRANSPARENT <r> <g>] [TRANSPARENTINDEX <index>]

For each of the icon file names in the list, you may skip a particular color depth by
placing an empty set of double quotes in that icon’s position in the list. For example,
the following would create an icon family containing only 1-bit and 8-bit images:

ICONFAMILY “1-bit.bmp” “” “” “8-bit.bmp”

Note

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 159

160 Part III ✦ Programming the Palm OS

The TRANSPARENT option allows you to specify the RGB (red, green, blue) value of a
color in the image that should be treated as transparent. You may alternately spec-
ify TRANSPARENTINDEX to make the color at a particular index within the image’s
color palette transparent. The following examples show the two transparency
options in action; the first makes magenta the transparent color, and the second
uses the color at index 255:

ICONFAMILY “1-bit.bmp” “” “” “8-bit.bmp” TRANSPARENT 255 0 255
ICON FAMILY “1-bit.bmp” “” “” “8-bit.bmp” TRANSPARENTINDEX 255

To make an icon family for an application’s small icon, simply substitute
SMALLICONFAMILY for ICONFAMILY.

Template Windows bitmaps for the large and small application icons may be found
in the GNU PRC-Tools portion of the CD-ROM accompanying this book. The large
icon template also includes the “big black dot,” which appears as the background
for the Palm OS’s built-in application icons, as well as in the icons of many third-
party programs.

Version string
Use the VERSION command to create an application’s version string. For example

VERSION ID <resourceID> <version string>

The following example creates a version resource with resource ID 1 and a version
string of “1.0b”:

VERSION ID 1 “1.0b”

Strings
The STRING command creates a string resource. For example:

STRING ID <resourceID> <string>

For readability, the string parameter may span more than one line by your append-
ing a backslash (\) to the end of each line of the string, as in the following example:

STRING ID 1000 “But, soft! What light through yonder”\
“ window breaks?\nIt is the east, and Juliet is”\
“ the sun.”

For particularly large amounts of text, or for easier localization of strings, you may
also use the following syntax to import string resources from separate text files:

STRING ID <resourceID> FILE <file name>

The file name parameter should contain the path and file name of a plain text file
that contains the appropriate string.

On the
CD-ROM

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 160

161Chapter 6 ✦ Creating and Understanding Resources

Categories
PilRC’s CATEGORIES command generates an app info string list, suitable for
passing to the API function CategoryInitialize to set the default category names
in an application. For example,

CATEGORIES ID <resourceID> <category1> <category2> ...

Category names may be only 15 characters long, and there is a maximum of 16
categories. The following example produces some common default categories:

CATEGORIES ID 1000 “Unfiled” “Business” “Personal”

Alerts
The ALERT command in PilRC generates an alert dialog box resource. For example

ALERT ID <resourceID>
[HELPID <help ID>]
[DEFAULTBUTTON <button index>]
[INFORMATION] [CONFIRMATION] [WARNING] [ERROR]
BEGIN

TITLE <alert title>
MESSAGE <alert message>
BUTTONS <button1> <button2> ...

END

To include online help in an alert dialog box, fill in help ID with the resource ID
of a string resource.

✦ DEFAULTBUTTON specifies which of the alert dialog box’s buttons should be
activated when the Palm OS dismisses the dialog box, which usually occurs
when the user switches to another application without tapping any of the
dialog box’s buttons. The button index parameter starts at 0 for the left-
most button in the alert.

✦ One of INFORMATION, CONFIRMATION, WARNING, or ERROR should be specified
to indicate the icon the alert displays.

✦ The TITLE specifies the text that will appear in the title bar of the alert dialog
box. Text in MESSAGE will form the main text displayed by the alert. The same
multiline continuation available for string resources (see above) may be used
for an alert’s message string.

✦ The BUTTONS parameter defines and names the buttons at the bottom of the
alert dialog box. All alerts must contain at least one button.

The following example produces the alert pictured in Figure 6-17:

ALERT ID 1200
INFORMATION
BEGIN

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 161

162 Part III ✦ Programming the Palm OS

TITLE “About Hello World”
MESSAGE “Hello World\n”\

“Version 1.0”
BUTTONS “OK”

END

Figure 6-17: A sample dialog box produced in PilRC

Bitmaps
The BITMAP command converts bitmaps in .bmp, .pbitm, .xbm, and .pbm formats
into Palm bitmap resources. For example

BITMAP ID <resourceID> <bitmap file name> [NOCOMPRESS]
[COMPRESS] [FORCECOMPRESS]

Specifying COMPRESS will result in a compressed bitmap if compression would
result in a smaller resource than an uncompressed bitmap; FORCECOMPRESS
compresses the bitmap regardless of the resulting resource size. By default,
the NOCOMPRESS directive is in force, resulting in no compression at all, which
should be suitable for most purposes.

The following example converts a Windows bitmap named picture.bmp into a
compressed bitmap resource with resource ID 1002:

BITMAP ID 1002 “picture.bmp” COMPRESS

You may also convert 2-bit and 4-bit grayscale images, as well as 8-bit color images,
using the following syntax:

BITMAPGREY ID <resourceID> <bitmap file name>
BITMAPGREY16 ID <resourceID> <bitmap file name>
BITMAPCOLOR ID <resourceID> <bitmap file name>

In much the same fashion as creating application icon families, you may also create
bitmap families that contain multiple images to support more than one color depth.
Use the BITMAPFAMILY directive, which works in similar fashion to the ICONFAMILY
or SMALLICONFAMILY directives:

BITMAPFAMILY ID “1-bit.bmp” “” “” “8-bit.bmp”
TRANSPARENTINDEX 255

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 162

163Chapter 6 ✦ Creating and Understanding Resources

Previewing the Interface in PilrcUI
As a resource compiler, PilRC does not offer the immediate graphic feedback possi-
ble using CodeWarrior’s Constructor tool. However, PilrcUI, a companion program
shipped with PilRC, does provide a quick preview of the resources defined by an
.rcp file. PilrcUI’s display is not as faithful to the actual appearance of the Palm OS
as the views displayed in Constructor, but it is useful for getting an approximate
idea of what the resources in an .rcp file will look like.

You can start PilrcUI from the command line, passing it the name of the .rcp file
you wish to view:

pilrcui hello.rcp

Alternatively, you can run PilrcUI, and then select File ➪ Open and specify the
.rcp file you wish to open.

It can be useful to switch between the .rcp file in your text editor and PilrcUI as
you code your resources. Once an .rcp file is open in PilrcUI, selecting File ➪
Reload, or simply clicking anywhere in the PilrcUI display, reloads the currently
displayed .rcp file. You can also switch between different forms contained in the
same .rcp file by choosing a specific form resource from PilrcUI’s Form menu.

Assigning Constants to Resources
Using raw resource ID numbers in your source code can be a debugging nightmare,
because few programmers can successfully memorize a bunch of four-digit num-
bers and the resources they represent. Fortunately, PilRC allows you to include
constant definitions from a standard C .h file, allowing you to substitute symbolic
constants for resource ID numbers.

All that is required in the PilRC file to include a header file full of constant definitions
is an #include statement at the head of the .rcp file. For example, the following line
includes the header file helloRsc.h:

#include “helloRsc.h”

The header file should contain standard C-style #define statements. This line,
taken from the helloRsc.h file in Chapter 4, defines a constant for the resource
ID of the Hello World application’s about box:

#define AboutAlert 1200

Now, instead of using the resource ID 1200 in the hello.rcp resource file, the
following will work:

ALERT ID AboutAlert

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 163

164 Part III ✦ Programming the Palm OS

Summary
In this chapter, you learned about Palm Computing’s user interface guidelines, as
well as resource creation. After reading this chapter, you should understand the
following:

✦ Palm OS user interface guidelines are a combination of making fast programs,
matching frequency-of-use to accessibility, and making programs that are easy
to use.

✦ Following the Palm OS user interface guidelines allows you to make applica-
tions that better fit the expectations of Palm OS handheld users, decreasing
your application’s learning curve and its users’ level of frustration.

✦ CodeWarrior Constructor is a graphical tool that provides a WYSIWYG
interface for creating Palm OS resources.

✦ PilRC provides a different approach to resource creation from Constructor’s,
compiling resource descriptions from a text file into actual resources.

✦ ✦ ✦

4676-7 ch06.f.qc 9/29/00 12:50 PM Page 164

Building Forms

The primary interface a Palm OS application presents to
users is contained within forms. Forms are the user’s win-

dows to working with an application, providing displays for the
user to view data and controls to allow the user to manipulate
that data. This chapter will show you how to construct forms
and the catalog resources that make up the user interface
elements within those forms, using both CodeWarrior’s
Constructor and the GNU PRC-Tools’s PilRC tools.

Building Forms with Constructor
To create a new form in Constructor, select the gray Forms
bar in the project window, and then select Edit ➪ New Form
Resource, or just press Ctrl+K. Double-clicking the name of
the newly created form, or selecting it and pressing Enter,
opens the form layout window, pictured in Figure 7-1. The
form layout window is where you add, position, and modify
the user interface elements in a particular form.

The right side of the form layout window, labeled Layout
Appearance, displays the form and provides a workspace
for selecting, positioning, and resizing the form’s contents.
Layout Properties, on the left side, shows a list of properties
for whatever object is currently selected in the Layout
Appearance side of the window.

When you create a form, the object ID numbers in the
Layout Appearance part of the form layout window tend to
obscure the user interface objects, making it difficult to see
what the completed form will look like. To hide the object
IDs, click anywhere in the form display, and then select
Layout ➪ Hide Object IDs.

Simply click an object to select it. You may position a selected
object by dragging it around the Layout Appearance view. Use
the arrow keys to make fine adjustments, one pixel at a time,
to an object’s position. Dragging the black boxes in the cor-
ners of an object resizes it.

Tip

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Building forms
with Constructor

Building forms
with PilRC

Creating increment
arrows

✦ ✦ ✦ ✦

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 165

166 Part III ✦ Programming the Palm OS

Figure 7-1: The form layout window

Constructor also provides another way to view and select a form’s contents. The
hierarchy window, pictured in Figure 7-2, lists a form and its contents. To open
the hierarchy window, select Layout ➪ Show Object Hierarchy, or press Ctrl+H.

Figure 7-2: The hierarchy window

Selecting an object in the hierarchy window also selects that object in the form
layout window. Likewise, picking different objects from the form layout window
changes which object is selected in the hierarchy window.

If your form contains objects that overlap or completely cover each other, it can be
difficult to select them in the Layout Appearance side of the form layout window.
Use the hierarchy window to select objects that are buried under other objects.

The Catalog window, pictured in Figure 7-3, is the source for all new form objects.
To open the Catalog window, select Window ➪ Catalog or press Ctrl+Y.

Tip

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 166

167Chapter 7 ✦ Building Forms

Figure 7-3: The Catalog window

Creating new objects on a form is a simple matter of dragging the appropriate object
from the Catalog window to the form layout window, where you can resize and set
the new object’s properties. You may also copy objects from other forms, even
forms in other projects, and then paste them into a new form. To copy an object,
select it in either the form layout window or the hierarchy window, and then select
Edit ➪ Copy Object or press Ctrl+C. Paste an object into a form by selecting Edit ➪
Paste Object or pressing Ctrl+V. Objects copied in this way retain most of their
original properties; Constructor changes only the object ID to a number appropriate
to the object’s new form.

You can save time designing an interface by copying and pasting from the example
applications provided by Palm Computing, or from other applications you have
written yourself. Copying resources from the built-in applications also ensures that
your own program has a similar look and feel to the applications with which most
Palm OS users are familiar.

To delete an object, select it in the form layout window or the hierarchy window,
and then select Edit ➪ Clear Object or press Delete.

Setting Common Object Properties
Many interface objects share common properties, which are described as follows:

✦ Object Identifier: Not to be confused with an object’s resource ID, the Object
Identifier allows you to give a name to an object that is more readable than
the numeric resource ID. The Object Identifier also appears next to objects in
the hierarchy window. Besides offering a human-readable alternative to the
resource ID, Constructor also uses the Object Identifier to create resource
constants when automatically generating a header file.

Tip

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 167

168 Part III ✦ Programming the Palm OS

See Chapter 6, “Creating and Understanding Resources,” for more details about
automatically generating a header file in Constructor.

✦ Left Origin and Top Origin: These two properties control the location of the
upper-left corner of the object in relation to the screen. The upper left corner
of the screen has the coordinates 0, 0. Coordinates increase from left to right
and from top to bottom, with the lower-right corner having coordinates
159, 159.

✦ Width and Height: These properties control the width and height of the
object, in pixels.

✦ Font: Many user interface objects display text as part of the object. The Font
property controls which font the Palm OS uses to draw the object’s text.
Table 7-1 shows examples of the available fonts. The Palm OS identifies fonts
by means of an enumerated type called FontID. Table 7-1 also lists the con-
stants in the FontID enumeration. Note that the Bold 12 font was introduced
in Palm OS 3.0, and is therefore not available in earlier versions of the
operating system.

✦ Usable: If an object’s Usable property is unchecked, the Palm OS neither draws
the object nor allows user interaction with the object. Application code can set
the Usable property of an object at run time. This allows for user interface ele-
ments that are hidden when the application first displays a form, and then
appear in response to user input.

Chapter 9, “Programming User Interface Elements,” contains further information
on changing the Usable property.

Table 7-1
Fonts in the Palm OS

Font Name # FontID Constant Example

Standard 0 stdFont

Bold 1 boldFont

Large 2 largeFont

Symbol 3 symbolFont

Symbol 11 4 symbol11Font

Symbol 7 5 symbol7Font

LED 6 ledFont

Bold 12 7 largeBoldFont

Cross-
Reference

Cross-
Reference

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 168

169Chapter 7 ✦ Building Forms

Setting Individual Object Properties
The following sections explain how to set various properties for forms and the user
interface resources they may contain. Where appropriate, the object descriptions
also contain guidelines for properly using each object.

Forms
The property that affects how a form behaves the most is its Modal property. If
Modal is checked, the Palm OS draws the form with a border and ignores stylus
taps outside the edges of the form. Check the Modal property when creating a
dialog box, and leave it unchecked for full-screen views.

Another property that forms have is Save Behind. When the Palm OS draws a form
with the Save Behind property checked, the system saves the region of the screen
occupied by the form, and then redraws that region after erasing the form. This can
save some time when returning from a dialog form because the form underneath
does not have to redraw all its contents, just the portion that was covered by the
dialog form.

There is one case where the system may not restore the pixels behind a modal
form. If there is not enough memory available to save the screen area behind the
modal form, the Palm OS posts a frmUpdate event to the underlying form,
instead, requesting the underlying form to redraw its contents. In fact, the debug
versions of Palm OS 3.5 always post an update event in lieu of saving the screen
area behind a modal form. Relying on the Save Behind property to redraw a form
for you may not always work, so be sure that any form that will have modal dialog
boxes displayed over it handles frmUpdate in its event handler.

When should you use the Save Behind property, then? To illustrate, imagine an
application with two forms, called A and B. If you open form B over the top of form
A, and form A is not likely to change its contents while covered, form B should have
the Save Behind attribute set. Likewise, if form A might change its contents while
form B is open, not setting Save Behind on form B is a better idea, because form
A will need to redraw its contents anyhow, and saving the area behind form B is
simply a waste of system resources.

You can set the title of the form by changing the Form Title property. In full-screen
forms, the system draws the title left-justified at the top of the form; in modal dialog
boxes, the title is centered. Regardless of whether the form is modal or not, the title
occupies the top 13 pixels of the form and can contain only a single line of text.

In modal dialog boxes, you may set the Help ID to the resource ID of a string resource.
If Help ID is set, the operating system draws a small “i” icon in the upper-right corner
of the form’s title bar. Tapping the icon displays the string resource in a dialog box
labeled “Tips.” You can provide the user with online help for dialog boxes using the
Help ID mechanism.

Note

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 169

170 Part III ✦ Programming the Palm OS

Setting a form’s Menu ID attaches a specific menu bar resource to that form. When
the user taps the Menu silk-screened button, the system displays the menu attached
to the currently displayed form. Creating menu resources is covered later in this
chapter.

The Default Button ID specifies which button the operating system should pick in
a modal dialog box if the user switches to another application instead of exiting a
dialog box after having made a button choice. Default Button ID should contain
the resource ID of the appropriate button.

A modal dialog box should occupy the entire width of the screen and rest at the
bottom, obscuring any command buttons in the application beneath it and leaving
the application’s title bar visible. Three pixels of space should separate the top of
the dialog box’s title bar from the bottom of the application’s title bar; if the dialog
box is too large to allow this, the dialog box should occupy the whole screen. The
border around a modal dialog box is not included in the width and height that you
set for a form, so you should allow for an extra two pixels on the sides, top, and
bottom of the form. For example, a full-screen modal dialog should have both its
Left Origin and Top Origin set to two, and its Width and Height set to 156.

Buttons
The Anchor Left property of a button does not actually do anything. Anchor Left is
useful in some other controls, such as pop-up triggers and selector triggers, but it
serves no useful purpose for buttons, so you can safely ignore it.

Check the Frame property to give the button a frame, which the Palm OS draws as
a rectangle with rounded corners. Most buttons should have a frame. The major
exception to this is an increment arrow, whose caption is a single arrow character
from one of the Palm OS symbol fonts. Increment arrows do not need a frame. The
sidebar “Creating Arrow and Scrolling Buttons” in this chapter describes how to
create increment arrow buttons.

Non-Bold Frame controls the thickness of the frame to draw around the button. When
checked, the system draws the button with a single-pixel frame. Left unchecked, Non-
Bold Frame causes the button to have a bold, two-pixel frame. By default, buttons in
Palm OS applications should have non-bold frames.

The Label field controls the text displayed in the button. The system draws button
labels centered in the middle of the button, clipping the left and right edges if the
text is longer than the width of the button.

In Palm OS 3.5 and later, you can create a graphic button, which displays a graphic
image instead of text. A graphic button has two bitmaps associated with it, one that
normally appears on the button, and another that only shows up when the user
taps the button. Set the normal image by entering the resource ID of an existing
bitmap resource into the Bitmap Resource field, and set the image to display
while selected in the Selected Bitmap field.

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 170

171Chapter 7 ✦ Building Forms

Although prior to Palm OS 3.5 you cannot use a bitmap as a button’s label, it is still
possible to make a button that appears to have a picture on it. Simply create a
form bitmap resource the same size as the button and place both the button and
the bitmap in the same location on the form. The Palm OS will even invert the
bitmap (turning black pixels white and vice versa) when the user taps the button.

Tip

Creating Arrow and Scrolling Buttons

Most of the Palm Computing built-in applications make use of increment arrows, which
appear as arrow-shaped buttons without frames. One good example is the pair of scroll
arrows located in the lower-right corners of the To Do and Address Book applications.

Increment arrows are simply regular button or repeating button resources that do not have
frames. Instead of a normal text caption in the button, a single character from one of the
Palm OS symbol fonts serves to make the button appear to be arrow-shaped. The symbol
fonts contain a variety of arrows, as well as many other small graphic elements used by the
operating system, such as check boxes and Graffiti shift indicator icons.

To make an increment arrow, do the following:

1. Create a regular button or repeating button resource.

2. Uncheck the button’s Frame property in Constructor or use the NOFRAME
attribute in PilRC.

3. Set the button’s font to the symbol font containing the arrow character you want to
use. The three symbol fonts are Symbol, Symbol 11, and Symbol 7, which you can
identify in PilRC with the numbers 3, 4, and 5, respectively.

4. Set the button’s label text to the appropriate arrow character. In Constructor, check
the Hex check box next to the Label property and enter the character’s number in
hexadecimal. For a PilRC resource file, specify the button’s label as an octal number
preceded by a backslash. For example, BUTTON “\001” sets the button’s label to be
character 1 (decimal).

5. Resize the button to about the same size as the character in the button’s label.

The following table lists arrow characters in the Palm OS symbol fonts and the information
you need to use those characters as increment arrows.

Symbol Font Number (decimal) Width Height

Symbol 3 12 12

Symbol 4 12 12

Symbol 5 12 12

Symbol 6 12 12

Continued

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 171

172 Part III ✦ Programming the Palm OS

Check boxes
The Selected property of a check box controls whether or not the box should
appear checked by default when the Palm OS draws it on a form. If Selected is
checked, so is the check box.

You can group multiple check boxes together to make them mutually exclusive using
the Group ID property. Only one check box in a group sharing the same Group ID may
be checked at a time. Be sure to set the Selected property of only one check box in a
group; setting more than one causes strange behavior at run time.

Label controls the text displayed to the right of the check box. Tapping the text in
the label toggles the check box just as if the box itself had been tapped. In fact, if
you size a check box larger than just the area occupied by its box and label, all of
the space surrounding the check box, out to the edges of its height and width, will
toggle the box when tapped.

Although the check box resource does not offer an option to create a label to the
left of the check box, it is possible to create one yourself. Leave the Label property
of the check box blank, and then create a separate label resource and place it to
the left of the check box. The user cannot toggle the check box by tapping this
label, but tapping the box itself still performs the expected toggling.

Tip

Continued

Symbol Font Number (decimal) Width Height

Symbol 7 11 10

Symbol 8 11 10

Symbol 11 2 8 13

Symbol 11 3 8 13

Symbol 7 1 13 8

Symbol 7 2 13 8

Symbol 7 3 13 8

Symbol 7 4 13 8

The standard vertical scroll arrows in the built-in applications are repeating buttons using
characters 1 and 2 (decimal) from the Symbol 7 font. The Palm OS provides the
FrmUpdateScrollers function to gray out one or the other of the scroll arrows when at the
top or bottom of the data a form can display. See Chapter 9, “Programming User Interface
Elements,” for more details about using FrmUpdateScrollers.

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 172

173Chapter 7 ✦ Building Forms

Fields
A text field’s Editable property controls whether the user may change the contents
of the field. When Editable is checked, the field is user-editable, and when unchecked,
the field does not accept user input. You may still change the contents of the field
programmatically, even when Editable is not set. A non-editable text field can be
used to display variable-length text without resorting to the basic Palm OS drawing
APIs to manually write characters to the screen.

Underline controls whether a field should have a gray (dotted) underline under
each row of text. If this property is checked, the field is underlined. Otherwise, the
field’s text displays without an underline. Editable text fields should always have
an underline; without an underline, there is no indication to the user that the field
even exists.

The Windows version of Constructor that ships with CodeWarrior for Palm Comput-
ing platform R5 contains a bug in how it generates underlined field resources. When
displaying an underlined text field generated by this version of Constructor, Palm OS
version 3.1 and later draws a solid underline beneath the text in the field. The under-
line setting for fields is a two-bit value. In Palm OS version 3.0 and earlier, 0 repre-
sented no underline, and 1 represented a gray, dotted underline. The operating
system code performed a simple if statement to determine whether or not the
field should be underlined, not caring what the non-zero value was.

For version 3.1 and later, Palm Computing added the value 2, indicating a solid
underline. Unfortunately, the R5 Constructor for Windows has always saved under-
lined field resources with an underline value of 2, and now that the operating system
actually distinguishes between different non-zero values for the underline attribute,
any underlined field resource generated by Constructor on Windows displays with a
solid underline in recent versions of the OS. You can work around this limitation by
manually setting the underline attribute in your code for each underlined field before
displaying them in your application; see Chapter 9, “Programming User Interface
Elements,” for more details. Fortunately, the R6 version of CodeWarrior for Palm
Computing platform fixes this problem for Windows developers.

Check the Single Line property to create a single-line field. A single-line field displays
only one line of text, and it does not accept Tab or Return characters. Attempting to
enter text past the end of the line causes the system to beep. When the Single Line
property is not checked, the field becomes a multiline field. A multiline field scrolls
when the user enters more text than the field can display at once, or when the user
drags the stylus to select text outside what the field is currently displaying.

The Dynamic Size property, when checked, tells the field to put a fldHeight
ChangedEvent in the event queue when the user enters enough text to cause the
field to scroll, either up or down. You can intercept this event in your code to allow
your application to resize the field as the user enters text.

Caution

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 173

174 Part III ✦ Programming the Palm OS

See Chapter 9, “Programming User Interface Elements,” for details about handling
the fldHeightChangedEvent.

If a field’s Editable property is not set, the Left Justified check box becomes avail-
able. Leaving Left Justified checked means that text in the field is justified to the
field’s left margin; unchecking Left Justified changes the field to right justification.
Note that user-editable fields cannot be right justified, which is why this property
cannot be changed when Editable is checked.

Max Characters sets the maximum number of characters that the field can contain.
The Palm OS has an absolute maximum of 32767 characters in a single field. All
fields require a Max Characters value to work properly.

If Auto Shift is checked, Palm OS version 2.0 and later will perform automatic capi-
talization at the beginning of sentences in this field. Setting this property is a good
idea in order to maintain consistency with other Palm applications.

The Has Scroll Bar property, when checked, causes the field to put more fldHeight
ChagnedEvent events onto the queue. Setting this property is important for text
fields with associated scroll bar resources that must be updated regularly as the
contents of the field change.

See Chapter 9, “Programming User Interface Elements,” for more information about
implementing scrolling text fields.

When checked, the Numeric property restricts character entry to numbers. The
field will ignore any input that does not consist of numeric characters (0–9) or the
decimal character, as currently defined in the Palm OS number format settings.

It is still possible to paste non-numeric data into a numeric field from the clip-
board, so you cannot rely entirely on the Numeric property to validate the text
field’s contents.

Form bitmaps
A form bitmap resource serves as an anchor to attach a bitmap resource to a form.
The form bitmap’s Bitmap Resource ID property contains the resource ID of an
existing bitmap. You may also click the Create button in the Bitmap Resource ID
field to open the standard bitmap editor; in this case, Constructor creates the
bitmap resource for you and assigns its resource ID to the form bitmap’s Bitmap
Resource ID property.

Gadgets
Other than setting its position and size, you really cannot do a whole lot with a gadget
resource at design time. Everything interesting about a gadget occurs at run time.

Caution

Cross-
Reference

Cross-
Reference

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 174

175Chapter 7 ✦ Building Forms

Chapter 9, “Programming User Interface Elements,” contains further information
about programming gadget resources.

Graffiti shift indicator
Any form that contains an editable text field should also have a Graffiti shift indica-
tor. Only one indicator should be placed on a form; extra shift indicators are not
only redundant, they also confuse the Palm OS field-handling routines, resulting in
unpredictable field behavior. You should place a Graffiti shift indicator in the lower-
right corner of a form. Once it has been placed on a form, you can effectively ignore
a Graffiti shift indicator when developing your application; the Palm OS handles
updating the indicator automatically.

Labels
A label lets you add text to a form that the user cannot edit. Changing a label at run-
time through code is also rather limited. Any new text you assign to a label using
the FrmCopyLabel function may be no longer than the original text as defined in
the Constructor label resource. Labels are intended only for static text display.

The Text property of a label contains the text it should display. Keep in mind when
editing the Text property that a label’s text may contain multiple lines. Pressing
Enter while editing a label’s caption inserts a line break into the text displayed
by the label.

Lists
List resources serve double duty. By themselves, lists are stationary interface ele-
ments that occupy space on a form. When combined with a pop-up trigger resource,
lists become hidden elements that appear for selection only when the user has need
of them. List properties must be set a little differently depending on whether you plan
to use them as-is or in conjunction with pop-up triggers.

A list resource does not have a Height property. Instead, you control how tall the
list is by specifying in the Visible Items property the number of rows the list should
display. If the list contains more items than the value of the Visible Items property,
the list contains arrow buttons to allow scrolling.

If you specify a value of zero (0) for Visible Items, the Palm OS will draw all the items
in the list. Constructor does not show any rows for a list with zero Visible Items, but
the operating system draws them anyway, which can result in a bit of a mess if you
have another interface element in the “empty” space below the list. You should usu-
ally use a Visible Items setting of zero only when the list is intended as a pop-up.
Specifying a positive value for Visible Items in a non-pop-up list ensures that the
list looks exactly the way you want it to at run time.

Cross-
Reference

4676-7 ch07.f.qc 9/29/00 12:50 PM Page 175

176 Part III ✦ Programming the Palm OS

Setting Visible Items to a value greater than the number of items actually in the list
can result in an error. If you plan to fill the list dynamically at run time, you must
either include enough placeholder list items to equal or exceed the Visible Items
setting, or you must call LstSetListChoices to set the number of items in the list.

For lists that appear as part of a form’s regular interface, be sure to check the Usable
property. A pop-up list should have the Usable property turned off to keep the sys-
tem from drawing it on the form until the user taps its associated pop-up trigger.

To add items to a list, select the List Items row in the Layout Properties side of the
form layout window. Then, select Edit ➪ New Item Text or press Ctrl+K. You can
remove list items by selecting them, and then choosing Edit ➪ Clear Item Text or
pressing Backspace.

When the Palm OS displays a list attached to a pop-up trigger, the list appears in the
position specified by its Top Origin and Left Origin properties, not relative to the loca-
tion of the pop-up trigger. Be sure to place the list so that it covers the entire pop-up
trigger to prevent ugly bits of the trigger from peeking around the edges of the dis-
played list. If your pop-up list needs to change location, you must handle this yourself
in code. For example, the pop-up triggers for selecting a type of phone number in the
Address Book application’s Edit view are part of a table, so the program cannot
assume that they will always be in the same position. Address Book handles this
by changing the location of the phone number type list before displaying it.

Chapter 9, “Programming User Interface Elements,” explains how to dynamically
change the location of a pop-up list.

Pop-up triggers
A pop-up trigger is useful only when combined with a list resource, but it does not
necessarily need to display an item from its attached list. The Label property con-
trols the text initially displayed in a pop-up trigger’s label when the system first
draws the pop-up trigger control. By default, the system changes a pop-up trigger’s
label to the most recently selected list item in the pop-up’s attached list, but you
can modify the label in code if you want to display something other than a list
value. For example, the Details dialog box in the built-in To Do application has a
Due Date pop-up, which displays an actual date instead of “Today,” “Tomorrow,”
or the other values in the pop-up trigger’s associated list.

Dynamically changing a pop-up trigger’s label in response to user input is covered
in Chapter 9, “Programming User Interface Elements.”

Set the List ID property to the resource ID of the list that the pop-up trigger should
display when tapped.

Cross-
Reference

Cross-
Reference

Caution

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 176

177Chapter 7 ✦ Building Forms

When the pop-up trigger’s label text changes, the width of the entire pop-up control
also changes to accommodate the new label. Text longer than the current label causes
the trigger to grow, whereas shorter text shrinks the control’s width. The Anchor Left
property, when checked, nails down the left side of the control, causing the right end
of the trigger to do all the growing and shrinking. Unchecking Anchor Left reverses
this behavior, fixing the position of the right side of the pop-up trigger and causing
the system to resize the left end of the control. Keep in mind when designing a form
that the size of a trigger is dynamic; user interface elements on the sizeable end of
a pop-up trigger could collide with the trigger’s label if it grows long enough.

A common use for a pop-up trigger with the Anchor Left property unchecked is
for a right-justified category selector in the upper-right corner of the application.
Category pop-up triggers in the built-in applications have the following properties:

✦ Left Origin: 160

✦ Top Origin: 0

✦ Width: 0

✦ Height: 13

✦ Anchor Left: Unchecked

Push buttons
Like check boxes, push buttons have a Group ID property to assign a number of push
buttons to an exclusive group. Only one push button in a particular group may be
selected at a time. Unlike check boxes, it does not make sense to leave push buttons
with a Group ID of zero (0). Push buttons should always occur in groups, never indi-
vidually; however, the Palm OS does not enforce this.

Set the text inside a push button by editing its Label property. Like that on regular
buttons, push button text is centered and clipped at the edges of the button.

In Palm OS 3.5 and later, you may create a graphic push button, which can display
an image instead of text. Like a graphic button, there are two images associated
with a graphic push button, one for normal display and one that appears when
the user taps the push button. Set the normal image in the Bitmap ID field,
and the selected image in the Selected Bitmap ID field.

There is no way to set at design time whether a push button is selected or not.
You must set the currently selected push button in a group through code when you
initialize the form containing the push buttons.

See Chapter 9, “Programming User Interface Elements,” for more information
about initializing push buttons.

Cross-
Reference

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 177

178 Part III ✦ Programming the Palm OS

A group of push buttons should be arranged either in a single row or a single column.
Buttons in a row should all have the same height; likewise, buttons in a column should
all be the same width. Adjacent push buttons share a border with each other, resulting
in a single-pixel line between buttons.

Unfortunately, there is no simple way to create a series of push buttons all at once.
You must create each button in a group individually, manually positioning it in rela-
tion to its brethren and sizing it to match the other buttons’ height or width. The
quickest way to create consistently sized push buttons is to make one button with
the proper size, and then select Edit ➪ Duplicate Object or press Ctrl+D to make an
exact copy of it. Using the arrow keys to perform fine adjustments to the buttons’
positions, or just filling in the Top Origin and Left Origin properties, can also be less
frustrating than using the mouse to move the buttons into their final positions.

Repeating buttons
The properties of a repeating button are exactly the same as those of a regular button;
only the button’s behavior differs. The built-in applications commonly use repeating
buttons to provide scrolling. When used as a scroll button, a repeating button should
not have a frame, and its Label property should contain a single arrow character from
one of the Palm OS symbol fonts. The sidebar “Creating Arrow and Scrolling Buttons,”
earlier in this chapter, provides details on duplicating the scroll buttons of the built-in
applications.

In Palm OS 3.5 and later, you may create a graphic repeating button, which can display
an image instead of text. You can set the normal image for a graphic repeating button
in the Bitmap Resource field, and the selected image in the Selected Bitmap field.

Scroll bars
A scroll bar resource can scroll only vertically, so you should not alter the default
width of 7 pixels that Constructor provides. Height is another story; a scroll bar is
usually as tall as the table or multiline text field it controls.

The Value, Min Value, Max Value, and Page Size properties affect the initial appear-
ance and behavior of the scroll car, the black bar in the middle of the scroll bar. Min
Value, usually zero (0), represents the numeric value of the scroll bar when the
scroll car is at the top of the bar. Similarly, Max Value is the value when the scroll
car is all the way at the bottom of the control. Value indicates the starting position
of the scroll car when the Palm OS initializes the scroll bar control. The Page Size
property controls the number of units the scroll car moves when the user taps the
gray area above or below the car.

That said, most applications should probably leave the values of all four of these
properties set to zero (0). The data associated with a scroll bar and displayed in an
accompanying table or multiline text field is often dynamic in nature, requiring appli-
cation code to initialize the scroll bar’s properties at run time. If the data controlled
by a scroll bar in your application is static, you can get away with setting the scroll

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 178

179Chapter 7 ✦ Building Forms

bar’s properties at design time and leaving them alone, but more likely than not, you
will need to write code to handle initializing and updating the scroll bar.

Setting a scroll bar’s properties through code is covered in Chapter 9, “Programming
User Interface Elements.”

Selector triggers
A selector trigger performs a function similar to that provided by a pop-up trigger.
Instead of displaying a list when tapped, though, a selector displays an entire dialog
box for user input. After the user selects a value from the dialog box and returns to
the form containing the selector trigger, the trigger displays a new value based on
user input to its attached dialog box. The built-in applications often use selector
triggers with the time and date pickers, which are part of the Palm OS itself.

Chapter 9, “Programming User Interface Elements,” discusses using the standard
Palm OS date and time pickers.

Like the pop-up trigger, a selector trigger’s Anchor Left property controls how
the trigger resizes as its label text changes. When checked, the left side of the
selector trigger is fixed in place; when unchecked, the right end of the trigger
remains stationary.

The Label property provides a place to enter the text the selector trigger initially
contains. Not only does the Label property control what displays in the control the
first time the application displays the trigger, it also reserves memory space to con-
tain the selector trigger’s label. If you try to set a selector trigger’s label to a string
that is longer than the Label you set at design time, your program will probably
crash, because it will not have enough memory for the longer string. Be sure to
set a Label that is large enough to contain the largest string the application might
assign to the trigger label.

Sliders
A slider’s Minimum Value and Maximum Value properties control what value the
left and right ends of the slider control represent. You can also set the Initial Value
property to define where the thumb appears on the slider, somewhere between
the minimum and maximum values. You can control how far the thumb jumps
when the user taps to either side of the thumb by setting the Page Jump Amount
property.

It is possible to customize the look of a slider control by assigning bitmap images
for its thumb and background. Change the thumb image by entering the resource ID
of an existing bitmap into the Thumb Bitmap field and background image by chang-
ing the Background property to an appropriate resource ID.

The properties for a feedback slider are identical to those for a regular slider control.

Cross-
Reference

Cross-
Reference

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 179

180 Part III ✦ Programming the Palm OS

Tables
A table’s Rows property controls the number of table rows visible at one time.
Constructor divides the height of a table by its number of rows to determine how
tall each row should be, so if you resize a table by changing its Height property, you
may also need to change the Rows property to prevent stretching or shrinking the
height of individual rows.

Be sure that your rows are all the same height. If a table is even a single pixel too
short, the table’s last row will not display at run time. Tables that are too tall
or too short may also result in strange selection behavior or other difficult-to-
diagnose bugs. The Height property for a table should be equal to the number of
rows times the height of each row. For most tables that use the Standard font,
each row should be 11 pixels high.

When you create a table, it already has one column defined. To add more columns,
select Column Widths in the form layout window, and then choose Edit ➪ New
Column Width or press Ctrl+K. The value for each of the Column Width properties
represents that column’s width in pixels.

Setting the types of data that may be displayed in each of a table’s cells cannot be
done at design time. Instead, you must initialize a table in code before your applica-
tion can successfully interact with it.

See Chapter 9, “Programming User Interface Elements,” for more on initializing
and using tables.

Building Forms with PilRC
Like the previous chapter’s section on PilRC, this chapter uses the following
conventions when describing the syntax PilRC uses to define resources:

✦ Words in ALL CAPS represent actual keywords that should be typed as-is in
the .rcp file.

✦ Words contained in angle brackets (< and>) represent required fields for
which you must provide a value.

✦ Words contained in square brackets ([and]) represent optional fields.

✦ Words separated by a pipe (|) are alternates; you should specify one or the
other. For example, USABLE|NONUSABLE means either USABLE or NONUSABLE,
but not both.

Cross-
Reference

Caution

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 180

181Chapter 7 ✦ Building Forms

Creating a Form Resource
The form resource in an .rcp file has the following syntax:

FORM ID <resourceID> AT (<Left> <Top> <Width> <Height>)
[MODAL]
[SAVEBEHIND|NOSAVEBEHIND]
[HELPID <resourceID>]
[DEFAULTBTNID <resourceID>]
[MENUID <resourceID>]
BEGIN

[TITLE “Form Title”]
<OBJECTS>

END

The resourceID parameter is simply the resource ID of the form, or a constant
defined to represent the form’s resource ID.

The AT (<Left> <Top> <Width> <Height>) construct occurs in all the user
interface object definitions, and it controls the location and size of the form or
control. Left and Top are the left and top coordinates of the object, respectively,
and Width and Height represent the object’s width and height in pixels. For
example, the following line produces a standard, full-screen form:

FORM ID 1000 AT (0 0 160 160)

Specifying the MODAL attribute produces a form with a two-pixel border, suitable for
use as a dialog box. A form with the MODAL attribute also ignores stylus taps outside
its own borders. Keep in mind that you must allow extra space for the size of the
form’s border when defining a modal dialog box. The following lines create a modal
dialog box that occupies the entire screen:

FORM ID 2000 AT (2 2 156 156)
MODAL

The SAVEBEHIND attribute tells the Palm OS to save the contents of the screen in the
same way as the Save Behind property in Constructor. See earlier in this chapter for
guidelines on how to use SAVEBEHIND.

You can provide online help for a modal dialog box by setting the HELPID attribute
to the resource ID of a string resource. The system places a small “i” icon in the
right of the dialog box’s title bar, which displays the associated string resource
when the user taps it.

The DEFAULTBTNID attribute specifies the resource ID of the form’s default button.
When the user switches applications before dismissing a dialog box, the system
simulates tapping this button to allow your program the chance to perform any
cleanup operations required before launching the other application.

To attach a menu to a form, put the menu’s resource ID in the form’s MENUID attribute.

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 181

182 Part III ✦ Programming the Palm OS

See Chapter 8, “Building Menus,” for more information about creating menu
resources.

The section of a form definition between the BEGIN and END lines defines the
objects that occupy the form. One exception to this is the TITLE directive, which
merely assigns a string to appear in the title bar of the form. Anything else between
BEGIN and END creates an individual catalog resource for the appropriate user inter-
face element.

Adding Objects to a Form
PilRC provides several useful keywords for use in positioning and sizing objects.
Table 7-2 describes keywords that you may use in place of numbers when describ-
ing an object’s size and location. These keywords take the place of parameters in
the AT portion of an object’s definition:

AT (<Left> <Top> <Width> <Height>)

Table 7-2
PilRC Position and Size Keywords

Keyword Meaning

AUTO Automatically generates width or height of an object, based on its
text label. AUTO is valid only for the Width or Height of an item.

CENTER Centers the object with respect to its form. This keyword is only
valid in the Top or Left parts of the AT statement. If Top is set to
CENTER, the object is centered vertically on the form; if Left is
set to CENTER, the object is centered horizontally on the form.

CENTER@<number> Places the center of the object at the coordinate specified by
number. This keyword is valid only when used to define the
Top or Left of an object.

RIGHT@<number> Aligns the item with its right side at the coordinate specified by
number. This keyword is valid only in the Left parameter.

BOTTOM@<number> Aligns the item with its bottom side at the coordinate specified
by number. This keyword is valid only in the Top parameter.

PREVLEFT Represents the previous item’s left coordinate.

PREVRIGHT Represents the previous item’s right coordinate.

PREVTOP Represents the previous item’s top coordinate.

PREVBOTTOM Represents the previous item’s bottom coordinate.

PREVWIDTH Represents the previous item’s width.

PREVHEIGHT Represents the previous item’s height.

Cross-
Reference

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 182

183Chapter 7 ✦ Building Forms

Along with the keywords in Table 7-2 and normal numbers, you may also specify an
object’s coordinates and size with simple arithmetic expressions. For example, the
following definitions create three buttons at the bottom of the screen with regular
spacing between them, using the text labels of the buttons to determine their sizes:

BUTTON “New” ID 1000 AT (1 BOTTOM@159 AUTO AUTO)
BUTTON “Details...” ID 1001 AT (PREVRIGHT+5 PREVTOP AUTO AUTO)
BUTTON “Show...” ID 1002 AT (PREVRIGHT+5 PREVTOP AUTO AUTO)

PilRC also provides another useful keyword to simplify creation of objects on forms;
in any place you are required to provide a resource ID, you may instead use the
AUTOID keyword. AUTOID automatically assigns a resource ID to an object, starting
at 9000 and increasing sequentially. The AUTOID keyword is a quick way to identify
objects that you do not need to refer to in your application’s source code, as is usu-
ally the case with labels. The following example creates a label resource and assigns
it a resource ID automatically:

LABEL “Enter your name below:” AUTOID AT (0 17) FONT 1

Like AT, there are other attributes that are common to more than one of the user
interface objects. These attributes are described as follows:

✦ USABLE and NONUSABLE. These attributes are analogous to the Usable prop-
erty in Constructor. Including the NONUSABLE attribute in an object definition
prevents the operating system from drawing that object on the form. You can
set the object back to USABLE status in the appropriate section of your appli-
cation’s code to display the object and allow the user to interact with it. If you
omit both USABLE and NONUSABLE from an object’s definition, PilRC assumes
the object is USABLE and generates resources accordingly.

See Chapter 9, “Programming User Interface Elements,” for more information
about toggling an object’s usability.

✦ FONT . For user interface elements that display text, this
attribute controls the font in which that text appears. Use the font numbers
specified in Table 7-1, earlier in this chapter, to choose an appropriate font for
the object’s text. If you omit the FONT attribute from an object, PilRC defaults
to font number 0, the Standard font.

The following sections describe the commands PilRC looks for between the BEGIN
and END lines of a form definition to create objects on a form.

Buttons
A button definition looks like this:

BUTTON <label> ID <resourceID> AT (<Left> <Top> <Width>
<Height>) [USABLE|NONUSABLE] [FRAME|NOFRAME]
[BOLDFRAME] [FONT]

Cross-
Reference

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 183

184 Part III ✦ Programming the Palm OS

The FRAME and NOFRAME attributes of a button are mutually exclusive. If FRAME is set,
the Palm OS draws the button with a rounded rectangular border. NOFRAME creates a
borderless button, suitable for use as an increment arrow; more details on increment
arrows are available in the sidebar “Creating Arrow and Scrolling Buttons,” earlier
in this chapter. If you omit FRAME and NOFRAME entirely, PilRC assumes FRAME as
a default and creates the button with a border.

Setting the BOLDFRAME attribute creates a button with a bold, 2-pixel border. This
attribute has no effect if the button also contains the NOFRAME attribute.

The following example creates a button in the lower-left corner of a full-screen form,
with the label “New” in the Standard font:

BUTTON “New” ID 1000 AT (1 BOTTOM@159 AUTO AUTO) FONT 0

Notice that the left of the button starts at a coordinate of 1 instead of 0. This
ensures that the edge of the screen does not clip the left border of the button.

As of PilRC version 2.5c, it is not possible to create graphic buttons using PilRC.

Check boxes
A check box definition looks like this:

CHECKBOX <label> ID <resourceID> AT (<Left> <Top> <Width>
<Height>) [USABLE|NONUSABLE] [FONT]
[GROUP <group ID>] [CHECKED]

You may assign a check box to a mutually exclusive group by setting the GROUP
attribute. Of the check boxes in a form that share the same GROUP number, only
one may be checked at a time.

The CHECKED attribute controls the default behavior of the check box. If CHECKED is
present, and the application code does not explicitly change the state of the check
box, the system draws the box in its checked state.

The following example creates a check box with the label “Show Completed Items,”
which starts out checked and displays in the Bold font:

CHECKBOX “Show Completed Items” ID 1001 AT (0 80 AUTO AUTO)
FONT 1 CHECKED

Fields
A text field definition looks like this:

FIELD ID <resourceID> AT (<Left> <Top> <Width> <Height>)
[USABLE|NONUSABLE] [LEFTALIGN|RIGHTALIGN]
[FONT] [EDITABLE|NONEDITABLE] [UNDERLINED]
[SINGLELINE|MULTIPLELINES] [DYNAMICSIZE]
<MAXCHARS <number>> [AUTOSHIFT] [NUMERIC]

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 184

185Chapter 7 ✦ Building Forms

The LEFTALIGN and RIGHTALIGN attributes control how text is justified in the field.
LEFTALIGN justifies text to the left of the field, and RIGHTALIGN justifies to the right
edge of the field. Note that RIGHTALIGN works only in a non-editable field; if EDITABLE
is set, a field is automatically left-justified.

EDITABLE and NONEDITABLE control whether or not the field accepts user input.
If EDITABLE, the user may enter text into the field via Graffiti or the on-screen key-
board. PilRC assumes the field is editable if you omit both of these attributes.

When you include UNDERLINED in a field’s definition, the system draws the field
with a gray underline. Editable text fields should always be underlined; an empty
field with no underline is effectively invisible to the user.

The SINGLELINE and MULTIPLELINES attributes control whether a field is a single-line
field or a multiline field, respectively. See the section on creating fields in Constructor,
earlier in this chapter, for the differences between single-line and multiline fields.

Including the DYNAMICSIZE attribute causes the field to put a fldHeightChanged
Event onto the queue whenever user input causes the field to scroll. You can inter-
cept the fldHeightChangedEvent in your code to resize the field to fit its contents.

You must include a value for MAXCHARS for a field to work properly. MAXCHARS speci-
fies the maximum number of characters the field may contain.

The AUTOSHIFT attribute tells the system to perform Graffiti autoshifting in this
field on Palm OS version 2.0 or later.

Include the NUMERIC attribute to restrict a field to numbers and the location-specific
decimal point specified in the Palm device’s global format preferences.

The AUTO keyword does not work for a field because AUTO takes its cues from the
text contained in a resource, and field resources do not contain any text at design
time. Always explicitly declare the width and height of a text field.

The following example creates an editable multiline field that can hold 1KB (1024
characters) of text. This field covers most of the screen, leaving just enough room
on the right side for a scroll bar control. The height of this field allows it to display
eleven lines of text in the Standard font.

FIELD ID 1003 AT (0 16 153 121) EDITABLE UNDERLINED
MULTIPLELINES MAXCHARS 1024 AUTOSHIFT

Form bitmaps
A form bitmap definition looks like this:

FORMBITMAP AT (<Left> <Top>) BITMAP <bitmapID>
[USABLE|NONUSABLE]

Note

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 185

186 Part III ✦ Programming the Palm OS

To include a bitmap resource on a form, you must anchor it to that form with a form
bitmap resource. The BITMAP attribute should specify the resource ID of a bitmap
resource, defined elsewhere in the same .rcp file.

The following example places a bitmap with resource ID 100 in the upper-left corner
of a form, just below the title bar:

FORMBITMAP AT (0 16) BITMAP 100

Gadgets
A gadget definition looks like this:

GADGET ID <resourceID> AT (<Left> <Top> <Width> <Height>)
[USABLE|NONUSABLE]

The following example creates a gadget resource that occupies most of the screen,
leaving just enough room at the bottom of the form for some buttons:

GADGET ID 1004 AT (0 16 160 120)

Graffiti shift indicator
A Graffiti shift indicator definition looks like this:

GRAFFITISHIFTINDICATOR AT (<Left> <Top>)

The following example places a Graffiti shift indicator in the lower-right corner of
the form, which just happens to be the conventional place to put the indicator:

GRAFFITISHIFTINDICATOR AT (140 147)

Labels
A label definition looks like this:

LABEL <label text> ID <resourceID> AT (<Left> <Top>)
[USABLE|NONUSABLE] [FONT]

Notice that a label does not have Height and Width attributes. The size of a label is
entirely dependent on its text contents. You may insert newline characters into the
string with the character sequence \n, and for readability, you may continue long
lines of text by appending a backslash character (\).

The following example creates a label in the Bold font at the top of the form:

LABEL “Please enter your name\n”\
“below:” AUTOID AT (0 16) FONT 1

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 186

187Chapter 7 ✦ Building Forms

Lists
A list definition looks like this:

LIST <Item 1> <Item 2> ... ID <resourceID>
AT (<Left> <Top> <Width> <Height>) [USABLE|NONUSABLE]
[VISIBLEITEMS <number>] [FONT]

You can add items to a list in PilRC by simply listing each one in double quotes,
separated by spaces, at the beginning of the LIST directive.

The VISIBLEITEMS attribute specifies the number of items in the list that are visible
at once. The user may scroll the list to view items in excess of the VISIBLEITEMS
number.

Unlike the Visible Items property in Constructor, setting VISIBLEITEMS to 0
in PilRC does not produce a list that displays all of its items at once. Rather, it
results in an unusable list, as does setting the attribute to a value of 1. Always set
VISIBLEITEMS to a value greater than 1.

Using the AUTO keyword for a list’s Width can produce undesired results because it
makes the list only as wide as the first item in the list’s definition. If your list’s first
item is shorter than another item in the list, the result list will not be wide enough
to display the longer list item properly.

On the other hand, using AUTO for the Height attribute is much easier than setting
the Height manually, provided that you have also specified a non-zero value for
VISIBLEITEMS. The Palm OS is perfectly happy to draw a list exactly the height you
ask for, regardless of whether or not that height matches the number of visible
items. Using AUTO to specify Height can save you hours of frustration caused by
trying to match the height of the list in pixels to its height in visible rows.

To create a pop-up list, you must make both a list resource and a pop-up trigger.
The list should have the NONUSABLE attribute to prevent the system from drawing it
until the user taps its attached pop-up trigger. See the next section, which discusses
pop-up triggers, for more details.

The following example creates a list containing six items that can display only three
of those items at a time. Notice the left coordinate is at 1 instead of 0. Like buttons,
lists drawn at the left edge of the screen must be moved a pixel to the right to keep
the edge of the form from chopping off the left side of the list.

LIST “Anchovies” “Cheese” “Pepperoni” “Olives” “Mushrooms”
“Sausage” ID 1005 AT (1 50 80 AUTO) VISIBLEITEMS 3

Pop-up triggers
A pop-up trigger definition looks like this:

POPUPTRIGGER <label> ID <resourceID> AT (<Left> <Top>

Caution

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 187

188 Part III ✦ Programming the Palm OS

<Width> <Height>) [USABLE|NONUSABLE]
[LEFTANCHOR|RIGHTANCHOR] [FONT]

POPUPLIST <trigger ID> <list ID>

A pop-up trigger requires two definitions — one for the trigger itself, and another
to tie that trigger to a list resource. Define the pop-up trigger with a POPUPTRIGGER
directive, and then use POPUPLIST to connect the resource ID of the pop-up trigger
with the resource ID of a list resource.

Be sure to set a pop-up trigger’s label to a string at least as long as the longest
value the trigger’s attached list will contain. If the label is too short, the application
can crash the device.

The LEFTANCHOR and RIGHTANCHOR attributes determine which side of a pop-up list
remains in place when the trigger’s label changes. LEFTANCHOR nails down the left
end of the trigger, and RIGHTANCHOR keeps the right side from moving.

The following example creates a pop-up list in the upper-right corner of the screen,
similar to the category trigger used in some of the built-in applications. The width
setting for the trigger is 0, working from the assumption that the application will
initialize the trigger’s value when the form opens.

POPUPTRIGGER “................” ID 2000 AT (160 0 0 13)
RIGHTANCHOR

LIST “Business” “Personal” “Unfiled” ID 3000 AT (86 1 72 AUTO)
NONUSABLE VISIBLEITEMS 3

POPUPLIST 2000 3000

Push buttons
A push button definition looks like this:

PUSHBUTTON <label> ID <resourceID> AT (<Left> <Top> <Width>
<Height>) [USABLE|NONUSABLE] [FONT]
[GROUP <group ID>]

Push buttons may be grouped so that only one push button in the group may be
selected at a time. All push buttons sharing the same GROUP number are part of
such an exclusive grouping.

The following example creates a row of push buttons for selection of an integer
value between one and five, similar to the buttons used in the To Do application’s
Details dialog box to set the priority for a task:

PUSHBUTTON “1” ID 5001 AT (1 80 AUTO AUTO) GROUP 1
PUSHBUTTON “2” ID 5002 AT (PREVRIGHT+1 PREVTOP AUTO AUTO)

GROUP 1
PUSHBUTTON “3” ID 5003 AT (PREVRIGHT+1 PREVTOP AUTO AUTO)

GROUP 1
PUSHBUTTON “4” ID 5004 AT (PREVRIGHT+1 PREVTOP AUTO AUTO)

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 188

189Chapter 7 ✦ Building Forms

GROUP 1
PUSHBUTTON “5” ID 5005 AT (PREVRIGHT+1 PREVTOP AUTO AUTO)

GROUP 1

As of PilRC version 2.5c, it is not possible to create graphic push buttons using
PilRC.

Repeating buttons
A repeating button definition looks like this:

REPEATBUTTON <label> ID <resourceID> AT (<Left> <Top> <Width>
<Height>) [USABLE|NONUSABLE] [FRAME|NOFRAME]
[BOLDFRAME] [FONT]

The settings for repeating buttons do the same things as the settings for normal
buttons; they differ only in how they behave at run time. Repeat buttons are ideal
for scroll arrows because the user may hold the stylus on one to move through
large amounts of data.

The following example creates a pair of vertical scroll arrows in the lower-right cor-
ner of a form, much like the scroll arrows in the built-in applications. Notice the use
of octal numbers in the buttons’ labels to specify special characters from the Palm
OS Symbol 7 font.

REPEATBUTTON “\001” ID 2000 AT (147 144 13 8) FONT 5 NOFRAME
REPEATBUTTON “\002” ID 2001 AT (147 152 13 8) FONT 5 NOFRAME

As of PilRC version 2.5c, it is not possible to create graphic repeating buttons using
PilRC.

Scroll bars
A scroll bar definition looks like this:

SCROLLBAR ID <resourceID> AT (<Left> <Top> <Width> <Height>)
[USABLE|NONUSABLE] VALUE <number> MIN <number> MAX <number>
PAGESIZE <number>

A scroll bar should always have a width of 7 pixels. The AUTO keyword does not
work for this purpose because AUTO is intended for controls that have text labels.

The VALUE attribute sets the initial location of the scroll car. MIN is the value of the
scroll bar when the car is all the way at the top, and MAX is the value at the bottom
of the scroll bar. PAGESIZE controls how many units the scroll car moves when the
user taps in the gray area above or below the car.

Unlike many attributes in PilRC, which are optional, you must set the VALUE, MIN,
MAX, and PAGESIZE attributes in your .rcp file. Otherwise, the scroll bar will not
appear on the form.

Note

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 189

190 Part III ✦ Programming the Palm OS

The following example creates a scroll bar suitable for use beside the multiline text
field example from earlier in the chapter. Its values range between 0 and 100, its
scroll car starts at position 40, and tapping the gray areas of the bar moves the
car 10 units at a time.

SCROLLBAR ID 7000 AT (153 18 7 121) VALUE 40 MIN 0 MAX 100
PAGESIZE 10

Selector triggers
A selector trigger definition looks like this:

SELECTORTRIGGER <label> ID <resourceID> AT (<Left> <Top>
<Width> <Height>) [USABLE|NONUSABLE]
[LEFTANCHOR|RIGHTANCHOR] [FONT]

Just like a pop-up trigger, the LEFTANCHOR and RIGHTANCHOR attributes of a selector
trigger set which end of the trigger stays put when alterations to the trigger’s label
change its width.

Be sure that a selector trigger’s label is long enough to contain the longest string
you expect the trigger to have to display. The label not only sets the initial appear-
ance of the selector trigger, it also allocates enough memory to hold whatever text
the label may display during execution, and a label that is too short can crash the
Palm OS.

The following example creates a selector trigger suitable for use as a date selector
with the standard Palm OS date picker:

SELECTORTRIGGER “DAY MM/DD/YY” ID 1009 AT (56 34 AUTO AUTO)
LEFTANCHOR

Tables
A table definition looks like this:

TABLE ID <resourceID> AT (<Left> <Top> <Width> <Height>)
ROWS <number> COLUMNS <number> COLUMNWIDTHS <width 1>
<width 2> ...

The ROWS and COLUMNS attributes of a table contain the number of rows and number
of columns in the table, respectively. To set the widths of individual columns, list the
widths separated by spaces after the COLUMNWIDTHS attribute.

The following example creates a table with five columns, similar to the table used
as the mail list in the To Do application. Its height is sized to allow for 11 rows, each
row 11 pixels tall.

TABLE ID 1010 AT (0 18 160 121) ROWS 11 COLUMNS 5
COLUMNWIDTHS 12 10 96 27 24

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 190

191Chapter 7 ✦ Building Forms

Summary
In this chapter, you learned how to create forms and the user interface elements
that they contain. After reading this chapter, you should understand the following:

✦ You use the form layout window, the hierarchy window, and the catalog window
to create and edit resources in Metrowerks Constructor.

✦ Increment arrows, which are standard button or repeating button resources with-
out frames, contain a single character from one of the Palm OS symbol fonts.

✦ PilRC provides several keywords to simplify arranging and sizing objects on
a form.

✦ ✦ ✦

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 191

4676-7 ch07.f.qc 9/29/00 12:51 PM Page 192

Building Menus

Menus provide a way for users to access application
commands that see less frequent use. Because they

remain tucked away out of sight until the user needs them,
menus also allow your application to perform more functions
without your having to make use of valuable screen real
estate.

The Metrowerks tools offer two different ways to create
menus. You can visually create menu resources in Constructor,
or you can compile menu resources from text files with the Rez
compiler. The GNU PRC-Tools compile menu resources using
PilRC. This chapter shows you how to construct menu
resources using all three tools.

Building Menus with Constructor
The system of menus for a particular form consists of two
kinds of resources: a menu bar, and one or more menu
resources. A menu bar serves as a container for menus, hold-
ing the title of each individual menu. Tapping the title of a
menu in the menu bar displays that menu’s contents, just as in
most of the graphical interfaces used on desktop computers.

To create a new menu bar, select the gray Menu Bar line in
the project window, and then choose Edit ➪ New Menu Bar
Resource or press Ctrl+K. Double-clicking the name of a menu
bar resource in the project window, or selecting one and
pressing Enter, opens the menu bar editor window. When first
opened, the menu bar editor window is completely blank.
Figure 8-1 shows the menu bar editor window, both before
and after adding menus to a menu bar.

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Building menus with
Constructor

Building menus
with Rez

Building menus
with PilRC

Introduction to the
Librarian sample
application

✦ ✦ ✦ ✦

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 193

194 Part III ✦ Programming the Palm OS

Figure 8-1: The menu bar editor window, as it appears when it first opens
(left) and after adding menus (right)

You may add a new menu to a menu bar by selecting Edit ➪ New Menu or pressing
Ctrl+M. Constructor creates a menu called “untitled.” To change the menu title,
click it once, and then edit the highlighted text. If you find you have created a menu
in error, you may remove it by selecting the menu title, and then choosing Edit ➪
Remove Menu. You can also change the sequence in which menus appear in the
menu bar by dragging them to the appropriate location with the mouse.

In general, clicking any item in the menu bar editor window, whether it is a menu
title or a menu item, puts that text into edit mode. While in edit mode, typing
changes the text of the item, and Constructor’s Edit menu displays different com-
mands that are associated with text editing. Edit mode pops up by default when
you click an item, which can be a nuisance if you want only to select the item
instead of edit its contents. To depart from edit mode and leave the item selected,
simply press Enter.

Once you have a new menu, you need to add items to it. Make sure the appropriate
menu is selected, and then choose Edit ➪ New Menu Item or press Ctrl+K to create
a new item. When the new menu item appears, type the text that should appear in
that item.

You may also enter a Graffiti command shortcut for the menu item. While the item’s
text is in edit mode, press the Tab key, and a highlighted area appears to the right
of the menu item. Type the character you wish to use for this menu item’s com-
mand shortcut.

If a menu item is selected but is not currently in edit mode, pressing Tab causes
the item to enter edit mode. From there, you can simply press Tab a second time
to add a command shortcut.

Besides normal menu items, you may also add separator lines to visually group
menu items. To add a separator line, select Edit ➪ New Separator Item or press
Ctrl+-. You may also turn any normal menu item into a separator by changing its
text caption to a single hyphen (-).

Tip

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 194

195Chapter 8 ✦ Building Menus

To reorder a menu, you may drag menu items with the mouse to new locations
within the current menu, or by dragging an item over the menu titles, you may
move an item from one menu to another. You may also delete a selected menu item
by choosing Edit ➪ Clear Menu Item or pressing the Backspace or Delete keys.

If an item is in edit mode, the Backspace and Delete keys edit the item’s text
instead of removing the item from the menu, and the Clear Menu Item command
does not appear in the Edit menu. Press Enter to leave edit mode, and then try
removing the menu item.

Tip

Adding Command Shortcuts to Menus

Command shortcuts are a great way to make menu commands quickly accessible to users
who are adept at Graffiti. A short command stroke, followed by a single Graffiti character,
activates the appropriate menu command without having to open and navigate the menu
itself.

You should include command shortcuts for any menu item that might see frequent use. The
standard text-editing commands of the Edit menu are a good example; they allow the user
to quickly cut, copy, and paste text without moving the stylus from the Graffiti entry area of
the screen. Commands that create new records or delete existing records are also good
candidates for command shortcuts. However, anything that the user is less likely to use on
a regular basis should not have a command shortcut. The best example of a command that
does not require a shortcut is a menu item to display an application’s about box.

The Palm OS built-in applications make use of several common shortcuts. Consider adding
these shortcuts to your own application to make its interface consistent with the Palm
applications.

Menu Command Shortcut

Record New <item> N

Delete <item> D

Beam <item> B

Edit Undo U

Cut X

Copy C

Paste P

Select All S

Keyboard K

Graffiti Help G

Options Preferences R

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 195

196 Part III ✦ Programming the Palm OS

When you add a menu in the menu bar editor window, Constructor automatically
creates a separate menu resource, gives it its own resource ID, and associates it
with its menu bar. When you close the menu bar editor window, the project window
updates to display any newly created menus in its Menus category. You may edit
each menu individually by double-clicking its name in the project window, or by
selecting it and pressing Enter, which opens the menu editor window. The menu
editor window operates just like the menu bar editor, except that it can display only
a single menu at a time. Because you can perform all the necessary menu-editing
functions from the menu bar editor window, editing menus individually is never
necessary.

Manually changing the resource ID of a menu resource can corrupt the menu bar
resources that Constructor generates. Leave assignment of menu resource IDs to
Constructor.

If you use the Auto Generate Header File option in the project window to create
constant definitions for your resource IDs, be careful to name menu resources dif-
ferently. Constructor uses the names displayed in the project window to create the
constants, and if two menus share the same name in the project window, the auto-
matically generated header will define the same constant twice. The best way to
avoid this is to change the name of each menu so it starts with the name of the
form it appears in. For example, if an application has two menus titled “Record,”
appearing in both the List and Edit views of an application, name the menus “List
Record” and “Edit Record.” When Constructor makes the header file, it then creates
two constants called ListRecordMenu and EditRecordMenu.

Sharing Menus between Menu Bars
Though the process is not intuitive, you can share a menu between two or more
menu bars. Menus that are common to more than one form in an application, such
as the Edit menu for editing text in fields, are good candidates for sharing. Sharing a
menu prevents you from having to create it twice in Constructor, and your applica-
tion code can deal with the common menu code in one place instead of your having
to repeat similar code in multiple locations throughout your program’s source.

To share a menu between multiple menu bars, follow these steps:

1. Create the menu bar resources, without adding any menus to them.

2. Open one of the menu bars and create the shared menu.

3. Close the menu bar containing the shared menu. Take note of the new menu
resource that appears in the project window; this is the resource you will
share with other menu bars.

4. Open another menu bar that should contain the shared menu. Position the
menu bar editor window so that both it and the project window are visible.

Caution

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 196

197Chapter 8 ✦ Building Menus

5. Drag the menu resource from the project window into the menu bar editor
window.

6. Close the menu bar editor window.

7. To share the menu with more menu bars, repeat Steps 4 through 6 for each
menu bar that should contain the shared menu.

Now, any changes to the shared menu will be reflected in all the menu bars contain-
ing that menu. If you have the Auto Generate Header File option checked in the pro-
ject window, Constructor defines a single constant to represent the shared menu,
which you can use throughout your code to refer to that menu, no matter which
menu bar is currently displayed in the application.

If you find that you have shared a menu with a menu bar by mistake, you may
remove the shared menu by selecting it in the menu bar editor window and choos-
ing Edit ➪ Remove Menu. Removing a menu in this fashion, whether it is shared or
not, removes only a reference to that menu resource from the menu bar; the actual
menu resource remains in the Menus category of the project window. To perma-
nently delete a menu, select it in the project window and choose Edit ➪ Clear
Resource, or press the Delete or Backspace keys.

Building Menus with Rez
Creating menus with Constructor can be somewhat frustrating. The menu editing
windows switch into edit mode at inopportune moments, and all the commands for
creating and editing menus are tucked away in Constructor’s menu system or hid-
den in obscure keyboard shortcuts. Constructor’s critics often point to its quirky
menu-editing interface as proof of its inferiority as a resource creation tool.

Fortunately, the Rez compiler built into CodeWarrior provides an alternate method
of creating menus. Rez is a tool from the Macintosh Programmer’s Workshop
(MPW), which generates resources for Mac OS programs. With a little bit of hack-
ing, you can use Rez to compile text files into Palm OS menu resources. Besides
avoiding the difficult Constructor interface, a textual method of defining resources
can have some other advantages over creating resources graphically, such as easier
localization into other languages. Creating menus with Rez also allows you to assign
your own resource IDs for menus, which Constructor’s automatic resource ID cre-
ation does not allow, which means you do not have to second-guess what resource
IDs Constructor will create for you.

The Rez tool compiles text files with an extension of .r. Before you can start mak-
ing menu resources, though, you need to define what menu bar and menu resources
look like. Listing 8-1 shows the contents of MenuDefs.r, a file that tells Rez how to
make menu resources.

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 197

198 Part III ✦ Programming the Palm OS

Listing 8-1: The MenuDefs.r file

type ‘MENU’
{

integer SYS_EDIT_MENU = 10000; // Base menu ID
fill byte[12];
pstring; // Menu title
array
{

pstring SEPARATOR = “-”; // Item text
fill byte;
char NONE = “\$00”; // Graffiti shortcut
fill byte[2];

};
byte = 0; // Terminator

};

type ‘MBAR’
{

integer = $$CountOf(menus);
array menus
{

integer; // Menu ID
};

};

If you include MenuDefs.r in the .r file that describes your application’s menus,
Rez will understand how to make menu bars and menus. Use a standard C/C++
#include statement at the head of an .r file to include MenuDefs.r:

#include “MenuDefs.r”

You may also include standard C/C++ header files (.h extension) to define con-
stants for the resource IDs of your menus.

To define a menu resource, use the following syntax:

resource ‘MENU’ (resource ID) {
base ID,
“Menu Title”,
{

“First Menu Item”, “Shortcut”;
“Second Menu Item”, “Shortcut”;
...

}
};

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 198

199Chapter 8 ✦ Building Menus

The resource ID parameter is either the actual resource ID of the menu, or a con-
stant representing the resource ID. Every menu also needs a base ID. The resource
ID of the first item in the menu is equal to the base ID value; the resource ID of each
menu item after that increases by one. For example, if the base ID for a menu is
2001, the first item in the list has a resource ID of 2001, the second item 2002, the
third 2003, and so on.

A menu has a Menu Title, which is the string that appears in the menu bar to
allow selection of that particular menu. Each menu item consists of a text caption
that will appear in the menu, followed by a single character for use as a Graffiti
command shortcut. You may omit the command shortcut character for menu items
that do not have a shortcut. To make a menu item with no command shortcut, sub-
stitute NONE for the shortcut. You may also add a separator line to a menu by
replacing a menu item’s caption with SEPARATOR.

As an example, the following code creates a standard Edit menu:

resource ‘MENU’ (1001) {
1001,
“Edit”,
{

“Undo”, “U”;
“Cut”, “X”;
“Copy”, “C”;
“Paste”, “P”;
“Select All”, “S”;
SEPARATOR, NONE;
“Keyboard”, “K”;
“Graffiti Help”, “G”;

}
};

In the preceding example, the Undo menu item has a resource ID of 1001, equal to
the base ID of 1001 specified at the top of the menu’s definition. Cut has a resource
ID of 1002, Copy has a resource ID of 1003, and so on down the list. Note that the
separator line counts in the sequential listing of resource IDs, so the Keyboard item
in the preceding example has a resource ID of 1007.

Once you have defined the menus for a menu bar, you need to define the menu bar
itself. Menu bar syntax looks like this:

resource ‘MBAR’ (resource ID) {
{first menu, second menu, ...}

};

Here, the resource ID is the resource ID of the menu bar itself. Enter the resource
IDs of the menus to include in the menu bar in the comma-separated list that makes

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 199

200 Part III ✦ Programming the Palm OS

up the body of the menu bar definition. The following example creates a menu bar
resource containing three menus, whose resource IDs are 1001, 1011, and 1021:

resource ‘MBAR’ (1000) {
{1001, 1011, 1021}

}

Integrating Rez Menus with Your Project
Once you have assembled your menus textually, you need to add to your project
the .r file containing their definitions. You may add the file as you would any other
source file in the CodeWarrior IDE, with the Project ➪ Add Files command. If you
use the settings included in a Palm OS stationery project, CodeWarrior automati-
cally compiles .r files using Rez.

If you create your menus textually, Constructor cannot automatically generate con-
stant definitions for your menu resource IDs. Instead, make your own header file
full of constant definitions for the menus in your project, and then include that file
in both your .r menu definition file and your .c source file. Listing 8-2 shows a
header file, Menus.h, containing constant definitions for a simple project.

Listing 8-2: Menus.h, a header file for menu resource
constants

#define MainMenuBar 1000

#define MainRecordMenu 1001
#define MainEditMenu 1011
#define MainOptionsMenu 1021

#define RecordBase 2001
#define RecordNewItem 2001
#define RecordDeleteItem 2002
#define RecordBeamItem 2003

#define EditBase 2101
#define EditUndo 2101
#define EditCut 2102
#define EditCopy 2103
#define EditPaste 2104
#define EditSelectAll 2105
// Placeholder for separator line
#define EditKeyboard 2107
#define EditGraffitiHelp 2108

#define OptionsBase 2201
#define OptionsAbout 2201

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 200

201Chapter 8 ✦ Building Menus

A sample menu definition file, Menus.r, that makes use of the constants defined in
Menus.h, appears in Listing 8-3. The Menus.r file contains definitions for only a sin-
gle menu bar containing three menus, but when cross-referenced with its header
file, Menus.r should give you a good example of one way to number your menu
resources.

Listing 8-3: Menus.r, a sample menu definition file

#include “MenuDefs.r”
#include “Menus.h”

resource ‘MENU’ (MainRecordMenu) {
RecordBase,
“Record”,
{

“New Item”, “N”;
“Delete Item”, “D”;
“Beam Item”, “B”;

}
};

resource ‘MENU’ (MainEditMenu) {
EditBase,
“Edit”,
{

“Undo”, “U”;
“Cut”, “X”;
“Copy”, “C”;
“Paste”, “P”;
“Select All”, “S”;
SEPARATOR, NONE;
“Keyboard”, “K”;
“Graffiti Help”, “G”;

}
};

resource ‘MENU’ (MainOptionsMenu) {
OptionsBase,
“Options”,
{

“About This App”, NONE;
}

};

resource ‘MBAR’ (MainMenuBar) {
{MainRecordMenu, MainEditMenu, MainOptionsMenu}

};

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 201

202 Part III ✦ Programming the Palm OS

Figure 8-2 shows what the menu bar described in Menus.r looks like at run time.

Figure 8-2: The menu bar generated from Menus.r

Building Menus with PilRC
Creating menus in PilRC is similar to using Rez in a CodeWarrior project; you define
the resources in a text file, and then compile them. PilRC simply uses a different for-
mat from Rez to describe menu resources. Also, you can include menu definitions
in the same .rcp file as the rest of your project’s resources, instead of separating
them as you must do in a CodeWarrior project.

PilRC creates a menu bar and the menus it contains within the same statement. The
syntax for creating menus in PilRC looks like this:

MENU ID <resourceID>
BEGIN

PULLDOWN <menu title>
BEGIN

MENUITEM <item text> ID <resourceID> [shortcut]
MENUITEM SEPARATOR
...

END
PULLDOWN <another menu title>
...

END

The resourceID in the first line of a menu definition is the resource ID for the
entire menu bar. Resource IDs specified on MENUITEM lines are the resource IDs of
individual menu items.

Each menu may contain one or more PULLDOWN sections. Each PULLDOWN represents
a single menu full of menu items. The menu title parameter specifies the text that
appears within the menu bar at the top of a particular menu.

A MENUITEM consists of the text that will appear in that item’s line of the menu
(item text), a resource ID for that menu item (resourceID), and an optional
Graffiti shortcut character (shortcut). Alternatively, you may use the line
MENUITEM SEPARATOR to put a separator line into the menu at that location.

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 202

203Chapter 8 ✦ Building Menus

As yet another alternative, you may create a separator line by supplying a single
hyphen (-) for a menu item’s item text parameter; you might see the hyphen
technique in older source code because earlier versions of PilRC did not have the
SEPARATOR keyword.

Notice that PilRC doesn’t assign resource IDs to menus, only to menu bars and indi-
vidual menu items. However, this is not a problem, because menu-handling routines
in the Palm OS need to deal only with the resource IDs of menu items.

Listing 8-4 shows the file Menus.rcp, which uses PilRC syntax to describe the same
menu bar shown in Figure 8-2. The Menus.rcp file uses the constant definitions for
resource IDs in the Menus.h file, shown earlier in Listing 8-2.

Listing 8-4: Menus.rcp, a menu bar definition in PilRC

#include “Menus.h”

MENU ID MainMenuBar
BEGIN

PULLDOWN “Record”
BEGIN

MENUITEM “New Item” ID RecordNewItem “N”
MENUITEM “Delete Item” ID RecordDeleteItem “D”
MENUITEM “Beam Item” ID RecordBeamItem “B”

END
PULLDOWN “Edit”
BEGIN

MENUITEM “Undo” ID EditUndo “U”
MENUITEM “Cut” ID EditCut “X”
MENUITEM “Copy” ID EditCopy “C”
MENUITEM “Paste” ID EditPaste “P”
MENUITEM “Select All” ID EditSelectAll “S”
MENUITEM SEPARATOR
MENUITEM “Keyboard” ID EditKeyboard “K”
MENUITEM “Graffiti Help” ID EditGraffitiHelp “G”

END
PULLDOWN “Options”
BEGIN

MENUITEM “About This App” ID OptionsAbout
END

END

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 203

204 Part III ✦ Programming the Palm OS

Introducing Librarian, a Sample Application
After reading this chapter, and the two that precede it (Chapter 6, “Creating and
Understanding Resources,” and Chapter 7, “Building Forms”), you should have a
good grasp of how to create all the resources for a Palm OS application. At this
point, I will introduce Librarian, a sample application I wrote that appears in this
and later chapters to illustrate various points of developing for the Palm OS.

The Librarian source code, for both CodeWarrior and GCC, is available on this
book’s CD-ROM.

Librarian is a database for book collectors. Not only does it store the vital informa-
tion about books in a collection, such as titles and authors but, because it runs on a
handheld device, Librarian also allows a user to enter new books into the handheld
while looking at them on the shelves, instead of dragging a pile of them to a desktop
computer. The application can also serve as a wish list of books not yet purchased,
and it keeps track of books loaned to or borrowed from other people.

Trying to fit every nuance of every part of the Palm OS into a single application
would produce a bloated monster of an application that would be difficult to use
and would require hideous amounts of storage space on a Palm OS device. Instead,
Librarian focuses more on providing the right interfaces for given tasks, following
Palm Computing user interface and programming guidelines as closely as possible.
In fact, you will notice that Librarian operates in similar fashion to the built-in
Address Book application, from which Librarian draws much of its user interface.

That said, the Librarian program uses functions from throughout the Palm OS, so it
gives a good general picture of how the different parts of the OS work together in an
application. Elements of the Palm OS not included in Librarian, such as serial com-
munications, have their own, smaller examples in this book.

Displaying Multiple Records in List View
The primary display in Librarian is the List view, shown in Figure 8-3. The List view
displays multiple books in Librarian’s database at once, providing a lot of informa-
tion at a glance. When Librarian starts, this is the form it first displays.

Figure 8-3: Librarian’s List view

On the
CD-ROM

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 204

205Chapter 8 ✦ Building Menus

A large table resource occupies most of the screen space in the List view. Scroll
arrows in the lower right corner of the screen allow the user to scroll the table to
display more records; alternatively, pressing the scroll up and scroll down hard-
ware buttons on the device serves the same function. Tapping a book’s row in the
table shows an expanded view of that particular book.

The pop-up list in the upper-right corner controls which category the List view dis-
plays. Users may assign books to different categories to organize them; selecting a
category from the pop-up list restricts display in the List view to books belonging
to the selected category.

Two buttons across the bottom of the screen provide access to commonly used
functions. The New button opens Librarian’s Edit view, described later in the
“Editing a Record in Edit View” section, with a blank book record ready for entry.

The Show... button opens the Librarian Preferences dialog box, pictured in Figure
8-4. This dialog box controls what information appears in the List view. The Show
In List push buttons control both the information displayed for each book and the
order in which Librarian sorts the books in the List view table. By default, Librarian
displays the last name of the author, followed by the author’s first name and the
title of the book, sorted alphabetically by the author’s last name. Three check
boxes toggle the display of other properties associated with each book.

Figure 8-4: The Librarian Preferences dialog box

Displaying an Individual Book in Record View
The Record view in Librarian, displayed when the user taps a book in the List
view’s table, shows all the information for a single book record. Figure 8-5 illustrates
this form.

Figure 8-5: Librarian’s Record view

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 205

206 Part III ✦ Programming the Palm OS

Because the information displayed in this form varies considerably from record to
record, a structured user interface element, such as a table or field, does not work.
Instead, Librarian uses custom drawing routines to draw the information straight
onto the screen. However, it would be nice to allow the user quick access to the
contents of the displayed record by tapping anywhere within the display, so the
central portion of the Record view contains a large gadget control. The gadget
serves to capture a tap from the user, as well as providing a defined rectangular
screen area for the custom drawing routines to work with.

The drawing routines for Librarian’s Record view are described in Chapter 9,
“Programming User Interface Elements.”

Scroll arrows appear in the lower right of the Record view if the currently displayed
book contains more information than the Record view can display at once. The
Done button returns to the List view, the Edit button opens the displayed record in
Edit view, and the New button opens the Edit view with a blank record, ready for
the user to enter data.

Editing a Record in Edit View
Like the List view, the primary component of the Edit view is a table. The table has
two columns, the left column displaying labels describing the contents of the items
in the right column. Figure 8-6 shows the Edit view in Librarian.

Figure 8-6: Librarian’s Edit view

The pop-up list in the upper-right corner is a standard category picker. Picking an
item from the list changes the category of the currently displayed record.

Text fields in the Edit view are expandable, increasing or decreasing in height as
necessary to accommodate whatever text the user enters. Besides fields, the table
also contains a pair of pop-up lists and a check box to control other properties of
the book.

The Done button returns to the application’s List view. Tapping Details... opens the
Book Details dialog box, pictured in Figure 8-7. From this dialog box, the user may

Cross-
Reference

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 206

207Chapter 8 ✦ Building Menus

set the category of the current book record with the Category pop-up list. Checking
the Private check box marks this record as private. If the user has assigned a pass-
word in the system’s Security application and has chosen to hide private records,
any book marked private in Librarian does not show up in the List view, or any-
where else in the application.

Figure 8-7: The Book Details dialog box

The Book Details dialog box’s Delete... button allows the user to delete the current
book from Librarian’s database. When tapped, the Delete Book dialog box, shown
in Figure 8-8, appears. The Delete Book dialog box not only confirms that the user
really wishes to delete the book, but it also offers the user the option to save an
archive copy of the book’s record on the desktop via Librarian’s companion conduit
application.

Figure 8-8: The Delete Book dialog box

Tapping the Note button in the Book Details dialog box, or the Note button in the
Edit form, opens Librarian’s Note view. The Note view, shown in Figure 8-9, allows
the user to enter any information about the book that does not correspond to any
of the regular record fields.

Figure 8-9: The Note view

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 207

208 Part III ✦ Programming the Palm OS

From a programming perspective, the Note view is particularly interesting, because
its resources are not part of the Librarian project itself. Instead, Librarian borrows
the shared Note form used by the built-in applications. This form’s resources are
embedded in the ROM along with the standard Palm applications, and the Palm OS
header files define various constants for use with the Note form.

Using the Note form in an application is covered in Chapter 9, “Programming User
Interface Elements.”

Examining Librarian’s Menus
The List view has a menu bar, providing access to other less frequently accessed
functions. Menus in the List view menu bar are shown in Figure 8-10.

Figure 8-10: Menus in Librarian’s List view

The Record menu on the left side of Figure 8-10 appears only when Librarian is
running on a Palm OS device that supports infrared beaming, because the menu’s
only item beams the currently displayed category to another device that also has
Librarian installed. To accomplish the feat of displaying different menus on differ-
ent devices, Librarian actually contains two menu bar resources for the List view,
one with the Record menu (left side of Figure 8-10), and one without (right side of
Figure 8-10). Code within the application determines whether the device on which
Librarian is running is capable of beaming, and displays the appropriate menu bar
resource.

Chapter 9, “Programming User Interface Elements,” details dynamically displaying
menus, and Chapter 10, “Programming System Elements,” shows how to deter-
mine the features supported by the device on which an application is running.

The user may choose Font... from the Options menu to open the Select Font dialog
box, pictured in Figure 8-11. Like the Note view, the Select Font dialog box is
another form resource stored in ROM, so Librarian does not need to define this
form in its own source code. Changing the font in this dialog box causes Librarian
to change the font it uses to display information in the current view, allowing a
user to customize the program for easier viewing.

Figure 8-11: The Select Font dialog box

Cross-
Reference

Cross-
Reference

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 208

209Chapter 8 ✦ Building Menus

Also available from the Options menu is an About Librarian menu command, which
displays the About Librarian dialog box pictured in Figure 8-12. This dialog box is a
simple about box, showing information about the Librarian application, such as its
version number.

Figure 8-12: The About Librarian dialog box

The Find Book dialog box, available from the Find... button in the List view, has a
standard Edit menu to provide text-editing support for its one field.

Librarian’s Record view has a menu bar, whose menus are pictured in Figure 8-13.
Like the Record menu in the List view, the Record view’s Record menu contains
an option related to beaming records. Unlike the List view menu, the Edit view’s
Record menu also contains items that are not related to beaming, so Librarian has
two Record menus, one with the Beam Book option, and one without. The applica-
tion displays the appropriate menu for the device on which Librarian is running.
The menu bar on the top of Figure 8-13 appears on devices that support IR beam-
ing; Librarian displays the menu bar in the bottom of the figure on other devices.

Figure 8-13: Menus in Librarian’s
Record view

Users can use the Record menu to delete the currently displayed book, attach a text
note to it, or remove an existing note. If the device supports it, the user may also
beam the current book record to another Palm OS device that has the Librarian
application installed, adding the record to the Librarian database on the other
device.

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 209

210 Part III ✦ Programming the Palm OS

The Record view’s menu bar also has the same Options menu used in the List
view’s menu bar.

In the Edit view, Librarian has similar menus to those in the Record view, with the
addition of an Edit menu to provide text-editing functions. Figure 8-14 shows the
Edit view’s menu bar. Again, there are two different Record menus in this menu bar,
one for devices with IR beaming (top) and one for devices without IR capability.

Figure 8-14: Menus in Librarian’s Edit view

Librarian makes economical use of menu resources by sharing a number of com-
mon menus between different forms. The Options menu in the List view also
appears in the program’s two other major views, Record and Edit. Librarian shares
the same Record menu between the Record and Edit views, and the Edit menu in
the Edit view is the same as the Edit menu displayed from the Find Book dialog box.

Sharing menu resources in this way removes duplicate code from the project,
because the application handles common menus with common routines. Such shar-
ing reduces the complexity of the application, making it easier to debug and remov-
ing precious bytes from the size of the compiled executable.

Chapter 9, “Programming User Interface Elements,” contains more information
about handling common menu items.

Summary
This chapter taught you how to create menu resources using CodeWarrior and GNU
PRC-Tools. After reading this chapter, you should understand the following:

✦ CodeWarrior allows you to make menu resources in two ways: graphically
with Constructor, or textually by using CodeWarrior’s built-in Rez compiler.

Cross-
Reference

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 210

211Chapter 8 ✦ Building Menus

✦ Menus built in Constructor may be shared between more than one menu bar.

✦ You must include a MenuDefs.r file or its equivalent when using Rez to create
resources, because Rez does not know how to make Palm OS menu resources
unless you describe those resources to the compiler.

✦ PilRC, like Rez, compiles resources from textual descriptions.

✦ ✦ ✦

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 211

4676-7 ch08.f.qc 9/29/00 12:51 PM Page 212

Programming
User Interface
Elements

The Palm OS involves a lot of user interaction. Most Palm
OS applications serve to collect and display data, both of

which functions require thoughtful user interface design and
implementation to perform these functions effectively on such
a small device. Earlier chapters showed you how to design
and build the resources that make up a Palm OS application’s
user interface. This chapter shows you how to connect that
interface with your application code, forming the vital link
between the user and your program.

As you read through this chapter, you may notice a couple of
what seem to be major omissions in the chapter’s coverage
of form objects: tables and scroll bars. Tables are the most
complex user interface elements in the Palm OS, and as such,
they warrant an entire chapter to themselves. Scrolling, while
also linked to fields and lists, is most often associated with
tables. Scroll bars and their cousins, repeating arrow buttons,
are therefore covered more fully in the chapter on tables.

For the complete story on programming tables and
scrolling behavior, see Chapter 11, “Programming Tables
and Scrolling.”

Programming Alerts
Alerts are the simplest way to present a dialog box, either
to prompt the user for input or simply to display important
information. Displaying an alert in your application is very
straightforward; simply call the FrmAlert function, passing it
the resource ID of the alert you wish to display. The FrmAlert
function returns the number of the alert button pressed by the
user. The left-most button in the alert is number 0, with each
button’s number increasing sequentially from left to right.

Cross-
Reference

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Programming alerts

Programming forms
and form objects

Programming
grouped check boxes
and push buttons

Programming date
and time picker
dialog boxes

Programming fields

Programming
gadgets

Programming lists
and pop-up lists

Programming menus

Drawing graphics
and text

✦ ✦ ✦ ✦

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 213

214 Part III ✦ Programming the Palm OS

The following code displays an alert dialog box, capturing the button tapped by the
user in the variable tappedButton.

UInt16 tappedButton;

tappedButton = FrmAlert(MyAlertID);

Depending on which button the user taps in the alert, your code can perform different
actions. If the alert contains only one button, as is often the case in a purely informa-
tional alert, you may safely ignore the return value from FrmAlert:

FrmAlert(MyAlertID);

Otherwise, you will want to respond to the alert differently, depending on which
button the user selected. The following PilRC alert definition, and the code snippet
that follows, shows how to react to user input from an alert. Figure 9-1 shows the
alert dialog box in action.

ALERT ID RPSAlert
CONFIRMATION
BEGIN

TITLE “Mortal Combat”
MESSAGE “Which implement of mass destruction “\

“do you wish to wield?”
BUTTONS “Rock” “Paper” “Scissors”

END

This code determines which button the user tapped and responds accordingly:

switch (FrmAlert(RPSAlert)) {
case 0:

// User tapped the “Rock” button
break;

case 1:
// User tapped the “Paper” button
break;

case 2:
// User tapped the “Scissors” button
break;

default:
// Error

}

Figure 9-1: An alert dialog box with three buttons

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 214

215Chapter 9 ✦ Programming User Interface Elements

You can also customize an alert’s message text at run time. When creating the alert
resource, you may insert three placeholders, ^1, ^2, and ^3, which the FrmCustom
Alert function can replace with whatever text you like. FrmCustomAlert takes four
arguments. The first is the resource ID of the alert to display, and the second, third,
and fourth arguments are character pointers to the strings that should replace ^1,
^2, and ^3, respectively. If one of the placeholders is missing from the alert, you may
pass NULL as its corresponding string argument.

Pass NULL as one of the string arguments only if that argument has no correspond-
ing placeholder in the alert. For example, if the alert’s message text contains ^1 and
you pass NULL as the second argument to FrmCustomAlert, your application will
crash. If you want to ignore an existing placeholder, pass the empty string (“”)
instead. On Palm OS 2.0 and earlier, the empty string also causes a crash. For those
versions of the OS, pass a string containing a single space (“ “) instead.

Also keep in mind that FrmCustomAlert does not substitute for placeholder strings
in the title or in the button labels of an alert resource, only in the alert’s message
text. For example, a title string containing ^1 will still display “^1” at run time.

To illustrate FrmCustomAlert in action, consider the following alert resource,
defined in PilRC syntax:

ALERT ID DeleteAlert
WARNING
BEGIN

TITLE “Confirm Multiple Deletion”
MESSAGE “You are about to delete ^1 records from the “\

“^2 category. Do you wish to proceed?”
BUTTONS “OK” “Cancel”

END

When the following call to FrmCustomAlert displays the DeleteAlert resource,
substituting the strings 40 and Business for the alert’s placeholders, the resulting
alert dialog box is pictured in Figure 9-2.

tappedButton = FrmCustomAlert(DeleteAlert, “40”, “Business”,
NULL)

Figure 9-2: A custom alert displayed with the
FrmCustomAlert function

Caution

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 215

216 Part III ✦ Programming the Palm OS

Prior to Palm OS 3.1, calling FrmAlert(MyAlertID) is equivalent to calling
FrmCustomAlert(MyAlertID, NULL, NULL, NULL). If your application
is intended to run on Palm OS 3.0 or earlier, make sure any alert you call
with FrmAlert does not contain the special placeholder strings (^1, ^2, or ^3).
Calling FrmAlert with an alert containing placeholders on these earlier versions of
the OS causes a crash.

Programming Forms
Depending on the purpose different forms in an application serve, the Palm OS
offers you a number of options when it comes to displaying forms. The following
scenarios outline the three most common ways your application might need to
display a form:

✦ Switching to a new form. In this scenario, the application erases the current
form and displays a new one in its place. This most commonly occurs when
switching between major, full-screen views in an application. An example of
this is changing between the List and Edit modes of the Address Book applica-
tion when the user taps the New button on the List view’s form. This situation
calls for the FrmGotoForm function.

✦ Displaying a complex modal dialog box. Most dialog boxes have enough con-
trols to warrant their own event handlers. If a dialog box contains more than a
check box or two, you should display it using the FrmPopupForm function.

✦ Displaying a simple modal dialog box. Sometimes you need to display a quick
prompt for user input, but you need a dialog box with a little more interactivity
than an alert resource can provide. A good example of this is the delete confir-
mation dialog box displayed by the built-in applications when you delete a
record (see Figure 8-8 in the previous chapter). Instead of simply asking you if
it is okay to delete the record, the dialog box also provides a check box, giving
you the option to save an archive copy of the record on the desktop. The
FrmDoDialog function handles this situation.

Switching to a New Form
To allow users to switch between two full-screen views in an application, use the
FrmGotoForm function. FrmGotoForm takes a single argument, the resource ID
of a form to display. The following example calls FrmGotoForm to open and display
a form called EditForm.

FrmGotoForm(EditForm);

Caution

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 216

217Chapter 9 ✦ Programming User Interface Elements

FrmGotoForm sends a frmCloseEvent to the current form and then sends a frmLoad
Event and a frmOpenEvent to the form you want to display. Located at the end of
the application’s EventLoop function, the system’s default form-handling function,
FrmHandleEvent, automatically takes care of the frmCloseEvent by erasing and
disposing of the current form. You do not need to do anything special to get rid of the
current form. Your application’s ApplicationHandleEvent function should take care
of the frmLoadEvent by initializing the form with the FrmInitForm function, setting
that form as the active form with FrmSetActiveForm, and associating an event han-
dling function with that form by calling FrmSetEventHandler. Now that the form has
been initialized in ApplicationHandleEvent, the form’s event handler needs only to
respond to the frmOpenEvent by drawing the form with FrmDrawForm.

Displaying a Complex Modal Dialog Box
If a modal dialog box contains controls that exhibit behavior the system cannot
provide by itself, such as tables, selector triggers, or menus, you must display the
dialog box using FrmPopupForm. Like a full-screen form, a complex modal dialog
box needs its own event handling function to properly deal with user input.

Like FrmGotoForm, the FrmPopupForm function takes the resource ID of a form as
an argument. Unlike FrmGotoForm, which sends a frmCloseEvent to the current
form, FrmPopupForm just sends a frmLoadEvent and a frmOpenEvent to the form
specified in the argument to FrmPopupForm. The following line of code pops up a
form with a resource ID constant of DetailsForm:

FrmPopupForm(DetailsForm);

To exit the dialog box, use the FrmReturnToForm function. As an argument,
FrmReturnToForm takes the resource ID of the form to return to. FrmReturnToForm
erases the current form from the screen, deletes the form from memory, and then
sets the active form to the form specified in its argument. The function assumes that
the form you pass to it is already loaded into memory.

You may also pass in zero (0) as the argument to FrmReturnToForm, in which case
the function returns to the last form that was loaded — in this case the form displayed
by your application before calling FrmPopupForm. The following line of code, then, is
all that is required to return from a modal dialog box to its parent form:

FrmReturnToForm (0);

Typically, the call to FrmReturnToForm should occur in those parts of the modal
dialog box’s event handler devoted to handling buttons on the dialog form. The fol-
lowing code from a dialog form’s event handler closes the form when the user taps
that form’s OK or Cancel buttons:

if (event->eType == ctlSelectEvent) {

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 217

218 Part III ✦ Programming the Palm OS

switch (event->data.ctlSelect.controlID) {
case OkButton:

FrmReturnToForm (0);
handled = true;
break;

case CancelButton:
FrmReturnToForm (0);
handled = true;
break;

default:
break;

}
}

Because FrmReturnToForm does not send a frmCloseEvent to the current
form, be sure you clean up any variables associated with that form before calling
FrmReturnToForm. Failure to manually clean up such variables could result in a
memory leak.

Displaying a Simple Modal Dialog Box
If a part of your application requires only a small amount of prompting from the
user, such as confirmation to delete a record, an alert will usually suffice. However,
the program may require a little more input than the simple buttons in an alert can
provide, but not so much input that you should devote an entire event handling
function to the form. In this case, the FrmDoDialog function can quickly display
a simple dialog box.

A form for use with FrmDoDialog must contain only user interface elements that
the system can handle without intervention from your own code. Check boxes and
push buttons are ideal for this purpose, because they can store meaningful informa-
tion and handle user input without any extra code. Tables and selector triggers are
good examples of controls that will not work well with FrmDoDialog, because they
will not work at all without a fair amount of help from your application’s code.

In much the same way that FrmAlert or FrmCustomAlert returns the button tapped
to dismiss the alert, FrmDoDialog returns the resource ID of the button tapped to
dismiss its form. Your application’s code can then react accordingly, depending on
which button the user tapped.

To use FrmDoDialog in your application, follow these steps:

1. Initialize the form with FrmInitForm.

2. If necessary, set the values of the form’s controls with FrmSetControlValue.

3. Display the form with FrmDoDialog.

4. Retrieve the values of the dialog box’s controls using FrmGetControlValue.

Caution

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 218

219Chapter 9 ✦ Programming User Interface Elements

5. Remove the form from memory with FrmDeleteForm.

As an example, the following PilRC resource definition from the Librarian sample
application creates a delete confirmation dialog box, pictured in Figure 9-3. To
provide online help for the dialog box, DeleteBookDialog also includes a string
resource, DeleteBookHelpStr, which the user may display by tapping the “i” icon
in the dialog box’s title bar. The only thing that differentiates the dialog box from
an alert is the inclusion of a check box control.

STRING ID DeleteBookHelpStr “The Save Archive Copy option “\
“will store deleted records in an archive file on your “\
“Desktop at the next HotSync operation.”

FORM ID DeleteBookDialog AT (2 61 156 97)
MODAL
HELPID DeleteBookHelpStr
DEFAULTBTNID DeleteBookCancel
BEGIN

TITLE “Delete Book”
FORMBITMAP AT (8 19) BITMAP 10005
LABEL “Delete selected book\nrecord?” AUTOID

AT (32 19) FONT 1
CHECKBOX “Save archive copy on PC” ID DeleteBookSaveBackup

AT (12 54 AUTO AUTO) FONT 1 CHECKED
BUTTON “OK” ID DeleteBookOK AT (5 80 AUTO AUTO)
BUTTON “Cancel” ID DeleteBookCancel AT (PREVRIGHT+5 PREVTOP

AUTO AUTO)
END

The form bitmap resource ID provided in the following example (10005) is the
internal resource ID of the confirmation alert icon stored in the Palm OS ROM. In
the headers included by Pilot.h you may find the following definitions for alert
dialog box icon bitmaps:

#define InformationAlertBitmap 10004
#define ConfirmationAlertBitmap 10005
#define WarningAlertBitmap 10006
#define ErrorAlertBitmap 10007

Normally, it would be best to use the defined constant value instead of the raw
resource ID, to prevent the application from breaking should Palm Computing
change these numbers in a future release of the Palm OS. However, PilRC is some-
what limited in its ability to import header files. The resource compiler does not
know how to parse the #include C/C++ directive, and can grab #define state-
ments from only a single included header at a time. For the sake of illustration, I
have used the resource ID number in the previous example instead of redefining
ConfirmationAlertBitmap in Librarian’s librarianRsc.h file.

Metrowerks Constructor has a somewhat worse problem, in that it cannot import
header definitions at all. Constructor’s only option for including resources embed-
ded in the Palm OS ROM is to use the bare resource ID.

Note

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 219

220 Part III ✦ Programming the Palm OS

Figure 9-3: A simple dialog box, suitable
for use with FrmDoDialog

The DetailsDeleteRecord function from Librarian (a sample application introduced
in Chapter 8), listed in the following example, displays the dialog box shown in
Figure 9-3 to prompt the user about whether the application should really delete a
record from its database. Librarian calls this function when the user taps the Delete
button while viewing a book’s details, or when the user selects the Delete Book
menu item.

static Boolean DetailsDeleteRecord (void)
{

UInt16 ctlIndex;
UInt16 buttonHit;
FormType *form;
Boolean archive;

// Initialize the dialog form.
form = FrmInitForm(DeleteBookDialog);

// Set the “Save archive copy on PC” check box to its
// previous setting.
ctlIndex = FrmGetObjectIndex(form, DeleteBookSaveBackup);
FrmSetControlValue(form, ctlIndex, gSaveBackup);

// Display the form and determine which button the user
// tapped.
buttonHit = FrmDoDialog(form);

// Retrieve data from the dialog before deleting the form.
archive = FrmGetControlValue(form, ctlIndex);

// Release the form from memory.
FrmDeleteForm(form);

if (buttonHit == DeleteBookCancel)
return (false);

// Remember the value of the check box for later.
SaveBackup = archive;

// Code to actually delete the record omitted

return (true);
}

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 220

221Chapter 9 ✦ Programming User Interface Elements

The first thing DetailsDeleteRecord does is to initialize the dialog box form in mem-
ory with the FrmInitForm function. FrmInitForm takes the resource ID of a form as
an argument, and it returns a pointer to the initialized form resource in memory.

Before displaying the dialog box, DetailsDeleteRecord needs to set the status of the
dialog box’s check box. In Librarian, the global variable gSaveBackup keeps track of
whether deleted records should be archived on the PC or not. DetailsDeleteRecord
first requires the index of the check box, which it retrieves with the FrmGetObject
Index function. Then DetailsDeleteRecord sets the value of the check box via
FrmSetControlValue.

Now DetailsDeleteRecord is ready to display the dialog box. The FrmDoDialog
function displays a form, given a pointer to a form resource, and then returns
the resource ID of the button the user tapped to close that form.

DetailsDeleteRecord grabs the value of the check box with FrmGetControlValue,
and then removes the form from memory with FrmDeleteForm. This order of
events is important; you must retrieve information from a form’s controls before
deleting it, because releasing the form’s memory also releases the memory that
holds its controls’ values.

The DetailsDeleteRecord function returns true if the user tapped the dialog box’s
OK button, or false if the user tapped its Cancel button. If the user tapped OK,
DetailsDeleteRecord also saves the dialog box’s check box value to the global
variable gSaveBackup. Because the DeleteBookForm defines its Cancel button
as the form’s default button, the operating system simulates tapping the Cancel
button if the user switches applications while the dialog box is open. Therefore,
switching applications also causes DetailsDeleteRecord to return false, ignoring
whatever setting is in the dialog box’s check box and leaving the contents of
gSaveBackup alone.

Programming Objects on Forms
Though the objects a form may contain vary in form and function, all objects share
some common ground when it comes to handling them in code. The default form
handling provided by the FrmHandleEvent function not only takes care of visibly
reacting to user input, such as inverting a button when tapped, but FrmHandleEvent
also makes sure that the system posts events to the queue to which your application
can respond.

Internally, the Palm OS treats a number of user interface elements as controls. The
system deals with all controls using similar data structures, events, and functions.
Controls consist of the following objects:

✦ Buttons and graphic buttons

✦ Push buttons and graphic push buttons

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 221

222 Part III ✦ Programming the Palm OS

✦ Check boxes

✦ Pop-up triggers

✦ Selector triggers

✦ Repeating buttons and graphic repeating buttons

✦ Sliders and feedback sliders

For default processing of user input from controls, FrmHandleEvent actually hands
control over to the CtlHandleEvent function, which takes care of all the specifics
of user interaction with the control. FrmHandleEvent defers to different functions
for other user interface objects: FldHandleEvent for fields, LstHandleEvent
for lists, MenuHandleEvent for menus, SclHandleEvent for scroll bars, and
TblHandleEvent for tables.

Handling Form Object Events
Most form objects respond to taps from the user in a similar fashion. When the user
first taps within the borders of an object, the control queues an enter event. If the
user then lifts the stylus while still within the object’s screen boundaries, the control
posts a select event. However, if the user drags the stylus outside the boundaries of
the object before lifting, the control posts an exit event, instead. The repeating but-
ton and scroll bar controls generate another type of event, a repeat event, when the
user holds the stylus down within the boundaries of those objects.

Select events are usually the most interesting to your application, because they
indicate successful selection of the object. The following select events are possible:

✦ ctlSelectEvent

✦ frmTitleSelectEvent

✦ lstSelectEvent

✦ popSelectEvent

✦ tblSelectEvent

Handling an enter event allows your application to respond to a tap on an object
before the user lifts the stylus from the screen. A good use for this style of event
handling is to populate the contents of a pop-up list with dynamic data, as the user
taps the pop-up trigger to display that list (see the “Programming Dynamic Lists”
section, later in this chapter, for an example of how to dynamically populate a list).
The Palm OS provides the following enter events:

✦ ctlEnterEvent

✦ fldEnterEvent

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 222

223Chapter 9 ✦ Programming User Interface Elements

✦ frmTitleEnterEvent

✦ lstEnterEvent

✦ sclEnterEvent

✦ tblEnterEvent

Exit events allow for special processing when the user starts to select an object but
decides against it and moves the stylus off the object before lifting it from the screen.
The exit event is most useful in conjunction with an enter event, particularly if the
enter event allocates memory for a variable or two. The exit event can then release
that memory, preventing a leak. The exit events are:

✦ ctlExitEvent

✦ lstExitEvent

✦ sclExitEvent

✦ tblExitEvent

The scroll bar and repeating button objects continually post repeat events to the
queue while the user holds down the stylus within their boundaries, allowing your
application to scroll data dynamically until the user lifts the stylus. The two repeat
events are:

✦ ctlRepeatEvent

✦ sclRepeatEvent

To respond to any of these events, your application should check for them in the
appropriate form event handler. The following event handler captures select events
from two buttons (OKButton and CancelButton) and a list:

static Boolean MyFormHandleEvent (EventType *event)
{

Boolean handled = false;

if (event->eType == ctlSelectEvent) {
switch (event->data.ctlSelect.controlID) {

case OKButton:
// Do something in response to the OK button
// being tapped.
handled = true;
break;

case CancelButton:
// Do something in response to the Cancel
// button being tapped.
handled = true;

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 223

224 Part III ✦ Programming the Palm OS

break;

default:
break;

}
}

else if (event->eType == lstSelectEvent) {
// Do something in response to the list selection; this
// code assumes only one list on the form.
handled = true;

}

return (handled);
}

Because the form contains two buttons, each of which is capable of generating a
ctlSelectEvent, the event handler in the previous example must determine which
button generated the event. MyFormHandleEvent does this by looking at the data
member of the event structure passed to the event handling function.

The event structure’s data member is actually a union of many other structures,
each of which holds different data depending on the type of event represented by
the event structure. Each of the different structures stores the resource ID of the
object that generated the event in a slightly different place. Table 9-1 shows you
where to look for the resource ID of an object in an event structure, depending on
the type of event involved.

Notice that MyFormHandleEvent assumes there is only one list in the form. If a
form contains only one control capable of generating a particular event, you may
forgo checking the event data for the resource ID of the object involved. Simply
check for the occurrence of the event and respond to the event accordingly.

Table 9-1
Finding Resource IDs in the Event Structure

Event Type Where to Find the Resource ID

ctlEnterEvent event->data.ctlEnter.controlID

ctlExitEvent event->data.ctlExit.controlID

ctlRepeatEvent event->data.ctlRepeat.controlID

ctlSelectEvent event->data.ctlSelect.controlID

fldEnterEvent event->data.fldEnter.fieldID

lstEnterEvent event->data.lstEnter.listID

lstExitEvent event->data.lstExit.listID

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 224

225Chapter 9 ✦ Programming User Interface Elements

Event Type Where to Find the Resource ID

lstSelectEvent event->data.lstSelect.listID

popSelectEvent event->data.popSelect.controlID
(ID of the pop-up trigger)

event->data.popSelect.listID
(ID of the attached list resource)

sclEnterEvent event->data.sclEnter.scrollBarID

sclExitEvent event->data.sclExit.scrollBarID

sclRepeatEvent event->data.sclRepeat.scrollBarID

tblEnterEvent event->data.tblEnter.tableID

tblExitEvent event->data.tblExit.tableID

tblSelectEvent event->data.tblSelect.tableID

Retrieving an Object Pointer
Before you can do something with an object on a form, you must retrieve a pointer
to that object. The FrmGetObjectPtr function performs this function, given a pointer
to a form and the index of the desired object. Note that the index of an object on a
form is different from the object’s resource ID. You will usually need to get the index
number of an object with FrmGetObjectIndex before you can get a pointer to the
object with FrmGetObjectPtr.

Both FrmGetObjectIndex and FrmGetObjectPtr also require a pointer to the form
containing the object you want. Usually, you can simply use the FrmGetActiveForm
function, which returns a pointer to the currently active form.

The following lines of code retrieve a pointer to the active form, and then a pointer
to the button whose resource ID is MainOKButton:

FormType *form;
ControlType *ctl;

form = FrmGetActiveForm();
ctl = FrmGetObjectPtr(form, FrmGetObjectIndex(form,

MainOKButton));

The ctl variable now contains a pointer to the MainOKButton control, which may
be manipulated using other functions.

Calling both FrmGetObjectPtr and FrmGetObjectIndex is the only way to get an
object pointer from a resource ID; the Palm OS does not offer a function to directly
turn a resource ID into an object pointer. Because retrieving object pointers is a very
common action in programming for the Palm OS, you may wish to avoid repeating

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 225

226 Part III ✦ Programming the Palm OS

the cumbersome FrmGetObjectPtr and FrmGetObjectIndex combination through-
out your code. The following function is a wrapper for the process of converting a
resource ID into a usable object pointer:

VoidPtr GetObjectPtr (UInt16 objectID)
{

FormType *form;

form = FrmGetActiveForm();
return (FrmGetObjectPtr(form, FrmGetObjectIndex(form,

objectID)));
}

GetObjectPtr takes the resource ID of an object as its only argument and returns a
pointer to that object, assuming the desired object is on the current active form.
Using the GetObjectPtr function, you can shorten the first example in this section
to the following single line of code:

ControlType *ctl = GetObjectPtr(MainOKButton);

Because it is such a useful function, you will see GetObjectPtr used elsewhere in this
book, as well as in the built-in applications provided by Palm Computing. In fact,
this function already exists in any project created from stationery in Metrowerks
CodeWarrior.

The examples in this section assume you are coding in C, which does not require an
explicit cast from a void pointer. In C++, you need to cast the return value of
FrmGetObjectPtr and GetObjectPtr to the proper type, as in the following example:

ControlPtr ctl = (ControlPtr)GetObjectPtr(MainOKButton);

Hiding and Showing Form Objects
Sometimes, you may wish to hide user interface elements from view, or cause them
to appear again, in response to user input. When hidden, an object does not display
on the screen or accept any taps from the user. The Palm OS provides two functions
for this purpose, FrmHideObject and FrmShowObject. As arguments, both func-
tions take a pointer to the object’s form and the object index. Note that the second
argument is the object index, not its resource ID or an object pointer; you may
retrieve the object index with the FrmGetObjectIndex function.

The following form event handler hides the MyButton control from view when the
user selects the form’s HideCheckbox control:

static Boolean MyFormHandleEvent (EventType *event)
{

Boolean handled = false;
FormType *form;

Note

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 226

227Chapter 9 ✦ Programming User Interface Elements

UInt16 buttonIndex;
ControlType *ctl;

if (event->eType == ctlSelectEvent) {
switch (event->data.ctlSelect.controlID) {

case HideCheckbox:
form = FrmGetActiveForm();
buttonIndex = FrmGetObjectIndex(form,

MyButton);
ctl = GetObjectPtr(HideCheckbox);
if (CtlGetValue(ctl)) {

FrmHideObject(form, buttonIndex);
} else {

FrmShowObject(form, buttonIndex);
}
handled = true;
break;

case MyButton:
// Do something when the user taps MyButton
handled = true;
break;

default:
break;

}
}

return (handled);
}

Notice the use of the CtlGetValue function to determine whether the check box is
checked or not. CtlGetValue returns the value associated with a check box or push
button control, either 1 for on or 0 for off. In the preceding code, if the value of
the check box is 1 (checked), the event handler hides the MyButton control with
FrmHideObject; if the check box is unchecked, FrmShowObject reveals the
button again.

Programming Check Boxes and Push Buttons
As shown in the previous section, the CtlGetValue function returns the value of a
check box or push button control, given a pointer to the control. A return value of 1
from CtlGetValue indicates a checked check box or a selected push button, whereas
0 represents an unchecked box or an unselected push button.

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 227

228 Part III ✦ Programming the Palm OS

Besides looking at the value of a check box or push button, you may also set
the value using the CtlSetValue function. The following lines of code select the
MyPushButton push button control:

ControlType *ctl = GetObjectPtr(MyPushButton);
CtlSetValue(ctl, 1);

Although both CtlGetValue and CtlSetValue take a pointer to any control type,
they work only with check boxes and push buttons. CtlGetValue returns an unde-
fined value with other control types, and the system simply ignores calls to
CtlSetValue for other controls.

Handling Control Groups
Check boxes and push buttons may be assigned to mutually exclusive control groups.
Within a control group, only one check box or push button may be selected at a time.
The Palm OS provides functions for setting or determining which check box or push
button in a group is currently selected.

FrmSetControlGroupSelection takes three arguments: a pointer to the form contain-
ing the group of controls, the number assigned to the control group, and the resource
ID of the control in that group to select. The FrmSetControlGroupSelection function
selects the specified control and deselects all the other controls that share the same
control group, saving you from having to make multiple calls to CtlSetValue to manu-
ally turn off all the other controls in the group.

FrmGetControlGroupSelection returns the index number of the selected control
in a control group, given a pointer to the form containing the group and the
group’s number.

FrmGetControlGroupSelection returns the index of the selected control, but
FrmSetControlGroupSelection sets the selection based on the control’s resource
ID. Keep this in mind as you use these functions, because passing the wrong num-
ber is a common error when handling control groups.

As an example, here is a PilRC resource definition for a form containing a group of
push buttons:

FORM ID MainForm AT (0 0 160 160)
BEGIN

PUSHBUTTON “Rock” ID MainRockPushButton
AT (CENTER 60 40 12) GROUP 1

PUSHBUTTON “Paper” ID MainPaperPushButton
AT (PREVLEFT PREVBOTTOM+1 PREVWIDTH PREVHEIGHT) GROUP 1

PUSHBUTTON “Scissors” ID MainScissorsPushButton
AT (PREVLEFT PREVBOTTOM+1 PREVWIDTH PREVHEIGHT) GROUP 1

END

Caution

Note

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 228

229Chapter 9 ✦ Programming User Interface Elements

If you are using Constructor to create your application’s resources, pay careful
attention to the group names that Constructor automatically generates for you.
Constructor assembles most resource constants from the name of the form, the
word GroupID, and the ID you have assigned to the resource itself. When
Constructor generates resource constants for group numbers, it uses the form’s
title instead of its name, followed by FormGroupID and some number that
Constructor seems to pull from thin air. For example, in a form named Details
with a title of Record Details, Constructor might generate a resource constant
called RecordDetailsFormGroupID2 instead of DetailsGroupID1. Also
keep in mind that any changes you make to your resources may cause Constructor
to create new names for group number constants, which can be quite a headache
when debugging.

The following code selects the MainRockPushButton if it is not already selected:

FormType *form = FrmGetActiveForm();
UInt8 rockIndex = FrmGetObjectIndex(form,

MainRockPushButton)

if (! (FrmGetControlGroupSelection(form, 1) == rockIndex))
FrmSetControlGroupSelection(form, 1, MainRockPushButton);

Programming Selector Triggers
Without any extra programming, a selector trigger is merely a button surrounded
by a gray (dotted) box; the Palm OS does not provide most of the behavior users
expect from a selector trigger, such as displaying a date or time picker dialog box.
Your application is responsible for calling up a dialog box to pick a value and then
displaying that value in the selector trigger.

Fortunately, implementing a selector trigger is not a difficult process. Tapping the
selector trigger queues a standard ctlSelectEvent that you can respond to in a
form event handler. Use the FrmPopupForm or FrmDoDialog functions to display a
dialog box form, from which the user may pick a value. After returning from the dia-
log box, change the selector trigger’s label with the CtlSetLabel function. CtlSetLabel
takes a pointer to a control and a character pointer containing the string to display in
the control’s label. The following line of code changes the label on a selector trigger
to a date string:

ControlType *ctl = GetObjectPtr(MySelectorTrigger);
CtlSetLabel(ctl, “Mon 10/18/99”);

The CtlSetLabel function also works with other controls, not just selector triggers.
A companion function, CtlGetLabel, works in reverse, retrieving the current value
of a control’s label and returning that value as pointer to a null-terminated string.

Caution

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 229

230 Part III ✦ Programming the Palm OS

Writing a string with CtlSetLabel that is longer than the string originally contained
by the control’s resource can cause a crash. Be sure when you create a control to
give it a label at least as long as the longest string you plan to assign using
CtlSetLabel. Also, the pointer you pass to CtlSetLabel must be valid if the form
containing that control receives a frmUpdate event. This means that if you
change a control’s label at run time, the text must come from a global variable, a
constant, or a memory chunk that remains locked for the entire life of the control.

The Palm OS contains two built-in dialog boxes for selecting dates and times, which
are perfect candidates for use with selector triggers. The date and time pickers are
accessible through the SelectDay and SelectTime functions. Figure 9-4 shows the
date and time pickers in action.

Figure 9-4: The Palm OS built-in
date (left) and time (right) picker
dialog boxes

The prototype for the SelectDay function looks like this:

Boolean SelectDay (const SelectDayType selectDayBy,
Int16 *month, Int16 *day, Int16 *year, const Char *title)

The first argument to SelectDay allows you to specify the granularity of selection
allowed by the date picker. SelectDayType is defined in the Palm OS header files,
which also define these constant values appropriate for the first argument to
SelectDay:

✦ selectDayByDay. This option tells the date picker to allow selection of a
single day.

✦ selectDayByWeek. SelectDay restricts selection in the date picker to picking
a week at a time when passed this value.

✦ selectDayByMonth. This option restricts selection to a particular month.

Not only do the month, day, and year arguments specify the initial date displayed
by the date picker, but these arguments also specify where the date picker returns
the date selected by the user. The title argument allows you to customize the title
bar of the date picker.

Caution

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 230

231Chapter 9 ✦ Programming User Interface Elements

SelectDay returns true if the user selected a date from the picker, or false if the
user tapped the picker’s Cancel button.

The following form event handler displays a date picker in response to the user’s
tapping a selector trigger, and then changes the label in the selector to the date
picked by the user. This event handler assumes that the selector trigger is the
only control object on the form.

static Boolean MyFormHandleEvent (EventType *event)
{

Boolean handled = false;
ControlType *ctl;
Char *label;
Int16 month, day, year;
DateTimeType now;

if (event->eType == ctlSelectEvent) {
TimSecondsToDateTime(TimGetSeconds(), &now);
year = now.year;
month = now.month;
day = now.day;

if (SelectDay(selectDayByDay, &month, &day, &year,
“Select a Day”)) {

ctl = GetObjectPtr(MySelectorTrigger);
label = CtlGetLabel(ctl);
DateToDOWDMFormat(month, day, year,

dfDMYLongWithComma, label);
CtlSetLabel(ctl, label);

}
handled = true;

}

return (handled);
}

Before displaying the date picker with SelectDay, the preceding example initializes the
date first displayed in the dialog box to today’s date with the TimSecondsToDateTime
and TimGetSeconds functions. Another handy Palm OS date and time function, Date
ToDOWDMFormat, converts the raw month, day, and year values from SelectDay into
a nicely formatted date string.

Chapter 10, “Programming System Elements,” covers these and other date and
time functions, along with the DateTimeType structure they use, in more detail.

The previous example also initializes the label variable, a character pointer to the
string displayed in the selector trigger’s label, with CtlGetLabel to ensure that label
has enough space to hold the date string produced by DateToDOWDMFormat.

Cross-
Reference

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 231

232 Part III ✦ Programming the Palm OS

The SelectDay function is available only in Palm OS version 2.0 and later. If your
application must run on Palm OS 1.0, use the function SelectDayV10, which
allows selection of dates by day only, not by week or month.

Using SelectTime to present the user with a time picker dialog box is similar to
using SelectDay. The prototype for SelectTime looks like this:

Boolean SelectTime (TimeType *startTimeP, TimeType *EndTimeP,
Boolean untimed, const Char *titleP, Int16 startOfDay,
Int16 endOfDay, Int16 startOfDisplay)

The first two arguments to SelectTime, startTimeP and EndTimeP, are pointers
to TimeType structures. TimeType is defined in the standard Palm OS include file
DateTime.h as follows:

typedef struct {
UInt8 hours;
UInt8 minutes;

} TimeType;

SelectTime initializes the time picker to display the start and end times given in
startTimeP and EndTimeP. The SelectTime function also returns the times the
user selects in these two variables. You may also initialize the dialog box to display
no selected time by passing true for the value of the untimed parameter. If the
user chooses no time in the picker dialog box, SelectTime sets startTimeP and
EndTimeP to the constant noTime, which has a value of -1.

The titleP argument to SelectTime contains the text displayed in the time picker’s
title bar, and startOfDay specifies what hour of the day the picker displays at the
top of its hour list. The startOfDay argument must be a value from 0 to 12, inclusive.

The endOfDay argument specifies what hour of the day will be returned if the user
taps the All Day button in the time selector dialog box, and startOfDisplay defines
what hour will be displayed at the top of the dialog box when it first opens.

Prior to version 3.5 of the Palm OS, the SelectTime function lacks the endOfDay
and startOfDisplay arguments. If you must maintain backwards compatibility
with older code, you can use the SelectTimeV33 function instead of SelectTime.

SelectTime returns false if the user tapped the dialog box’s Cancel button;
otherwise, SelectTime returns true to indicate that the user changed the time
in the picker.

If you wish to prompt the user for a single time, instead of start and end times,
use the SelectOneTime function instead of SelectTime. SelectOneTime displays
a different picker dialog box, shown in Figure 9-5.

Note

Note

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 232

233Chapter 9 ✦ Programming User Interface Elements

Figure 9-5: The SelectOneTime picker dialog box

The SelectOneTime function takes only three arguments, as shown in the following
example:

Boolean SelectOneTime (Int16 *hour, Int16 *minute,
const Char *title)

The first two arguments to SelectOneTime determine the time initially displayed
in the picker dialog box, as well as provide variables for SelectOneTime to return
the time selected by the user. The title argument provides the text displayed
in the picker’s title bar. SelectOneTime returns true if the user changed the
time in the dialog box, or false if the user tapped the Cancel button.

Programming Fields
To the user, text fields seem like very simple user interface objects. However, making
a text field simple for the user requires a fair amount of effort on your part. Specifi-
cally, fields are rather particular about memory management, because the addition
or removal of text by the user causes a field object to dynamically change the amount
of memory required to store the field’s contents.

The Palm OS deals with the difficulty of resizable field text by keeping track of the
field’s storage with a handle instead of a pointer. Each field has its own handle to
store the field’s text contents. The system automatically allocates a new handle
for a field if the user enters any text into the field.

Setting a Handle for a Text Field
To programmatically set the text in a field, you simply point the field at a different
handle that contains the new text for the field. The FldSetTextHandle function allows
you to change the handle that stores the text for a particular field. In the following
example, the FldSetTextHandle function sets the handle for a text field, given a
pointer to the field and the handle containing the field’s new contents.

static void SetFieldHandle (FieldType *field, MemHandle textH)
{

MemHandle oldTextH;

// Retrieve the field’s old text handle.
oldTextH = FldGetTextHandle(field);

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 233

234 Part III ✦ Programming the Palm OS

// Set the new text handle for the field.
FldSetTextHandle(field, textH);
FldDrawField(field);

// Free the old text handle to prevent a memory leak.
if (oldTextH)

MemHandleFree(oldTextH);
}

Notice that the preceding code retrieves the field’s original handle with the FldGet
TextHandle function, and then later explicitly frees the handle with MemHandle
Free. The Palm OS does not free the handle containing the field’s original contents,
so the application code must take care of this housekeeping task to prevent a sub-
stantial memory leak.

The previous example also calls FldDrawField after setting the field’s new handle to
ensure that the system draws the new contents of the field to the screen. FldSetText
Handle updates only the handle; your application must manually redraw the field
to display the field’s new contents.

When a form closes, the system automatically frees the handle associated with each
of its fields. To keep the handle, you must remove the association between the field
and the handle. To do this, call FldSetTextHandle with NULL as its second argument,
as in the following example:

FldSetTextHandle(field, NULL);

Specifying NULL for a text field’s handle disconnects the field from its handle, allowing
the handle to persist after the system has disposed of the field.

Modifying a Text Field
The Palm OS keeps track of a good deal of data about each field, such as the position
of the insertion point and where line breaks occur in the text. Directly modifying the
text in a handle associated with a field can confuse the system, resulting in garbled
text on the screen. To avoid this kind of mess, you must disconnect the handle from
the field, modify the text in the handle, and then reattach the handle. The Reverse
Field function in the following example reverses a string contained in a field:

static void ReverseField (FieldType *field)
{

MemHandle textH;

if (FldGetTextLength(field) > 0) {
textH = FldGetTextHandle(field);
if (textH) {

char *str, *p, *q;
char temp;
int n;

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 234

235Chapter 9 ✦ Programming User Interface Elements

FldSetTextHandle(field, NULL);
str = MemHandleLock(textH);
n = StrLen(str);
q = (n > 0) ? str + n - 1 : str;
for (p = str; p < q; ++p, --q) {

temp = *p;
*p = *q;
*q = temp;

}

MemHandleUnlock(textH);
FldSetTextHandle(field, textH);
FldDrawField(field);

}
}

}

The ReverseField function copies the field’s text handle into the variable textH, and
then disconnects the handle from the field with FldSetTextHandle. Then Reverse
Field calls MemHandleLock on the handle to lock it and obtain a character pointer
to its contents, which is suitable for a little pointer arithmetic to reverse the order of
the string. MemHandleUnlock unlocks the handle after the text has been reversed,
FldSetTextHandle reattaches the modified handle to the field, and then FldDraw
Field redraws the field so the results of the string reversal are visible to the user.

If you need to modify only a bit of a field’s text at a time, instead of the extensive
changes performed by the preceding example, note that the Palm OS provides a few
functions that safely change the field’s contents without your having to mess with
FldSetTextHandle. The functions, and their uses, are described as follows:

✦ FldSetSelection. Sets the start and end of the highlighted selection in a field.
FldSetSelection takes three arguments: a pointer to a field, the offset in bytes
of the start of the text selection, and the offset of the end of the selection. If
the start and end offsets are equal, FldSetSelection does not highlight any
text, instead moving the insertion point to the indicated offset.

✦ FldInsert. Replaces the current selection in a field, if any, with a new string.
This function takes three arguments: a pointer to a field, a character pointer
containing the string to insert, and the length in bytes of the string to be
inserted, not including a trailing null character.

✦ FldDelete. Deletes a specified range of text from a field. FldDelete takes three
arguments: a field pointer, the byte offset at the beginning of the text that should
be deleted, and the byte offset of the end of the text to delete. This function
does not delete the character at the ending offset, just everything up to that
point in the field.

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 235

236 Part III ✦ Programming the Palm OS

You should use these functions to make only small, relatively infrequent changes
to a field. Both FldInsert and FldDelete redraw the entire field, and if you call
them too often, distracting flickering may occur on the screen as the system
rapidly and repeatedly redraws the field. Worse yet, both functions post a
fldChangedEvent to the queue each time you call them. It is possible to over-
flow the queue with these events if you call FldInsert and FldDelete too often.

Retrieving Text from a Field
You can retrieve the text from a field by using FldGetTextHandle to get the field’s text
handle, and then locking that handle with MemHandleLock to obtain a pointer to the
string held in that handle; the last ReverseField example in the previous section does
this. However, using FldGetTextHandle in this fashion can be a bit cumbersome if
you want only to read the text from a field without modifying it. The Palm OS also
provides the FldGetTextPtr function for this purpose. FldGetTextPtr returns a locked
pointer to a field’s text string, or NULL if the field is empty.

The pointer returned by FldGetTextPtr becomes invalid as soon as the user edits
the text field. Also, any changes you make to the contents of the pointer can mud-
dle the field’s internal data for keeping track of text length and word wrapping
information, taking the field out of sync with its actual contents. Use FldGet
TextPtr to take a snapshot of a field’s value at only one point in time.

Also, FldGetTextHandle and FldGetTextPtr return NULL if the field has never con-
tained any text, but if the user entered text into the field and deleted all of it, these
two functions return a non-NULL pointer that points to a NULL character (\0). You
can use the FldGetTextLength function to determine how long the text in a field is.

UInt16 length = FldGetTextLength(field);
Setting Field Focus
In a form containing multiple text fields, only one field displays an insertion point
and allows text entry at a time. This field has the focus. When the user taps in a
field, the system automatically shifts the focus to that field. To set the focus within
application code, use the FrmSetFocus function. FrmSetFocus has two arguments:
a pointer to a form, and the index number of the field that should receive the focus.

Notice that FrmSetFocus uses the index number of a field, not an object pointer
or a resource ID. Recall that you may use FrmGetObjectIndex to retrieve an
object’s index number, given its resource ID.

You should set which field in a form initially has the focus when you handle the
frmOpenEvent, right after drawing the form with FrmDrawForm. Setting a default
field in this way ensures that the user may begin data entry immediately, without
having to tap on a field to “wake” it.

Note

Caution

Caution

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 236

237Chapter 9 ✦ Programming User Interface Elements

The FrmGetFocus function is a useful companion to FrmSetFocus. FrmGetFocus
returns the index number of the field that currently has the focus, or the constant
noFocus if no field has the focus.

Any form with multiple text fields should also support the prevFieldChr and
nextFieldChr Graffiti characters, which the user may enter to quickly switch
between fields instead of having to move the stylus from the Graffiti entry area
to tap on another field. You can deal with these two characters in a form event
handler by handling the keyDownEvent. The following event handler moves
the focus between two fields in a form in response to the prevFieldChr and
nextFieldChr characters:

static Boolean MyFormHandleEvent (EventType *event)
{

Boolean handled = false;

if (event->eType == keyDownEvent) {
FormType *form = FrmGetActiveForm();
UInt16 fieldIndex1 = FrmGetObjectIndex(form, Field1ID);
UInt16 fieldIndex2 = FrmGetObjectIndex(form, Field2ID);

switch (event->data.keyDown.chr) {
case nextFieldChr:

if (FrmGetFocus(form) == fieldIndex1)
FrmSetFocus(form, fieldIndex2);

handled = true;
break;

case prevFieldChr:
if (FrmGetFocus(form) == fieldIndex2)

FrmSetFocus(form, fieldIndex1);
handled = true;
break;

}
}

return (handled);
}

Setting Field Attributes
Internally, a field stores its attributes in a FieldAttrType structure, which the
Palm OS header file Field.h defines as follows:

typedef struct {
UInt16 usable :1;
UInt16 visible :1;
UInt16 editable :1;

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 237

238 Part III ✦ Programming the Palm OS

UInt16 singleLine :1;
UInt16 hasFocus :1;
UInt16 dynamicSize :1;
UInt16 insPtVisible :1;
UInt16 dirty :1;
UInt16 underlined :2;
UInt16 justification :2;
UInt16 autoShift :1;
UInt16 hasScrollBar :1;
UInt16 numeric :1;

} FieldAttrType;

Most of the time, you will never need to change these attributes at run time. For
those rare occasions where you want to hand-tweak a field’s attribute, the Palm OS
offers the FldGetAttributes and FldSetAttributes functions. The values of many of
these attributes may also be affected by using other field functions. For example,
FldSetFocus changes the status of the hasFocus field in a field’s FieldAttrType
structure.

FldGetAttributes has two arguments: a pointer to the field, and a pointer to a Field
AttrType structure to receive a copy of the field’s attributes. FldSetAttributes takes
the same two arguments, only it copies the FieldAttrType structure it receives into
the actual attributes of the specified field. Note that setting field attributes has no
immediate physical effect on the screen; in order to see the changes, you must redraw
the field with FldDrawField.

One common use of FldSetAttributes is to manually set the underlined attribute.
A bug in the Windows CodeWarrior R5 version of Constructor causes underlined
fields to have solid underlining when displayed in Palm OS version 3.1 and later.
A workaround for this bug is to set the underlined attribute of each field to the
constant grayUnderline. The following code does just that:

FieldAttrType attr;
FieldType *field = GetObjectPtr(MyTextField);

FldGetAttributes(field, &attr);
attr.underlined = grayUnderline;
FldSetAttributes(field, &attr);

If you call this code while initializing the form containing the offending field, before
calling FrmDrawForm to draw that form, you do not need to call FldDrawField
separately to make the underlined attribute change stick.

Programming Gadgets
A gadget object allows you to define your own user interface element. The standard
objects included in the Palm OS should be sufficient, and you should stick with
them if at all possible to maintain a consistent look and feel with other Palm OS

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 238

239Chapter 9 ✦ Programming User Interface Elements

applications. However, if you have need for an object that simply cannot be imple-
mented using the normal Palm OS interface elements, you can make your own
object using a gadget.

Your application code must handle all taps on the gadget, as well as drawing the
gadget to the screen. How you accomplish these tasks depends entirely on what the
gadget’s function is and what it looks like. The simple gadget pictured in Figure 9-6
illustrates the mechanics of interacting with a gadget. This particular gadget repre-
sents a single square from a tic-tac-toe board. Tapping the gadget toggles it from
a blank square to an “X,” from an “X” to an “O,” and from an “O” back to a blank
square again.

Figure 9-6: Three views of a simple gadget object

The gadget stores its state in a UInt8 variable. The value 0 represents a blank
square, 1 indicates an “X,” and 2 is an “O.” To provide storage space for this vari-
able, the application must allocate a variable for it when it initializes the form
containing the gadget:

static void MainFormInit(FormType *form)
{

UInt8 *data;

data = MemPtrNew(sizeof(UInt8));
if (data) {

*data = 0;
FrmSetGadgetData(form, FrmGetObjectIndex(form,

MainTicTacToeGadget), data);
}

}

MainFormInit uses the MemPtrNew function to obtain memory space in which to
store the gadget’s data. Once it has a pointer to this new memory, MainFormInit ini-
tializes the gadget data to 0 (representing a blank square). To associate the newly
allocated handle with the gadget, the MainFormInit function calls FrmSetGadgetData,
passing a pointer to the form containing the gadget, the index number of the gadget
object, and the pointer to the gadget’s data.

An event handler for the Main form calls MainFormInit while handling the frm
OpenEvent. The form event handler takes care of other details related to the gadget
when it handles frmCloseEvent and penDownEvent. You will find details about the
latter two events later in this section; for now, take a look at the frmOpenEvent part
of the event handler:

static Boolean MainFormHandleEvent(EventType *event)
{

Boolean handled = false;
FormType *form = FrmGetActiveForm();

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 239

240 Part III ✦ Programming the Palm OS

if (event->eType == frmOpenEvent) {
MainFormInit(form);
FrmDrawForm(form);
TicTacToeDraw(form, MainTicTacToeGadget);
handled = true;

}

else if (event->eType == frmCloseEvent) {
// Handle the frmCloseEvent.

}

else if (event->eType == penDownEvent) {
// Handle the penDownEvent.

}

return (handled);
}

After calling MainFormInit, the event handler draws the form with FrmDrawForm,
and then draws the gadget with TicTacToeDraw:

static void TicTacToeDraw(FormType *form, UInt16 gadgetID)
{

RectangleType bounds;
UInt16 gadgetIndex = FrmGetObjectIndex(form, gadgetID);
MemHandle dataH = FrmGetGadgetData(form, gadgetIndex);

if (dataH) {
FontID originalFont = FntSetFont(boldFont);

UInt8 *data = MemHandleLock(dataH);

FrmGetObjectBounds(form, gadgetIndex, &bounds);
// Draw a border around the gadget.
WinEraseRectangle(&bounds, 0);
WinDrawRectangleFrame(rectangleFrame, &bounds);

// Draw the contents of the tic tac toe square.
switch(*data) {

case 1:
WinDrawChars(“X”, 1, bounds.topLeft.x + 6,

bounds.topLeft.y + 4);
break;

case 2:
WinDrawChars(“O”, 1, bounds.topLeft.x + 6,

bounds.topLeft.y + 4);
break;

default:
break;

}

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 240

241Chapter 9 ✦ Programming User Interface Elements

MemHandleUnlock(dataH);
FntSetFont(originalFont);

}
}

The TicTacToeDraw function first determines the current value of the gadget using
FrmGetGadgetData, which requires a pointer to the form containing the gadget and
the index number of the gadget object. TicTacToeDraw locks the handle returned
by FrmGetGadgetData to obtain a pointer, from which the application may read
the gadget’s stored value.

Once it has the gadget’s value, TicTacToeDraw can get down to the business of actu-
ally drawing the gadget on the screen. TicTacToeDraw retrieves the boundaries of the
gadget object, which are stored in a RectangleType structure. The Palm OS header
file Rect.h defines RectangleType, and the PointType structures contained by
RectangleType, as follows:

typedef struct {
Coord x;
Coord y;

} PointType;

typedef struct {
PointType topLeft;
PointType extent;

} RectangleType;

The Coord data type used in PointType is simply a typedef for Int16, defined in
the Palm OS header PalmTypes.h.

Armed with the gadget’s boundaries, TicTacToeDraw begins by erasing the gadget’s
interior with the WinEraseRectangle function, and then draws a box around the
gadget with WinDrawRectangleFrame. Then, depending on the value of the gadget,
TicTacToeDraw draws an “X” or an “O” in the square with WinDrawChars, or leaves
the newly erased square alone if the gadget’s value indicates a blank square.

WinEraseRectangle, WinDrawRectangleFrame, WinDrawChars, and other
drawing functions are detailed later in this chapter, under “Drawing Graphics.”

Returning to the Main form event handler, the application must free the handle hold-
ing the gadget’s data when the form no longer has use of it. The frmCloseEvent is a
perfect place to do just that:

else if (event->eType == frmCloseEvent) {
MemHandle dataH = FrmGetGadgetData(form,

FrmGetObjectIndex(form, MainTicTacToeGadget));

if (dataH)

Cross-
Reference

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 241

242 Part III ✦ Programming the Palm OS

MemHandleFree(dataH);
handled = true;

}

The event handler must also capture the penDownEvent, which occurs when the
user begins to tap the screen:

else if (event->eType == penDownEvent) {
UInt16 gadgetIndex = FrmGetObjectIndex(form,

MainTicTacToeGadget);
RectangleType bounds;

FrmGetObjectBounds(form, gadgetIndex, &bounds);
if (RctPtInRectangle(eventP->screenX, eventP->screenY,

&bounds)) {
TicTacToeTap(form, MainTicTacToeGadget, eventP);
handled = true;

}
}

MainFormHandleEvent compares the screen coordinates of the tap with the
boundaries of the tic-tac-toe gadget, and if the tap is within the gadget, the event
handler calls the TicTacToeTap function to handle updating the gadget:

static void TicTacToeTap(FormType *form, UInt16 gadgetID,
EventType *event)

{
UInt16 gadgetIndex = FrmGetObjectIndex(form, gadgetID);
MemHandle dataH = FrmGetGadgetData(form, gadgetIndex);
Int16 x, y;
Boolean penDown;
RectangleType bounds;
Boolean wasInBounds = true;

if (dataH) {
FrmGetObjectBounds(form, gadgetIndex, &bounds);
WinInvertRectangle(&bounds, 0);

do {
Boolean nowInBounds;

PenGetPoint(&x, &y, &penDown);
nowInBounds = RctPtInRectangle(x, y, &bounds);
if (nowInBounds != wasInBounds) {

WinInvertRectangle(&bounds, 0);
wasInBounds = nowInBounds;

}
} while (penDown);

if (wasInBounds) {
BytePtr data = MemHandleLock(dataH);

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 242

243Chapter 9 ✦ Programming User Interface Elements

if (++(*data) > 2)
*data = 0;

MemHandleUnlock(dataH);
TicTacToeDraw(form, gadgetID);

}
}

}

The tic-tac-toe gadget reacts to taps in much the same way as a standard button.
The gadget highlights when the user taps it (via the WinInvertRectangle function)
and remains highlighted for as long as the user holds the stylus on the gadget.
Moving the stylus outside the bounds of the gadget returns the gadget’s appear-
ance to normal, and releasing the stylus outside the gadget’s borders has no lasting
effect on the gadget.

If the user taps and releases within the gadget, TicTacToeTap rotates the gadget’s
attached data to the next value, and then redraws the gadget by calling TicTac
ToeDraw.

Programming Lists and Pop-up Lists
List objects, depending on how you use them, can be very simple to implement, or
very difficult. The main determining factor in the complexity of a list is whether its
elements need to change at run time or not. Defining all of a list’s items at design
time, as part of the list resource, results in an easy-to-program static list. If you
need to generate the list’s items while the program is running, though, program-
ming the list requires more effort.

Retrieving List Data
If the user taps the screen and releases within a list, the system queues a lstSelect
Event, which you can choose to handle in a form event handler. To determine which
list item the user selects, you need to use the LstGetSelection function. LstGet
Selection takes a list pointer as its only argument, returning the number of the list
item currently selected. List items are numbered sequentially, starting from 0. If no
item is selected in the list, LstGetSelection returns the constant noListSelection,
which is defined in the Palm OS headers.

Retrieving the text of a particular item in the list requires the LstGetSelectionText
function. LstGetSelectionText is somewhat misnamed; instead of returning the text
of the selected list item, the function actually returns any list item’s text, given a
pointer to the list and the item’s number. For example, the following code retrieves
the text of the first item in a list:

Char *text = LstGetSelectionText(list, 0);

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 243

244 Part III ✦ Programming the Palm OS

You can retrieve the currently selected list item’s text by calling LstGetSelection
within the call to LstGetSelectionText. The following example retrieves the text of
the currently selected list item:

Char *text = LstGetSelectionText(list,
LstGetSelection(list));

The character pointer returned by LstGetSelectionText is actually a pointer into
the list object’s internal data, not a copy of that data. Modifying the pointer
returned from LstGetSelectionText will actually change text in the list itself, caus-
ing unexpected results. For example, the following code directly sets the label of a
control from the text of the second item in a list, and then changes the control’s
label again:

CtlSetLabel(ctl, LstGetSelectionText(list, 1));
CtlSetLabel(ctl, “This is a bad idea”);

This code does have the desired effect of changing the control’s label to the text of
the appropriate list item. However, the second call to CtlSetLabel overwrites
some of the list’s contents with the text “This is a bad idea”. This spillover happens
because the control’s label and the list share a pointer. A safer way to set the label
from a list item is to copy the list item’s text to a new variable, and then set the
label from the variable:

Char *label = CtlGetLabel(ctl);
StrCopy(label, LstGetSelectionText(list, 1));
CtlSetLabel(ctl, label);

You can also retrieve the total number of items in a list or the number of visible items,
using the LstGetNumberOfItems and LstGetVisibleItems functions, respectively.

LstGetVisibleItems is available only on Palm OS version 2.0 and later.

Manipulating Lists
You can directly set which list item is selected with the LstSetSelection function.
LstSetSelection takes two arguments: a pointer to the list object, and the number
of the item to select. Like other list functions, 0 represents the first item in the list.
You may also pass -1 as the second argument to LstSetSelection, which clears the
selection entirely.

To make a particular list item visible, use the LstMakeItemVisible function. LstMake
ItemVisible takes a pointer to a list and the number of the list item to make visible.
The LstMakeItemVisible function changes the top item of the list to make the
requested item visible. If the item is already visible, LstMakeItemVisible leaves
the list alone.

Note

Caution

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 244

245Chapter 9 ✦ Programming User Interface Elements

Note that LstMakeItemVisible does not update the list display, only the list’s inter-
nal data. You need to call LstDrawList to refresh the list display after a call to Lst
MakeItemVisible. However, even this is not enough to properly redraw the list,
because LstDrawList does not always erase the highlight from the selected list item
before redrawing the list in the new position mandated by LstMakeItemVisible.
Calling LstEraseList before LstDrawList removes the highlight, resulting in a clean
redraw of the list. Here is an example that scrolls a list to make its fifth item visible,
and then refreshes the list display:

LstMakeItemVisible(list, 4);
LstEraseList(list);
LstDrawList(list);

If you are initializing a list before the form containing the list has been drawn, you
can safely avoid calling LstEraseList and LstDrawList, because FrmDrawForm
handles drawing the list for you.

Programming Dynamic Lists
The Palm OS does not provide any functions to insert items into a list or remove
them from it. Instead, you have two choices for dynamically altering the contents
of a list:

✦ Set the entire contents of the list at once by passing an array of strings to
LstSetListChoices.

✦ Attach a callback function to the list with LstSetDrawFunction that the
system calls to draw each row of the list.

Both methods of modifying a list are perfectly valid, but using LstSetDrawFunction
is more flexible and requires less memory overhead. The two methods are described
in the next section.

Populating a list with LstSetListChoices
The LstSetListChoices function requires a pointer to a list object, a pointer to an
array of strings, and the total number of items in the list. Each member of the array
of strings becomes a single item in the list. The prototype for LstSetListChoices
looks like this:

void LstSetListChoices (ListType *listP, Char **itemsText,
UInt16 numItems);

The arguments to LstSetListChoices are list, a pointer to a list object, itemsText,
a pointer to an array of strings, and numItems, the total number of items in the list.
If you have ever dealt with pointers to arrays of strings in C/C++, you should imme-
diately realize that trying to pass all of a list’s text at once with LstSetListChoices is

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 245

246 Part III ✦ Programming the Palm OS

cumbersome at best. Your application must handle the allocation, initialization, and
maintenance of the array of strings without any help from the operating system, a
process which can quickly become a nightmare to code and debug if you need to
change the list’s contents often during program execution. Also, if the list is long
enough, this technique can be a drain on the limited amount of dynamic memory
available, because you must keep the entire array of strings in memory while the
form containing the list is open.

Filling a list with LstSetDrawFunction
Fortunately, the Palm OS offers a simpler solution to the problem of changing a list’s
contents at run time. Instead of explicitly setting the text of all the list’s items at
once, you can set a callback function to take care of drawing each individual row
in the list using LstSetDrawFunction. Once the callback function is in place, when-
ever the system needs to draw a row in the list, it calls your custom routine to
perform the drawing operation. The one drawback to this approach is that you
cannot use the LstGetSelectionText function with the list, because none of the list’s
items are populated with text.

For the sake of simplicity, the example that follows uses this globally defined array
of strings:

char ListElements[6][10] =
{

{ “Gold” },
{ “Silver” },
{ “Hydrogen” },
{ “Oxygen” },
{ “Argon” },
{ “Plutonium” }

};

The event handler for the form containing the list sets a custom drawing function
for the list with LstSetDrawFunction while handling the frmOpenEvent. Using a
callback list drawing function still requires a call to LstSetListChoices to tell the list
how many items it should contain. MainFormHandleEvent passes NULL as the sec-
ond argument to LstSetListChoices instead of a pointer to an array of strings, along
with the total number of items in the list as the third argument to LstSetListChoices.

static Boolean MainFormHandleEvent(EventType *event)
{

Boolean handled = false;

if (event->eType == frmOpenEvent) {
FormType *form = FrmGetActiveForm();
ListType *list = GetObjectPtr(MainList);
int numChoices = 0;

// Set custom list drawing callback function.
LstSetDrawFunction(list, MainListDraw);

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 246

247Chapter 9 ✦ Programming User Interface Elements

// Determine the number of items in the string array,
// then fill the list with that many items.
numChoices = sizeof(ListAnimals) /

sizeof(ListAnimals[0]);
LstSetListChoices(list, NULL, numChoices);

// Draw the form, which also draws the list.
FrmDrawForm(form);
handled = true;

}

return (handled);
}

MainListDraw is the callback function that handles drawing each item in the list:

static void MainListDraw(UInt16 itemNum,
RectangleType *bounds,
Char **itemsText)

{
#ifdef __GNUC__

CALLBACK_PROLOGUE;
#endif

WinDrawChars(ListElements[itemNum],
StrLen(ListElements[itemNum],
bounds->topLeft.x,
bounds->topLeft.y);

#ifdef __GNUC__
CALLBACK_EPILOGUE;

#endif
}

The system passes the number of the item in the list to draw, along with a rectangle
defining the screen area occupied by that item. With these two pieces of information,
a simple call to WinDrawChars can take care of drawing the appropriate list item,
retrieving the correct string by using itemNum as an index into the ListElements
array. For example, when drawing the third list item, the system passes the value 2
in the itemNum argument, which causes MainListDraw to draw the string stored in
ListElements[2], or “Hydrogen”. In a full-fledged application, you can use itemNum
as an index into a stored array of string resources, the application’s database, or any
other appropriate data structure.

This example draws only the text of each list item, but it is simple to add code in
the callback for drawing bitmaps if you wish to further customize the list display.
The ability to add extra drawing code to the callback function makes this method
of filling a list much more flexible than calling LstSetListChoices by itself.

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 247

248 Part III ✦ Programming the Palm OS

Handling Pop-up Lists
When the user selects an item from a pop-up list, a pop-up trigger sends two events
to the queue, a ctlSelectEvent and a popSelectEvent. The popSelectEvent is
more useful, because it contains data about both the trigger and its attached list,
whereas the ctlSelectEvent sparked by tapping a pop-up trigger contains only
information about the trigger itself. A popSelectEvent also contains other useful
bits of information, as outlined in Table 9-2.

Table 9-2
Data in a popSelectEvent

Data Description

data.popSelect.controlID Resource ID of the pop-up trigger

data.popSelect.controlP ControlPtr to the pop-up trigger
resource control structure

data.popSelect.listID ResourceID of the list attached to a
pop-up trigger

data.popSelect.listP ListPtr to the attached list structure

data.popSelect.selection Item number of the newly selected list item

data.popSelect.priorSelection Item number of the list item selected before
the new selection

When the user selects an item from the pop-up list, the text of that item becomes
the new label for the pop-up trigger. However, this behavior works only if you leave
the popSelectEvent in the queue so FrmHandleEvent has a chance to process it.
You can leave the event on the queue by not setting handled = true in the code
that reacts to the popSelectEvent. For example, the following form event handler
reacts to the popSelectEvent but leaves it on the queue so that FrmHandleEvent
will be able to automatically set the pop-up trigger’s label to the text of the item
selected from the pop-up list:

static Boolean MainFormHandleEvent(EventType *event)
{

Boolean handled = false;

if (event->eType == popSelectEvent) {
// Do something in response to pop-up list selection.
// Leave handled = false so the event stays in the
// queue.

}
}

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 248

249Chapter 9 ✦ Programming User Interface Elements

If a pop-up trigger is attached to a list that the application fills dynamically at run time,
you need to initialize the trigger’s label to an appropriate value before displaying the
form that contains that pop-up trigger. The following code uses the CtlSetLabel func-
tion to set a pop-up trigger’s label to the text of the selected item in its attached list:

ListType *list = GetObjectPtr(PopupList);
ControlType *popTrig = GetObjectPtr(PopupTrigger);
Char *label = CtlGetLabel(popTrig);

StrCopy(label, LstGetSelectionText(list,
LstGetSelection(list)));

CtlSetLabel(popTrig, label);

Note that the code listed above would only work with either a static list populated
at design time, or in a list populated using LstSetListChoices, because LstGet
SelectionText can only retrieve text that actually exists within the list itself. If you
were to use the LstSetDrawFunction method described earlier, you would need to
look up the text values yourself, as in the following example:

StrCopy(label, ListElements[LstGetSelection(list)]);
CtlSetLabel(popTrig, label);

Programming Menus
Dealing with menus in code is mostly straightforward; the “Hello World” application
in Chapter 4 covers the basics of handling menu events. Briefly, here are some
things to remember when implementing menus in an application:

✦ In the event handler for the form containing a menu, check for an event of
type menuEvent.

✦ Look in the event data structure, under event->data.menu.itemID, for the
resource ID of the menu item the user selected.

✦ If a form contains more than two or three menu items, it is a good idea to write
a separate menu handling function that actually executes the menu commands,
and call that function from your event handler. The menu handling function
should take the resource ID of the selected menu as an argument. This tech-
nique prevents clutter in the form event handler, making it easier to read.

This information should get you through most menu programming. The rest of this
section deals with one potential pitfall of using menu Graffiti shortcuts, along with
some methods for doing fancier things with menus in your application.

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 249

250 Part III ✦ Programming the Palm OS

Using MenuEraseStatus
When the user invokes a menu command using a Graffiti command shortcut, the
system briefly displays the name of that menu command in the lower-left corner of
the screen, or on Palm OS 3.5, displays a command bar that covers the entire bot-
tom of the screen. Normally, this status message or command bar disappears after
a few seconds, just long enough to alert the user that the system has responded to
the user’s command stroke.

Right before the Palm OS first prints the status message, the system saves the
screen area behind the message. After the system’s internal timer counts out a few
seconds, the system restores that saved screen region. Normally, this behavior is
perfectly acceptable. Unfortunately, if your code changes the contents of the lower
part of the screen in response to a menu command, the system will still overwrite
the status message or command bar area with the bits saved from the old screen,
probably resulting in an ugly mess in the bottom of the screen.

Switching between forms in response to a menu command is a common way to cause
this error. Since version 2.0, the Palm OS usually erases the menu status automati-
cally when switching forms, but another problem can occur. If the system saves the
bits from the old form before displaying a new form, it might save the status message
as part of that screen. When returning to the original form, the system then writes
those old bits onto the screen, status message and all.

To prevent these errors from happening, the Palm OS provides the MenuEraseStatus
function, which you may call to immediately erase the status message or command
bar from the bottom of the screen. Call MenuEraseStatus immediately before per-
forming any action that changes the lower part of the screen. The following code
erases the status message or command bar, and then switches to a new form:

MenuEraseStatus(NULL);
FrmGotoForm(AnotherForm);

MenuEraseStatus takes a single argument, a pointer to a menu bar structure.
Normally, you can just pass the value NULL, which tells MenuEraseStatus to use
the current menu.

Removing Menu Items
The Palm OS does not offer any way to gray out unusable menu items, as is often the
case with desktop GUIs. For the most part, if a menu command is invalid in a certain
context in your application, you can simply display an alert dialog box letting the
user know why that command cannot be used. The built-in applications use this
strategy for a number of commands. Figure 9-7 shows the dialog box that appears
when the user tries to invoke Record ➪ Delete Item in the To Do application without
first selecting a to do item from the list.

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 250

251Chapter 9 ✦ Programming User Interface Elements

Figure 9-7: The built-in To Do application displays this dialog
box when the user tries to use the Record ➪ Delete Item
menu command without selecting an item.

This strategy of displaying a dialog box to inform the user why the command does
not work is fine for most context-dependent menu items. However, you may wish
to hide a menu item altogether. For example, if an application supports beaming,
but can also run on devices that do not have an infrared port, removing the beam-
ing-related menu item entirely on non-IR devices removes clutter from the interface.
Hiding completely unavailable commands is also more polite, because it doesn’t
tempt the user with menu options that display only a disappointing dialog box
when invoked.

Because adding and removing menu items are not standard functions in the Palm
OS, you must use a brute force approach to hide menu items. Simply create two
menu bars, one that contains the menu item you wish to hide and one without that
menu item. You may then programmatically switch with the FrmSetMenu function
which menu is displayed. FrmSetMenu takes two arguments: a pointer to a form,
and the resource ID of a menu bar to associate with that form.

Palm OS version 1.0 does not support the FrmSetMenu function. If your applica-
tion needs to run on a 1.0 device, you will not be able to dynamically set menus at
run time.

To implement this dual menu bar strategy, assign one of the two menu bars to the
form resource at design time, just as you would do for a single menu bar. Then,
just before displaying the form containing the switchable menu bar, you can call
FrmSetMenu, if necessary, to switch to the second menu. The Librarian sample
application uses this strategy to hide the Record ➪ Beam Book command in its Edit
view. The following code checks to see if the device running Librarian supports
beaming, and if not, sets the menu bar associated with the Edit view to a version
that does not contain a Beam Book command:

UInt32 romVersion;

FtrGet(sysFtrCreator, sysFtrNumROMVersion, &romVersion);
if (romVersion < gRequiredVersion)

FrmSetMenu(FrmGetActiveForm(), RecordNoIRMenuBar);

Using the FtrGet function to retrieve information about supported features is cov-
ered in Chapter 10, “Programming System Elements.”

Cross-
Reference

Note

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 251

252 Part III ✦ Programming the Palm OS

Drawing Graphics and Text
Most of the time, you can rely on the standard user interface elements to handle
the display of whatever data your application needs to communicate to the user,
but sometimes you might need to draw something different on the screen. The
Palm OS offers a number of functions for directly drawing graphics and text.

This section discusses drawing black and white graphics only. Chapter 10, “Pro-
gramming System Elements,” delves into the black magic of Palm OS grayscale
programming.

Understanding Windows
Palm OS drawing functions center on the concept of the window. A window is a
rectangular drawing area, either on screen or in memory. You are already familiar
with one type of window: forms. A form is simply a window with added features for
handling various user interface elements. Every form is a window, but not every
window is a form.

The system keeps track of two special windows. At any given time, there may only
be one draw window and one active window. Usually, the operating system treats
the same window as both draw window and active window.

The draw window is where the system renders all output from graphics functions.
All coordinates used in the drawing functions are relative to the current draw win-
dow. The coordinate 0, 0 refers to the upper-leftmost pixel of the draw window.
The system clips output from graphics functions to the edges of the draw window.
Normally, the system takes care of setting the draw window automatically; the cur-
rent active form is usually also the draw window. You can manually set the current
draw window with the WinSetDrawWindow function. WinSetDrawWindow takes
a single argument, the handle of the window to set as the new draw window, and
returns the handle of the old draw window.

The active window is the only region of the screen that accepts user input. If the
user taps outside the active window, the system discards that input. The system
automatically sets the active form as the active window. If you need to explicitly
set a different window to be active, you can do so with the WinSetActiveWindow
function, which also sets the draw window to be the same as the active window.

By default, whichever form is currently active is both the active window and the
draw window. All of the various graphics functions with a Win prefix automatically
write to the active form if you take no action to manually set the draw window.

Cross-
Reference

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 252

253Chapter 9 ✦ Programming User Interface Elements

You can create a new window with the WinCreateWindow function, whose prototype
looks like this:

WinHandle WinCreateWindow (RectangleType *bounds,
FrameType frame, Boolean modal, Boolean focusable,
UInt16 *error)

The bounds argument is a pointer to a RectangleType structure defining the bound-
aries of the new window. You can define the type of frame that surrounds the window
by setting the frame argument, which accepts a FrameType value describing the type
of frame to draw. The Palm OS header file Window.h defines a number of constants
for window frames; these constants are described in Table 9-3.

Table 9-3
FrameType Constants

Constant Value Description

noFrame 0 No frame.

simpleFrame 1 One pixel wide rectangular frame.

rectangleFrame 1 Same as simpleFrame.

roundFrame 0x0401 One pixel wide frame with rounded corners.
The corners have a diameter of 7 pixels.

boldRoundFrame 0x0702 Two pixel wide frame with rounded corners.
The corners have a diameter of 7 pixels.

popupFrame 0x0205 One pixel wide frame with rounded corners and
a shadow effect. The corners have a diameter of
2 pixels. The Palm OS draws menus using this
style of frame.

dialogFrame 0x0302 Two pixel wide frame with rounded corners. The
corners have a diameter of 3 pixels. The system
draws modal dialog forms and alerts using this
style of frame.

menuFrame 0x0205 Same as popupFrame.

The system draws a window’s frame outside the actual borders of the window,
so take this into account if you need to later remove the window from the screen.
The WinGetWindowFrameRect function can help with this, because it retrieves a
RectangleType defining the rectangular area occupied by a window and its frame.

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 253

254 Part III ✦ Programming the Palm OS

Calling WinCreateWindow does not draw a window’s frame; it merely defines
what the frame should look like. You must first set the new window as the draw
window with WinSetDrawWindow, and then call the WinDrawWindowFrame
function to actually draw the window’s frame.

Two Boolean arguments follow frame in a WinCreateWindow call. The modal argu-
ment, if true, indicates that the window should be modal, which is to say it prevents
user input outside its bounds. Passing true as the focusable argument true allows
the window to become the active window.

Unlike most functions in the Palm OS, which indicate an error of some kind in their
return value, WinCreateWindow returns possible error values via the error argu-
ment, which is a pointer to a UInt16 value representing the error encountered. A
value of 0 in the error argument indicates that WinCreateWindow completed
successfully.

WinCreateWindow does not clear the area occupied by a new window. If you create
a new window over an existing window, you must manually clear the area occupied
by the new window with the WinEraseWindow function. It may also be important to
restore the screen area under the window, particularly for a pop-up-style window.
You can use the WinSaveBits function to save a screen area to an off-screen window,
and then restore that area with WinRestoreBits after removing the pop-up window.

Once you are finished with a window, you may remove it from memory, and from
the screen, using the WinDeleteWindow function. WinDeleteWindow takes two
arguments. The first is the handle of the window you wish to delete. The second
argument is a Boolean value to indicate whether the window should be erased
before deleting it. Passing true as this second argument erases the area occupied
by the window, and its frame, before removing the window from memory.

WinDeleteWindow releases the memory occupied by the window, but it does
not reset the address of the window handle. After a call to WinDeleteWindow,
the window handle of the deleted window becomes invalid. If you plan to use the
same window handle later in your code, setting the window handle to NULL is
a good idea to prevent crashing the system by reading from an unallocated chunk
of memory.

The following example creates and displays a pop-up window in the middle of the
screen, surrounded by a rounded bold border:

WinHandle newWindow, originalWindow, savedWindow;
RectangleType newBounds, savedBounds;
UInt16 err;

// Set the bounds of the new window.
newBounds.topLeft.x = 20;
newBounds.topLeft.y = 20;

Caution

Note

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 254

255Chapter 9 ✦ Programming User Interface Elements

newBounds.extent.x = 120;
newBounds.extent.y = 120;

// Create the window.
newWindow = WinCreateWindow(&newBounds, boldRoundFrame, false,

false, &err);

// Save the bits from the form beneath the new window.
WinGetWindowFrameRect(newWindow, &savedBounds);
savedWindow = WinSaveBits(&savedBounds, &err);

// Draw the new window.
originalWindow = WinSetDrawWindow(newWindow);
WinEraseWindow();
WinDrawWindowFrame();
WinSetDrawWindow(originalWindow);

This example starts by setting up the newBounds rectangle that defines the screen
area for the new window. Once the rectangle structure is filled, a call to WinCreate
Window creates the window in memory and assigns it to the newWindow handle.
Because this window is not intended for user input, the modal and focusable
arguments to WinCreateWindow are both false.

At this point in the code, a window exists in memory, but no visible change has
happened on the screen. The code continues by saving the screen bits in the area
occupied by the form, so they may be restored later. The WinGetWindowFrame
Rect function ensures that the saved bits include the frame around newWindow;
recall that the system draws a window’s frame around the outside edge of the
rectangle that makes up the frame, so the newBounds rectangle does not actually
include the frame. Armed with a savedBounds rectangle containing the window
and its frame, a call to WinSaveBits stores the original screen contents under
newWindow in the handle savedWindow.

Next, the code sets newWindow as the draw window with WinSetDrawWindow,
saving the current draw window in originalWindow so it may be restored later.
WinEraseWindow clears the screen area occupied by the window, and WinDraw
WindowFrame draws a border around the frame.

Be careful about calling erase functions in the corners of a window or form with a
rounded frame. Rounded frame corners pass within the actual drawing area of
a window, so functions such as WinEraseWindow, WinEraseLine, and WinErase
Rectangle can overwrite the corners of a window with white space. The example
code here calls WinDrawWindowFrame after it calls WinEraseWindow for exactly
this reason. If WinEraseWindow were called last, it would clip the corners of the
window’s frame.

The window is now drawn on the screen. Another call to WinSetDrawWindow
passes draw window status back to the form underneath the new window.

Caution

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 255

256 Part III ✦ Programming the Palm OS

The following code erases the pop-up window drawn by the previous example:

WinDeleteWindow(newWindow, true);
WinRestoreBits(savedWindow, savedBounds.topLeft.x,

savedBounds.topLeft.y);
newWindow = NULL;

WinDeleteWindow releases the window structure from memory, and the true
value in its second argument tells the system to erase the window from the screen,
frame and all. WinRestoreBits restores the contents of the screen to what they
were before displaying the pop-up window, given the savedWindow handle, which
was filled earlier by a call to WinSaveBits. As a precaution, the example also sets
the newWindow handle to NULL, because it is now invalid, and accessing that
handle could crash the system.

Drawing Lines
The most basic drawing function in the Palm OS is WinDrawLine, which simply
draws black lines, one pixel wide, between two points on the screen. WinDrawLine
takes four arguments. The first two arguments specify the x- and y-coordinates of
the line’s start point, and the last two arguments are the x- and y-coordinates of the
line’s end point. For example, the following line of code draws a line connecting
the upper-left and lower- right corners of the screen, assuming the draw window
occupies the entire display area of a standard Palm OS device:

WinDrawLine(0, 0, 159, 159);

Two companion functions, WinDrawGrayLine and WinEraseLine, operate in the
same fashion. WinDrawGrayLine draws every other pixel of the specified line,
resulting in a dotted, or gray, line. WinEraseLine draws blank pixels between two
points; calling WinEraseLine with the same arguments as an earlier WinDrawLine
call will remove a line from the screen entirely.

The WinFillLine function draws a line using the current fill pattern set by the
WinSetPattern function. See the section on drawing rectangles for more informa-
tion about using WinSetPattern.

Drawing Rectangles
Trying to fill a large area of the screen with the line functions requires many calls to
WinDrawLine or its ilk, because they only draw a single pixel width at a time. It is
much more convenient to call WinDrawRectangle to fill a rectangular region of the
screen. WinDrawRectangle takes a pointer to a RectangleType structure and a
cornerDiam value indicating the roundness of the rectangle’s corners.

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 256

257Chapter 9 ✦ Programming User Interface Elements

The cornerDiam argument is misnamed and, in some of the Palm OS docu-
mentation, described incorrectly. Unlike what its name seems to suggest, the
cornerDiam argument does not specify the diameter of the corners but rather
their radius. The system draws the corners as if an imaginary circle with radius
equal to cornerDiam had been placed in each corner of the rectangle, tangent to
two sides of the rectangle.

A larger cornerDiam argument results in a rounder corner. In fact, if cornerDiam is
equal to half the width or height of a perfectly square rectangle structure, WinDraw
Rectangle draws a solid circle with diameter equal to twice the cornerDiam argu-
ment. A cornerDiam value of 0 results in a rectangle with square corners. The
following code draws a circle 80 pixels across in the middle of the screen:

RectangleType rect;
UInt16 cornerDiam = 40;

rect.topLeft.x = 40;
rect.topLeft.y = 40;
rect.extent.x = 80;
rect.extent.y = 80;

WinDrawRectangle(&rect, cornerDiam);

The WinEraseRectangle is the opposite of the WinDrawRectangle function, requiring
the same arguments that WinDrawRectangle requires, but erasing pixels instead of
filling them.

Filling with patterns
Along with creating solid rectangles, the Palm OS also provides the WinFillRectangle
function to create rectangles filled with a custom pattern of pixels. WinFillRectangle
takes the same arguments as the other rectangle creation functions, but it draws a
rectangle using a pattern defined by the WinSetPattern function. WinSetPattern also
sets the pattern used by the WinFillLine function.

WinSetPattern takes an argument of type CustomPatternType, which the Palm OS
header file Window.h defines as follows:

typedef UInt8 CustomPatternType [8];

This array of eight UInt8 variables may not look like much, but it stores a bitmap
pattern eight pixels high by eight pixels wide. Each byte in the array defines two
rows in an 8 × 8 grid of pixels, one row per byte. For example, the following
CustomPatternType array represents a 50 percent gray pattern:

CustomPatternType gray50 = { 0xAA, 0x55, 0xAA, 0x55,
0xAA, 0x55, 0xAA, 0x55 };

Note

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 257

258 Part III ✦ Programming the Palm OS

In the preceding example, rows alternate between AA, which has a binary represen-
tation of 10101010, and 55 (01010101 in binary). Each binary 1 represents a pixel
that is turned on, and each 0 a pixel that is turned off.

This pattern storage technique is extremely flexible, if a bit difficult to use. Unfortu-
nately, using CustomPatternType requires that you perform a fair amount of binary
arithmetic each time you want to create a new pattern, and the Palm OS headers do
not have any pre-defined constants for commonly used patterns. Listing 9-1 has a
few patterns to get you started.

Listing 9-1: Common Palm OS fill patterns

// Light gray dots (12.5%)
CustomPatternType patternGray12 = { 0x11, 0x00, 0x44, 0x00,

0x11, 0x00, 0x44, 0x00 };
// Medium gray dots (50%)
CustomPatternType patternGray50 = { 0xAA, 0x55, 0xAA, 0x55,

0xAA, 0x55, 0xAA, 0x55 };
// Dark gray dots (87.5%)
CustomPatternType patternGray87 = {~0x11,~0x00,~0x44,~0x00,

~0x11,~0x00,~0x44,~0x00 };
// Light horizontal stripes (25%)
CustomPatternType patternStripesHor25 ={ 0xFF,0x00,0x00,0x00,

0xFF,0x00,0x00,0x00};
// Horizontal halftone (50%)
CustomPatternType patternStripesHor50 ={0xFF,0x00,0xFF,0x00,

0xFF,0x00,0xFF,0x00};
// Dark horizontal stripes (75%)
CustomPatternType patternStripesHor75 =

{ ~0xFF, ~0x00, ~0x00, ~0x00,
~0xFF, ~0x00, ~0x00, ~0x00 };

// Light vertical stripes (25%)
CustomPatternType patternStripesVer25 = {0x88,0x88,0x88,0x88,

0x88,0x88,0x88,0x88};
// Vertical halftone (50%)
CustomPatternType patternStripesVer50 = {0xAA,0xAA,0xAA,0xAA,

0xAA,0xAA,0xAA,0xAA};
// Dark vertical stripes (75%)
CustomPatternType patternStripesVer75 =

{ ~0x88, ~0x88, ~0x88, ~0x88,
~0x88, ~0x88, ~0x88, ~0x88 };

// Bold horizontal stripes
CustomPatternType patternStripesHorBold={0xFF,0xFF,0x00,0x00,

0xFF,0xFF,0x00,0x00};
// Bold vertical stripes
CustomPatternType patternStripesVerBold={0xCC,0xCC,0xCC,0xCC,

0xCC,0xCC,0xCC,0xCC};
// Diagonal stripes, upper left to lower right

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 258

259Chapter 9 ✦ Programming User Interface Elements

CustomPatternType patternStripesDiag1 = {0x88,0x44,0x22,0x11,
0x88,0x44,0x22,0x11};

// Diagonal stripes, upper right to lower left
CustomPatternType patternStripesDiag2 = {0x11,0x22,0x44,0x88,

0x11,0x22,0x44,0x88};
// Polka dots
CustomPatternType patternPolkaDots = {0x60, 0xF0, 0xF0, 0x60,

0x06, 0x0F, 0x0F, 0x06};
// Inverse polka dots (white on black)
CustomPatternType patternWhitePolkaDots =

{ ~0x60, ~0xF0, ~0xF0, ~0x60,
~0x06, ~0x0F, ~0x0F, ~0x06 };

// Checkerboard
CustomPatternType patternCheckerboard = {0xF0,0xF0,0xF0,0xF0,

0x0F,0x0F,0x0F,0x0F};
// Large grid
CustomPatternType patternGridLarge = {0xFF, 0x80, 0x80, 0x80,

0x80, 0x80, 0x80, 0x80};
// Small grid
CustomPatternType patternGridSmall = {0xFF,0x88,0x88,0x88,

0xFF,0x88,0x88,0x88};
// Crosshatch
CustomPatternType patternCrossHatch = {0xFF,0xAA,0xFF,0xAA,

0xFF,0xAA,0xFF,0xAA};

Before calling WinSetPattern to change the fill pattern, call WinGetPattern to
retrieve the current pattern so you can restore it when you are done drawing with
the new pattern. The following example draws a rectangle in a checkerboard pat-
tern, and then restores the original fill pattern:

RectangleType rect;
CustomPatternType newPattern = { 0xF0, 0xF0, 0xF0, 0xF0,

0x0F, 0x0F, 0x0F, 0x0F };
CustomPatternType oldPattern;

rect.topLeft.x = 40;
rect.topLeft.y = 40;
rect.extent.x = 80;
rect.extent.y = 80;

WinGetPattern(oldPattern);
WinSetPattern(newPattern);
WinFillRectangle(&rect, 0);
WinSetPattern(oldPattern);

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 259

260 Part III ✦ Programming the Palm OS

Drawing rectangular borders
The WinDrawRectangleFrame and WinDrawGrayRectangleFrame functions draw
a hollow rectangular border around a given RectangleType structure. WinDraw
RectangleFrame draws a solid frame, and WinDrawGrayRectangleFrame draws a
gray border, starting with the upper-left pixel turned on and alternating black and
white pixels.

Both rectangle frame functions draw the frame outside the edge of the rectangle
you pass to the functions. Keep this in mind when you try to determine the screen
area occupied by a rectangle frame; you can use the WinGetFramesRectangle
function to obtain a RectangleType structure that comprises the area occupied
by a rectangle and its surrounding frame.

WinDrawRectangleFrame and WinDrawGrayRectangleFrame each take two argu-
ments: a FrameType value describing the type of border to draw, and a pointer
to a RectangleType structure defining the rectangle around which the function
draws a frame. The rectangle frame functions use the same FrameType constants
described earlier in Table 9-3.

You can remove a frame from the screen by calling WinEraseRectangleFrame,
which takes the same parameters as the other two rectangle frame functions,
but erases pixels instead of drawing them.

Drawing Text
The WinDrawChars function draws a string of characters onto the screen at a spe-
cific location. WinDrawChars takes four arguments: a pointer to the characters to
draw, the length of the characters in bytes, and the x- and y-coordinates where the
characters should appear.

To control the font that WinDrawChars uses to draw the characters, call the
FntSetFont function. Only one font can be the active font at a time, and FntSetFont
changes the active font given the FontID of the new font. FntSetFont also returns
the current active font before changing it, allowing you to store the old font value
so you can restore it when you are done with the new font.

Table 7-1 from Chapter 7, “Building Forms,” contains a complete list of constants
you can use to specify a FontID value.

Another function that alters the behavior of WinDrawChars is WinSetUnderline
Mode. The underline mode may be one of three values:

✦ noUnderline. Draws text without any underlining.

✦ grayUnderline. Draws a dotted underline beneath the text, much like the
dotted underline used by a standard text field.

✦ solidUnderline. Draws a solid line under the text.

Cross-
Reference

Note

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 260

261Chapter 9 ✦ Programming User Interface Elements

Like FntSetFont, WinSetUnderlineMode returns the value of the previous underline
setting so you can restore it later.

The following example draws the string “To be, or not to be” near the top of the
screen in the Palm OS “large” font, with a gray (dotted) underline:

FontID oldFont;
UnderlineModeType oldUnderline;

oldFont = FntSetFont(largeFont);
oldUnderline = WinSetUnderlineMode(grayUnderline);
WinDrawChars(“To be, or not to be”,

StrLen(“To be, or not to be”), 0, 20);

// Restore font and underline values
FntSetFont(oldFont);
WinSetUnderlineMode(oldUnderline);

Use the WinEraseChars function to erase the pixels occupied by characters in a
particular string. WinEraseChars works particularly well for drawing white text
over a black background. The WinEraseChars function takes the same arguments
as WinDrawChars.

The Palm OS contains a plethora of string and font functions for manipulating text.
See Chapter 10, “Programming System Elements,” for more details.

Drawing Bitmaps
The WinDrawBitmap function takes a pointer to a bitmap resource, along with
x- and y- coordinates, and draws the bitmap on the screen at the specified location.
Coordinates passed to WinDrawBitmap represent the window-relative location of
the upper-left corner of the bitmap.

Because bitmaps are defined as resources, you must perform a little resource magic
to get a bitmap pointer suitable for passing to WinDrawBitmap. The DmGetResource
function allows you to retrieve a handle to a bitmap resource, which you can then
turn into a pointer using MemHandleLock.

More information about using resources, including a more complete description of
DmGetResource, is available in Chapter 12, “Storing and Retrieving Data.”

If you must draw a lot of bitmaps in an application, consider using a function such
as DrawBitmap in the following example, which displays a bitmap resource given
its resource ID and the screen coordinates where it should appear:

void DrawBitmap (UInt16 bitmapID, Int16 x, Int16 y)
{

MemHandle bitmapH;

// Retrieve a handle to the bitmap resource.

Cross-
Reference

Cross-
Reference

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 261

262 Part III ✦ Programming the Palm OS

bitmapH = DmGetResource(bitmapRsc, bitmapID);

if (bitmapH) {
BitmapType *bitmap;

// Lock the bitmap handle to retrieve a pointer, then
// draw the bitmap.
bitmap = (BitmapPtr)MemHandleLock(bitmapH);
WinDrawBitmap(bitmap, x, y);
MemHandleUnlock(bitmapH);

// Release the bitmap resource.
DmReleaseResource(bitmapH);

}
}

Summary
In this chapter, you learned how to program most of the user interface elements in
the Palm OS, as well as how to directly draw graphics and text to the screen. After
reading this chapter, you should understand the following:

✦ Alerts are an excellent way to quickly display information, or to prompt the
user for simple input.

✦ You can display forms as stand-alone screens with FrmGotoForm, complex
dialog boxes with FrmPopupForm, or simple dialog boxes with FrmDoDialog.

✦ Many user interface objects post an enter event when first tapped, an exit event
if the user drags the stylus outside the object before lifting it, and a select
event if the user lifts the stylus within the object’s borders.

✦ Most actions you may perform with a form object require a pointer to that
object or the object’s index number, which you may retrieve with FrmGet
ObjectPtr and FrmGetObjectIndex, respectively.

✦ You can temporarily remove form objects from the user interface with the
FrmHideObject function, and you can make them appear again using Frm
ShowObject.

✦ To set which check box or push button in a control group is selected, or to
determine which object is selected, use the FrmSetControlGroupSelection
and FrmGetControlGroupSelection functions.

✦ Selector triggers should be used to display a dialog box for changing the trig-
ger’s value; this dialog box may be a form that you program yourself, or the
dialog box may be one of the Palm OS standard date and time pickers, which
you may display with SelectDay, SelectTime, or SelectOneTime.

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 262

263Chapter 9 ✦ Programming User Interface Elements

✦ Fields require attention to detail to program properly, mostly because you must
handle much of the memory allocation details of fields with your own code.

✦ To implement a gadget, you must provide code to handle taps on the gadget
and to handle drawing the gadget on the screen.

✦ You may populate a list at run time either all at once, using LstSetListChoices, or
a line at a time, by assigning a list callback function with LstSetDrawFunction.

✦ The system takes care of most menu behavior, but you do have to do a little
extra work if a menu command changes the screen contents, or if you want
to show different menus in different situations.

✦ All Palm OS drawing occurs within the current draw window, which you may
set with WinSetDrawWindow, and all user input goes to the current active
window, which you may set with WinSetActiveWindow.

✦ To directly draw on the screen, you may take your pick from a number of
drawing functions for creating lines, rectangles, patterns, and text.

✦ ✦ ✦

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 263

4676-7 ch09.f.qc 9/29/00 12:51 PM Page 264

Programming
System
Elements

The preceding chapter, “Programming User Interface
Elements,” covered the ins and outs of programming the

interface of a Palm OS application, the part that the user inter-
acts with directly. This chapter focuses on what runs “under
the hood” of your application and the functions that the Palm
OS provides to help you with many common programming
tasks. The Palm OS supplies a very complete tool box of func-
tions and features to help you with everything from making
sounds to manipulating text to launching other applications
to checking the time of day.

Checking for Supported Features
Many features of the Palm OS do not exist on all versions
of the operating system. Infrared beaming, for example, was
introduced in Palm OS version 3.0; 1.0 and 2.0 devices do
not support beaming. Likewise, different devices running the
same version of the Palm OS may not share the same hard-
ware capabilities. For example, the Palm IIIxe and Palm VIIx
share the same operating system, but the wireless hardware
on the VIIx does not exist in a IIIxe. If your application must
be compatible with a variety of Palm OS devices, and you plan
to support features that are available on only some of those
devices, you need to query the system about what features
are available.

The Palm OS feature manager allows you to find out what
features exist in the operating system and on the handheld.
A feature is a 32-bit piece of data published by the operating
system, or another program, to indicate the presence of a

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Checking for
supported features

Manipulating text

Handling pen and
key events

Implementing alarms

Playing sounds

Generating random
numbers

Launching
applications

Manipulating time
values

Using the clipboard

✦ ✦ ✦ ✦

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 265

266 Part III ✦ Programming the Palm OS

particular software or hardware element. The value of a feature has a specific mean-
ing in the context of the application that publishes the feature. You can identify a
particular feature by its feature creator and feature number. The feature creator is
a unique creator ID, usually the same as the creator ID of the application that pub-
lishes the feature. The feature number is simply a 16-bit value used to distinguish
between different features that share a creator ID.

The system stores lists of registered features in feature tables. System-published
features reside in a feature table in the device’s ROM, while a separate feature table
in RAM holds application-published features. On Palm OS 3.1 and later, the system
copies the contents of the ROM feature table into the RAM feature table at startup,
making both system and application features available from the same location.

Your applications can publish their own features for their own use or for use by
other programs, which can be very handy if you need quick access to a small
amount of data that should persist between closing and re-opening an applica-
tion. This mechanism also comes in handy when an application must operate
without access to global variables, allowing you to store small values without
resorting to globals. Chapter 12, “Storing and Retrieving Data,” explains how to
publish your own features and use feature memory.

To retrieve the value of a feature, use the FtrGet function. FtrGet has three argu-
ments: the creator ID of the application that owns the feature, the application-
specific number assigned to the desired feature, and a pointer to a variable that
will receive the feature value. FtrGet also returns an error value of 0 if the feature
was retrieved without incident, or the constant value ftrErrNoSuchFtr if the
requested feature does not exist.

Determining Operating System Version
One handy feature published by the system is the version number of the operating
system. The Palm OS header file SystemMgr.h defines the constants sysFtrCreator
and sysFtrNumROMVersion to assist in retrieving the version number. Calling FtrGet
with the following code places the system version number value in the variable
romVersion:

UInt32 romVersion;

FtrGet(sysFtrCreator, sysFtrNumROMVersion, &romVersion);

The operating system version number published by the system has a very specific,
if nonintuitive, format. Here is what the format looks like, expressed in the form of a
hexadecimal number:

0xMMmfsbbb

Cross-
Reference

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 266

267Chapter 10 ✦ Programming System Elements

The individual parts of the format have the following meanings:

✦ MM. Major version number

✦ m. Minor version number

✦ f. Bug fix version number

✦ s. Release stage, wherein the value for s may be one of the following:

• 0. Development

• 1. Alpha

• 2. Beta

• 3. Release

✦ bbb. Build number for nonreleases

SystemMgr.h defines some useful macros for parsing the system version number.
Given the feature value returned from a call to FtrGet, these macros mask out the
appropriate bits of the version number and return a more focused subset of the
information contained in the feature. The available macros are:

✦ sysGetROMVerMajor

✦ sysGetROMVerMinor

✦ sysGetROMVerFix

✦ sysGetROMVerStage

✦ sysGetROMVerBuild

For example, the following code retrieves the system version number, parses
out the major version, and based on the version number, changes which code is
executed:

DWord romVersion;

FtrGet(sysFtrCreator, sysFtrNumROMVersion, &romVersion);
switch (sysGetROMVerMajor(romVersion)) {

case 1:
// Version 1.x
break;

case 2:
// Version 2.x
break;

case 3:
// Version 3.x
break;

default:
// Not version 1, 2, or 3
break;

}

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 267

268 Part III ✦ Programming the Palm OS

Table 10-1 shows the system version numbers of all the Palm OS versions available
when this book was written.

Table 10-1
Palm OS System Version Numbers

Number Palm OS Version (and Device)

0x01003001 1.0 (Pilot 1000, Pilot 5000)

0x02003000 2.0 (PalmPilot Personal, PalmPilot Professional)

0x03003000 3.0 (Palm III)

0x03103000 3.1 (Palm IIIx, Palm IIIe, Palm V)

0x03203000 3.2 (Palm VII)

0x03303000 3.3 (Palm Vx; Palm III, Palm IIIx, or Palm V with software upgrade;
Visor; original TRGPro)

0x03503001 3.5 (Palm IIIxe, Palm IIIc; newer TRGPro)

0x03513000 3.5.1 (Palm m100)

At the time of this writing, Palm Computing has a prerelease version of Palm OS
3.5 available for developers, with a system version number of 0x03501000. By
the time this book goes to press, there is a good chance that a release version of
3.5 will be in circulation, in which case it should have a version number like
0x03503000. Be sure to check the Palm Computing Web site for the latest docu-
mentation, though, because it is entirely possible that version numbers may
change before release.

Checking Individual Features
Because future versions of the Palm OS may not necessarily include all the features
of earlier versions, it is safest to check for specific features before using them,
instead of assuming that those features are present on a particular version of the
operating system. To help discover what features are available, the Palm OS
SystemMgr.h header defines a number of useful constants for checking the pres-
ence of individual elements, such as the processor the device uses or whether the
device has a backlight.

Unfortunately, the system does not publish features for some fairly obvious things
you might wish to check for, such as the presence or absence of an infrared port. For
system and device elements that do not have constants defined in SystemMgr.h,
checking the system version number is still an available option.

Note

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 268

269Chapter 10 ✦ Programming System Elements

To find the processor used in a Palm OS device, use FtrGet to query the system for
the sysFtrNumProcessorID feature. The processor ID value may be one of the fol-
lowing values for the Palm OS devices that exist at the time of this writing:

✦ 0x00010000, or sysFtrNumProcessor328. Motorola 68328 DragonBall.

✦ 0x00020000, or sysFtrNumProcessorEZ. Motorola 68EZ328 DragonBall EZ.

To determine whether the device has a backlight, query the system for the
sysFtrNumBacklight feature. The backlight feature has a value of 0x00000001
if the device has a backlight, or 0x00000000 if the backlight is not present or not
supported.

You may also retrieve a list of features available on the device by repeatedly calling
the FtrGetByIndex function. FtrGetByIndex has the following prototype:

Err FtrGetByIndex (UInt16 index, Boolean romTable,
UInt32 *creatorP, UInt16 *numP,
UInt32 *valueP)

The FtrGetByIndex function’s return value simply indicates whether an error
occurred while you were attempting to retrieve the requested feature. FtrGetBy
Index returns 0 if there was no error, or ftrErrNoSuchFeature if the index argu-
ment provided is out of range.

The index argument to FtrGetByIndex is simply a numerical index into the feature
table, starting at 0 and incrementing by one for each feature in the table. Passing
true for the romTable argument tells FtrGetByIndex to return a feature from the
ROM feature table; a false value for romTable retrieves features from the table
in RAM.

All three remaining arguments to FtrGetByIndex are where the function returns
useful information. The creatorP argument holds the creator ID of the application
that owns the feature, numP holds the application-specific feature number, and
valueP holds the actual value of the feature in question.

The following example loops through the RAM feature table, retrieving each feature
registered there:

UInt16 index = 0;
UInt32 creator;
UInt16 feature;
UInt32 value;

while (FtrGetByIndex(index, false, &creator, &feature, &value)
!= ftrErrNoSuchFeature) {

// Do something with the values of creator, feature, and
// value.
index++;

}

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 269

270 Part III ✦ Programming the Palm OS

Manipulating Text
The Palm OS provides several useful functions and macros for manipulating text.
This section covers three groups of functions and macros: font functions, string
functions, and character macros. Font functions deal with the actual on-screen rep-
resentation of characters, string functions allow you to control strings within your
program’s code, and character macros are handy tools for determining information
about individual characters.

Using Font Functions
Font functions in the Palm OS are dependent on the current font setting in an appli-
cation. The system keeps track of one font at a time. All font functions, as well as all
drawing functions that deal with text (such as WinDrawChars), use the current
font. To set the current font, use the FntSetFont function:

FontID oldFont;

oldFont = FntSetFont(largeFont);

The FntSetFont function takes a single argument of type FontID, specifying an ID
for the new font. The function returns whatever font was previously the current
font before calling FntSetFont, allowing you to store that value for later restoration.
It is good coding practice to always save the value of the current font before chang-
ing it. Once you are done using the new font setting, restore the original font with
another call to FntSetFont, like this:

FntSetFont(oldFont);

The Palm OS also provides the FntGetFont function, which takes no arguments and
returns the FontID value of the current font.

Table 7-1 from Chapter 7, “Building Forms,” contains a complete list of constants
you can use to specify a FontID value.

Many of the Palm OS font functions are purely informational in function, providing
data about the current font. These information functions take no arguments. Table
10-2 briefly describes the return value from each of the informational font functions.

Cross-
Reference

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 270

271Chapter 10 ✦ Programming System Elements

Table 10-2
Informational Font Functions

Function Return Value

FntAverageCharWidth Width in pixels of the average character in the current font.

FntBaseLine Distance in pixels from the top of the character cell to the
baseline for the current font.

FntCharHeight Height in pixels of a character in the current font, including
accents and descenders.

FntDescenderHeight Distance in pixels from the baseline to the bottom of the
character cell for the current font.

FntLineHeight Height in pixels of a line of text in the current font. The height
of a line is equal to the height of a character plus the distance
between lines of text.

A few other simple functions, FntCharWidth, FntCharsWidth, and FntLineWidth,
provide the width of individual characters or strings of characters. The FntChar
Width function takes a single character as an argument and returns its width in pix-
els for the current font. The FntCharsWidth function takes a string and the length
of the string in bytes as arguments, and it returns the width of the entire string in
pixels, substituting the font’s missing character symbol for any character that does
not exist in the current font. The FntLineWidth function takes the same arguments
as FntCharsWidth, returning the width in pixels of the string for the current font,
taking tab characters and missing characters into account.

The WinDrawChars function does not account for the width of tab characters, and
neither does FntCharsWidth. If you want to know the exact width of a string to be
drawn by WinDrawChars, use the FntCharsWidth function. The FntLineWidth
function works better for determining the width of a string that will appear at the
start of a line in a text field, because it properly handles the width of tab characters.

Fitting text to a specific screen width
Some applications require a method for drawing text within a certain amount of
space on the screen. The Address List view in the built-in Address Book application
is a good example. Each name must fit within a specific area on the screen. If the
application called WinDrawChars to draw each name in the list, without checking
first to see how much of the name would fit, the program would draw over the top
of the phone numbers, resulting in an unreadable mess.

Tip

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 271

272 Part III ✦ Programming the Palm OS

Fortunately, there is an easy way around the problem of keeping text within a spe-
cific area of the screen. The Palm OS provides the FntCharsInWidth function, which
allows you to determine the number of bytes of a particular string that will fit
within a given width using the current font. The FntCharsInWidth function can be
tricky to use, however, because half of its arguments serve as both input parame-
ters and return values. The prototype for FntCharsInWidth looks like this:

void FntCharsInWidth (const char *string, Int16 *stringWidthP,
Int16 *stringLengthP, Boolean *fitWithinWidth)

The string argument is simply the string to test. As input parameters, stringWidthP
tells FntCharsInWidth the maximum width in pixels that the string should occupy,
and stringLengthP represents the maximum length of text to allow in bytes. Upon
return, FntCharsInWidth sets stringWidthP to the actual width in pixels of the text
that fits, and the function sets stringLengthP to the actual length in bytes of the
text. The function sets the fitWithinWidth argument to true if the entire string fits
within the specified width and length; FntCharsInWidth sets fitWithinWidth to
false if the string must be truncated to fit the specified width and length.

The FntCharsInWidth function treats spaces and newlines at the end of a string
specially. The function removes any spaces at the end of the string and ignores
them, returning true in the fitWithinWidth argument. If there is a newline in the
string, FntCharsInWidth ignores any characters after the newline and treats the
string as truncated, returning false in the fitWithinWidth argument.

As an example, the list view in the Librarian sample application (introduced in
Chapter 8, “Building Menus”) must deal with similar space restrictions as the Address
Book application. The following utility function from Librarian, DrawCharsInWidth,
draws as much of a string as will fit a given width, appending an ellipsis (...) to the
end of the string if it must be truncated to fit.

static void DrawCharsInWidth (Char *str, Int16 *width,
Int16 *length, Int16 x, Int16 y, Boolean rightJustify)

{
Int16 ellipsisWidth;
Boolean fitInWidth;
Int16 newX;
char ellipsisChar;

// Determine whether the string will fit within the maximum
// width.
FntCharsInWidth(str, width, length, &fitInWidth);

// If the string fits within the maximum width, draw it.
if (fitInWidth) {

if (rightJustify)
WinDrawChars(str, *length, x - *width, y);

else

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 272

273Chapter 10 ✦ Programming System Elements

WinDrawChars(str, *length, x, y);
}

// The string was truncated; append an ellipsis to the
// end of the string, and recalculate the portion of the
// string that can be drawn, because the ellipsis shortens
// the width available.
else {

// Retrieve an ellipsis character and set its width.
ChrHorizEllipsis(&ellipsisChar);
ellipsisWidth = (FntCharWidth(ellipsisChar));

*width -= ellipsisWidth;
FntCharsInWidth(str, width, length, &fitInWidth);

if (rightJustify)
newX = x - *width - ellipsisWidth;

else
newX = x;

WinDrawChars(str, *length, newX, y);
newX += *width;
WinDrawChars(&ellipsisChar, 1, newX, y);

// Add the width of the ellipsis to return the actual
// width used to draw the string.
*width += ellipsisWidth;

}
}

The first three arguments to DrawCharsInWidth mirror the first three arguments of
the FntCharsInWidth function; str is the string to draw, width is a pointer to the
width in pixels that the string must fit into, and length is a pointer to the maximum
length in bytes for the string. The DrawCharsInWidth function has x and y argu-
ments to specify the window-relative coordinates of the upper-left corner of the
space the string should occupy, and the rightJustify argument, if true, tells the
function to draw the text right-justified within the given space. If rightJustify is
false, DrawCharsInWidth simply starts at the x position when drawing the string.

After declaring variables, DrawCharsInWidth calls FntCharsInWidth to determine
if str will fit within the constraints of width and length. If the return value from
FntCharsInWidth, stored in fitInWidth, is true, the entire string fits within the
given width and length, so DrawCharsInWidth calls WinDrawChars to draw the
string to the screen, modifying the starting horizontal coordinate if the string
should be drawn right-justified.

If the return value from FntCharsInWidth is false, the string must be truncated
to fit within the allotted space. In this situation, DrawCharsInWidth attaches an
ellipsis character to the end of the string before drawing. Because the ellipsis itself

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 273

274 Part III ✦ Programming the Palm OS

takes up some space, it might be necessary to further truncate str to allow for the
width of the ellipsis character. The DrawCharsInWidth function retrieves an ellipsis
character with the ChrHorizEllipsis macro, determines the character’s width with
FntCharWidth, and subtracts the character’s width from the total width available.
Then DrawCharsInWidth calls FntCharsInWidth again with the new value of
width, modified to accommodate the ellipsis character.

Librarian uses the ChrHorizEllipsis macro instead of hard-coding the value of the
ellipsis character, because starting with Palm OS 3.1, the ellipsis has a different char-
acter code than in previous versions of the operating system. The ChrHorizEllipsis
macro is not available in pre-3.1 header files (such as those that ship with
CodeWarrior R5), so if you are building with headers earlier than version 3.1 and
your application is not intended for use on 3.1 or later devices, you should use the
horizEllipsisChr constant instead of ChrHorizEllipsis.

After the second call to FntCharsInWidth, length points to the number of bytes of
str that will fit, followed by an ellipsis character, within the constraints originally
set by width and length. Passing the value of length as the second argument to
WinDrawChars draws only those characters in str that fit before the ellipsis. After
drawing str, DrawCharsInWidth moves the drawing position, represented by
newX, to the right of the text and draws an ellipsis character with another call to
WinDrawChars.

The DrawCharsInWidth function treats its width and length arguments in much the
same way as FntCharsInWidth treats its stringWidthP and stringLengthP argu-
ments. Before returning, DrawCharsInWidth makes sure that width and length rep-
resent the actual width in pixels and length in bytes of the string that it drew, instead
of the values originally passed to the function. For this reason, DrawCharsInWidth
adds the width of the ellipsis character to width if the string was truncated, because
the second call to FntCharsInWidth sets width to the length of the string without the
ellipsis.

Using String Functions
Many of the string functions in the Palm OS are familiar to anyone with a reasonable
amount of C/C++ programming experience, because the system provides its own
versions of string functions from the C standard library. Table 10-3 lists the Palm OS
string functions that mirror standard library calls, as well as each function’s equiva-
lent in the standard library.

As a general rule, use the Palm OS string functions instead of their standard library
equivalents. Including functions from the standard library in your application
unnecessarily increases the size of the compiled executable code. You can keep
your application much smaller by using the functions that already exist in the
operating system.

Tip

Note

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 274

275Chapter 10 ✦ Programming System Elements

Table 10-3
Palm OS String Functions and Their Standard

Library Equivalents

Palm OS Function Standard Library Equivalent

StrAToI atoi

StrCat strcat

StrChr strchr

StrCompare strcmp

StrCopy strcpy

StrLen strlen

StrNCat strncat

StrNCompare strncmp

StrNCopy strncpy

StrPrintF sprintf

StrStr strstr

StrVPrintF vsprintf

The Palm OS includes StrIToA and StrIToH functions for converting integer values
to strings containing the integer’s ASCII or hexadecimal equivalent. The following
code shows these two functions in action:

int i = 42;
char *asciiString, *hexString;

// If necessary, allocate memory for the two strings using
// MemHandleNew and MemHandleLock. This step has been omitted.

StrIToA(asciiString, i);
StrIToH(hexString, i);

// asciiString now contains “42”.
// hexString now contains “0000002A”.

In addition to the StrCompare and StrNCompare functions for comparing the val-
ues of two strings, the Palm OS also offers StrCaselessCompare and StrNCaseless
Compare. The caseless versions ignore the case and accent of each character in
the two strings to be compared. For example, StrCaselessCompare treats e, E, and
é as the same character for purposes of comparison.

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 275

276 Part III ✦ Programming the Palm OS

Use StrCompare and StrNCompare to compare strings for the purpose of sorting
them alphabetically, because these two functions pay attention to case and
accent. When comparing strings for the purpose of finding a particular string, use
StrCaselessCompare and StrNCaselessCompare. The caseless comparison is
particularly useful when trying to find a string based on user input in a text field,
because it allows the user to enter a search string more quickly by not bothering
with capitalization or accented characters, both of which take more time to enter
using Graffiti.

Using Character Macros
Like many of the string functions that mirror functions from the C standard library,
the Palm OS also contains several character attribute macros that mimic the
macros defined in the standard library. These macros take a character argument
and return a Boolean response indicating whether the character belongs to a spe-
cific class of characters. For example, the IsDigit macro returns true if a character
is one of the numeric digit characters (0 through 9).

Use the Palm OS versions of the character attribute macros instead of the C stan-
dard library versions to avoid compiling extra library code into your application.

There are two versions of each character macro in the Palm OS. The older macro
of each pair has been in the Palm OS since version 1.0, whereas the new version
of each macro was added more recently with the International Feature Set. The
International Feature Set was introduced with Palm OS 3.1 to provide features to
support localization of an application to different languages, particularly Asian lan-
guages that require double-byte character encoding. To check for the existence of
the International Feature Set on a given device, use the following line of code:

error = FtrGet(sysFtrCreator, sysFtrNumIntlMgr, &value);

If the International Feature Set is present, value will be non-zero, and the value for
error will be zero (to indicate no error). The older macros are not available if you
are compiling an application using headers from a Palm OS version that includes
the International Feature Set.

The International Feature Set contains much more than the small number of
macros included in this chapter. See “Localizing Applications” in Chapter 20,
“Odds and Ends,” for more details.

Table 10-4 correlates the two Palm OS versions of each character macro with the
equivalent macro from the C standard library. The older character macros are
defined in the Palm OS header file CharAttr.h, and the new macros from the
international manager are defined in TextMgr.h.

Cross-
Reference

Tip

Tip

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 276

277Chapter 10 ✦ Programming System Elements

Table 10-4
Character Macros in the Palm OS

Macro from Palm OS with Standard Library
Old Palm OS Macro International Feature Set Equivalent

IsAlNum TxtCharIsAlNum isalnum

IsAlpha TxtCharIsAlpha isalpha

IsAscii TxtCharIsAscii isascii

IsCntrl TxtCharIsCntrl iscntrl

IsDigit TxtCharIsDigit isdigit

IsGraph TxtCharIsGraph isgraph

IsHex TxtCharIsHex isxdigit

IsLower TxtCharIsLower islower

IsPrint TxtCharIsPrint isprint

IsPunct TxtCharIsPunct ispunct

IsSpace TxtCharIsSpace isspace

IsUpper TxtCharIsUpper isupper

Calling the old character macros is somewhat different from calling the macros
from the International Feature Set or the macros in the C standard library. Except
for IsAscii, which takes a single character argument, the old character macros
require two arguments. The first argument is the character attribute block, followed
by the character itself. The Palm OS provides the GetCharAttr function to retrieve
the character attribute block, so testing a character for a particular attribute
involves code similar to the following:

Boolean itsADigit;
char c = ‘2’;

itsADigit = IsDigit(GetCharAttr(), c);

The new macros in the International Feature Set have longer, more cumbersome
names, but they take only one argument, the character to be tested, so in practice
they are easier to use:

itsADigit = TxtCharIsDigit(c);

Both of the examples above set itsADigit to true.

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 277

278 Part III ✦ Programming the Palm OS

The Palm OS also has the macro IsDelim (defined as TxtCharIsDelim in the
International Feature Set) to test whether a character is a text delimiter. A text
delimiter in this case is any space or punctuation character.

Another macro not found in the C standard library, ChrIsHardKey (TxtCharIs
HardKey in the International Feature Set), tests whether a character code repre-
sents one of the four hardware application buttons on the device. Testing an incom-
ing character from a keyDownEvent with ChrIsHardKey allows you to copy the
behavior of the built-in applications, which cycle through the categories as the user
repeatedly presses, or holds, the button that activates the application. Your own
application can take advantage of this behavior if the user redefines one of the
buttons to launch your application instead of one of the default programs.

The Librarian sample application implements this category-cycling behavior if the
user has defined a hardware button to launch Librarian. Note that, unlike most of
the other character attribute macros, the older ChrIsHardKey takes only one argu-
ment (the character to test), but TxtCharIsHardKey requires two arguments (the
modifiers to the keyDownEvent and the character itself). The following example
is the section of Librarian’s ListFormHandleEvent event handler that handles a
keyDownEvent if it happens to be the result of the user’s pressing an application
button. This example assumes a version of the Palm OS that does not include the
International Feature Set, such as Palm OS 3.0 or earlier:

case keyDownEvent:
if (ChrIsHardKey(event->data.keyDown.chr)) {

if (! (event->data.keyDown.modifiers &
poweredOnKeyMask)) {

ListFormNextCategory();
handled = true;

}
}
else {

// Other keyDownEvent handling omitted.
}
break;

Here is the same section of event handler, written for a Palm OS version that
includes the International Feature Set, such as Palm OS 3.1:

case keyDownEvent:
if (TxtCharIsHardKey(event->data.keyDown.modifiers,

event->data.keyDown.chr)) {
if (! (event->data.keyDown.modifiers &

poweredOnKeyMask)) {
ListFormNextCategory();
handled = true;

}
}
else {

// Other keyDownEvent handling omitted.

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 278

279Chapter 10 ✦ Programming System Elements

}
break;

The event handler checks that the keyDownEvent modifiers do not contain the
poweredOnKeyMask value, which would indicate that the application button press
was responsible for activating the application; the first press of the hardware but-
ton that activates the program should not cycle the categories. Satisfied that the
incoming keyDownEvent represents the second or later hardware button press,
ListFormHandleEvent calls ListFormNextCategory, another function internal to
Librarian, to actually change the category.

More details about implementing categories are available in Chapter 13, “Manipu-
lating Records.”

Handling Pen Events
Most of the time, handling user input is best left in the capable hands of user inter-
face elements. However, if you want your application to directly respond to the sty-
lus as the user drags it across the screen (for example, as in a drawing program),
the Palm OS provides three events for direct handling of stylus input. The system
generates three events in response to the user tapping, dragging, and releasing the
stylus: penDownEvent, penMoveEvent, and penUpEvent.

The penDownEvent occurs when the user first taps the screen, and the event con-
tains the window-relative coordinates of that tap in the event’s screenX and
screenY members.

See the “Drawing Graphics and Text” section of Chapter 9, “Programming User
Interface Elements,” for more information about window-relative coordinates.

As the user drags the stylus across the screen, the system queues penMoveEvent
events. Like the penDownEvent, each penMoveEvent contains the current window
coordinates of the stylus.

When the user finally lifts the stylus from the screen, the system queues a
penUpEvent, which contains the window-relative coordinates of the place where
the stylus left the screen. The penUpEvent also contains two PointType structures
in the event’s data member, called start and end. These two point structures con-
tain the display-relative coordinates of the start and end points of the stylus stroke.

If you handle a penDownEvent completely, returning true in the form event han-
dler, controls and other user interface elements on the form never get a chance to
process a stylus tap. If you wish to capture stylus input and allow the user to
manipulate user interface objects on the same form, you should check the screen
coordinates of the penDownEvent and return false if the stylus tap occurs on an
object.

Note

Cross-
Reference

Cross-
Reference

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 279

280 Part III ✦ Programming the Palm OS

The following form event handler implements a very simple doodling program. This
example handles penDownEvent, penMoveEvent, and penUpEvent to draw on the
screen wherever the user drags the stylus, except for small regions at the top and
bottom of the screen, which prevents the scribbling from overwriting the applica-
tion’s title bar or any command buttons located at the bottom of the form. The draw-
ing area itself is defined by a global RectangleType variable called gDrawRect. The
MainFormHandleEvent function also looks in the global variables gX and gY for the
current coordinates of the stylus, and in gPenDown for the current state of the stylus,
either true for down or false for up.

static Boolean MainFormHandleEvent(EventType *event)
{

Boolean handled = false;

case penDownEvent:
if (RctPtInRectangle(event->screenX,

event->screenY, &gDrawRect)) {
gX = event->screenX;
gY = event->screenY;
gPenDown = true;
handled = true;

}
break;

case penMoveEvent:
if (RctPtInRectangle(event->screenX,

event->screenY, &gDrawRect) && gPenDown) {
Int16 newX = event->screenX;
Int16 newY = event->screenY;

WinDrawLine(gX, gY, newX, newY);
gX = newX;
gY = newY;
handled = true;

}
break;

case penUpEvent:
if (RctPtInRectangle(event->screenX,

event->screenY, &gDrawRect) && gPenDown) {
Int16 newX = event->screenX;
Int16 newY = event->screenY;

WinDrawLine(gX, gY, newX, newY);
gX = gDrawRect.topLeft.x;
gY = gDrawRect.topLeft.y;
gPenDown = false;
handled = true;

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 280

281Chapter 10 ✦ Programming System Elements

}
break;

default:
break;

}

return handled;
}

When the form receives any of the pen-related events, the event handler first
checks to see if the point passed by the event is within the drawing area. The
RctPtInRectangle function is useful for this operation, because it returns true if a
given point lies within a given rectangle. By comparing the screenX and screenY
coordinates passed by the various pen events with the borders of the rectangle, the
event handler can tell whether it should take care of the event, or hand it off to the
system for default processing.

A penDownEvent within the drawing area merely sets the global gX and gY variables
to the coordinate of the screen tap. It also sets the gPenDown variable to true, pro-
viding a point from which the penMoveEvent and penUpEvent handlers may draw a
line and indicating to the rest of the application that the stylus is currently touching
the screen. The MainFormHandleEvent function handles the penMoveEvent and
penUpEvent only if the pen state is currently down (which is to say, gPenDown is
true); otherwise, the program would draw some unexpected things on the screen if
the user tapped outside the drawing rectangle and then released the stylus within
the drawing area.

Handling Key Events
Whenever the user enters a text character via Graffiti, the system queues a
keyDownEvent. The system also puts a keyDownEvent on the queue when the user
presses a hardware button or taps one of the silk-screened buttons, such as the
Menu button. Along with these tangible key events, the system also generates vari-
ous virtual key events when certain actions take place, such as when the low bat-
tery display appears or when the user extends the antenna on a Palm VII.

The keyDownEvent stores the value of the character, hardware button, or virtual
key in the event’s chr member. You can find a large number of useful constants for
various key event values in the header file Chars.h. Some of the more common
character code constants are listed in Table 10-5.

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 281

282 Part III ✦ Programming the Palm OS

Table 10-5
Character Code Constants for keyDownEvent

Constant Value Description

leftArrowChr 0x1C Character left Graffiti stroke

rightArrowChr 0x1D Character right Graffiti stroke

nextFieldChr 0x0103 Graffiti next field character

prevFieldChr 0x010C Graffiti previous field character

pageUpChr 0x0B Hardware scroll up button

pageDownChr 0x0C Hardware scroll down button

hard1Chr 0x0204 Date Book hardware button

hard2Chr 0x0205 Address Book hardware button

hard3Chr 0x0206 To Do List hardware button

hard4Chr 0x0207 Memo Pad hardware button

hardPowerChr 0x0208 Hardware power button

hardCradleChr 0x0209 HotSync button on the cradle

launchChr 0x0108 Application launcher silk-screened button

menuChr 0x0105 Menu silk-screened button

calcChr 0x010B Calculator silk-screened button

findChr 0x010A Find silk-screened button

lowBatteryChr 0x0101 Queued when the low battery dialog appears

alarmChr 0x010D Queued before displaying an alarm

ronamaticChr 0x010E Queued upon a stroke from the Graffiti area to the
upper half of the screen

backlightChr 0x0113 Toggles the state of the backlight

autoOffChr 0x0114 Queued when the power is about to shut off because
of inactivity

The keyDownEvent also has a modifiers member, which is a bit field that stores a
number of flags pertaining to the contents of the key event. The Event.h header
file contains constant values that you can use as bit masks to test for the presence
or absence of certain flags in the modifiers field. Table 10-6 shows some of these
constants and their values.

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 282

283Chapter 10 ✦ Programming System Elements

Table 10-6
Bit Masks for keyDownEvent Modifiers

Constant Value Description

shiftKeyMask 0x0001 Graffiti is in case-shift mode.

capsLockMask 0x0002 Graffiti is in caps lock mode.

commandKeyMask 0x0008 This keyDownEvent is a menu event or a
special virtual key code.

autoRepeatKeyMask 0x0040 This keyDownEvent is the result of an auto-
repeat event. Auto-repeating usually occurs as
a result of holding down one of the hardware
buttons, such as the scrolling buttons.

poweredOnKeyMask 0x0100 This keyDownEvent powered the system on.

Virtual key events always have the commandKeyMask flag set. Checking for the pres-
ence of this flag is a good way to separate normal text entry from special system
events.

As an example, the following form event handler displays an alert if the user
presses the scroll down hardware button (represented by pageDownChr), but only
if the user holds down the button long enough to generate an auto-repeat, which
requires about half a second of pressing.

static Boolean MainFormHandleEvent(EventType *event)
{

Boolean handled = false;

switch (event->eType) {
case keyDownEvent:

if ((event->data.keyDown.chr == pageDownChr) &&
(event->data.keyDown.modifiers &
autoRepeatKeyMask)) {
FrmAlert(MyAlert);
handled = true;

}

default:
break;

}

return handled;
}

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 283

284 Part III ✦ Programming the Palm OS

Setting Alarms
The Palm OS provides facilities for setting alarms based on the device’s real-time
clock, which may be used to display reminders or perform periodic tasks. Alarms
will actually wake up the handheld, bringing it out of sleep mode so it can perform
some sort of processing, which may or may not include alerting the user with
sound or a dialog box. Setting and responding to alarms requires some cooperation
between the system and your application. Here are the steps required for setting
and responding to an alarm, followed by sections that explain the process in
greater detail:

1. The application sets the alarm with AlmSetAlarm. The AlmSetAlarm function
places a new alarm into the Palm OS alarm manager’s queue. If multiple appli-
cations request the same alarm time, the alarm manager processes alarms on
a first-requested, first-serviced basis. The alarm manager keeps track of only a
single alarm for each application.

2. When an alarm comes due, the system sends a sysAppLaunchCmdAlarm
Triggered launch code to each application that has an alarm in the queue
for the current time.

3. The application responds to the sysAppLaunchCmdAlarmTriggered launch
code. This launch code gives applications the chance to perform some sort
of quick action, such as setting another alarm, playing a short sound, or per-
forming some quick maintenance activity. Anything the application does at
this point should be very brief; otherwise, the application will delay other
applications with alarms set at the same time from responding in a timely
fashion.

4. Once all the applications with alarms set for the current time have dealt with
the sysAppLaunchCmdAlarmTriggered launch code, the alarm manager
sends a sysAppLaunchCmdDisplayAlarm code to each application with an
alarm set for the current time.

5. The application responds to the sysAppLaunchCmdDisplayAlarm launch
code. Now that all applications with pending alarms for the current time
have had a chance to do something quick with the sysAppLaunchCmdAlarm
Triggered launch code, the application may perform some lengthy operation
in response to the alarm, such as displaying a dialog box.

6. If applications are still displaying dialog boxes in response to the sysApp
LaunchCmdDisplayAlarm launch code when another alarm comes due, the
alarm manager sends a new sysAppLaunchCmdAlarmTriggered launch code
to each application with a pending alarm for the new time. However, the sys-
tem waits until the last application dismisses its dialog box before sending
out another batch of sysAppLaunchCmdDisplayAlarm codes.

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 284

285Chapter 10 ✦ Programming System Elements

Setting an Alarm
Use the AlmSetAlarm function to set an alarm. The prototype for AlmSetAlarm
looks like this:

Err AlmSetAlarm (UInt16 cardNo, LocalID dbID, UInt32 ref,
UInt32 alarmSeconds, Boolean quiet)

The cardNo argument specifies the number of the storage card on which the appli-
cation resides, and dbID is the local ID of the application. These two items may be
obtained using the DmGetNextDatabaseByTypeCreator function. See the next
example for more details.

Because an application does not have access to its global variables when respond-
ing to the two alarm launch codes, the ref argument provides a space for you to
store information that the application might require when displaying the alarm. If
you find that you need to pass more information than you can comfortably fit in the
32-bit integer provided by the ref argument, you might wish to consider using fea-
ture memory to store the extra data.

See Chapter 12, “Storing and Retrieving Data,” for more information about using
feature memory.

The alarmSeconds parameter is where you specify the actual time for the alarm, in
seconds since January 1, 1904. The Palm OS provides a number of useful functions
for converting different time values to and from this seconds-since-1/1/1904 format.
See the “Manipulating Time Values” section, later in this chapter, for descriptions of
some of these functions.

The quiet argument is reserved for future use. For now, just pass the value true
for this argument.

An example code snippet follows, which sets an alarm three hours ahead of the
current time. The creator ID for this example is stored in the global variable
gAppCreatorID.

UInt16 cardNo;
LocalID dbID;
DmSearchStateType searchInfo;
UInt32 alarmTime, nowTime;

alarmTime = nowTime = TimGetSeconds();
alarmTime += 10800; // 10800 seconds in three hours

DmGetNextDatabaseByTypeCreator(true, &searchInfo,
sysFileTApplication, gAppCreatorID, true, &cardNo, &dbID);

AlmSetAlarm(cardNo, dbID, nowTime, alarmTime, true)

Cross-
Reference

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 285

286 Part III ✦ Programming the Palm OS

The preceding example not only sets an alarm three hours in the future, but it also
stores the current time in the alarm’s ref parameter via the nowTime variable. As a
result, the application will know what time the alarm was set when the alarm goes
off and the system sends the two alarm-related launch codes.

Because the alarm manager keeps track of only a single alarm for each application,
calling AlmSetAlarm a second time before the first alarm has gone off replaces the
first alarm with a new one. You can use the AlmGetAlarm function to retrieve the
alarm settings for a particular application before overwriting the application’s cur-
rent alarm. If your application must keep track of more than one alarm time, you
need to store that information with the application’s data in storage RAM.

Alarms may trigger a bit late when the handheld is “off,” or in sleep mode. This
happens because the main system clock (which keeps track of time down to the
nearest hundredth of a second) is shut down in sleep mode, and the real-time
clock on the device (which only keeps track of time to the nearest whole second),
still active during sleep mode, does not have the fine granularity of the main sys-
tem clock. As a result, alarms that trigger while the device is “on” occur at exactly
the time you expect them to go off, but alarms that trigger in sleep mode may be
almost a minute late.

Responding to Alarms
The first launch code your application needs to respond to when an alarm goes off
is sysAppLaunchCmdAlarmTriggered. At this point, your application should per-
form only quick actions in response to the alarm to keep from delaying any alarms
set by other applications for the same time. Such actions may include setting the
application’s next alarm or playing a short sound.

When your application handles sysAppLaunchCmdDisplayAlarm, it has a chance
to perform lengthier actions in response to the alarm, such as displaying a pop-up
dialog box to show the user whatever information the application needs to convey
as a result of the alarm’s going off.

Unless you need only a couple lines of code to respond to sysAppLaunchCmd
AlarmTriggered and sysAppLaunchCmdDisplayAlarm, you should hand process-
ing of the launch codes from your PilotMain routine to other functions. This tech-
nique makes the code in your application’s PilotMain routine more readable and
easier to maintain, and it is also easier to process the launch codes’ parameter
blocks if you need to retrieve any information the system passes with those launch
codes. The following PilotMain routine passes handling of the two alarm launch
codes to the functions AlarmTriggered and DisplayAlarm:

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{

switch (cmd) {

Note

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 286

287Chapter 10 ✦ Programming System Elements

case sysAppLaunchCmdNormalLaunch:
// Normal launch code handling omitted.

case sysAppLaunchCmdAlarmTriggered:
AlarmTriggered((SysAlarmTriggeredParamType *)

cmdPBP);
break;

case sysAppLaunchCmdDisplayAlarm:
DisplayAlarm((SysDisplayAlarmParamType *) cmdPBP);
break;

default:
break;

}

return 0;
}

Because the cmdPBP variable that contains the parameter block for a launch code is
actually just a pointer to type char, PilotMain must cast cmdPBP to the appropriate
structure before passing the parameter block to another function. The Palm OS
header file AlarmMgr.h defines the following structures for alarm-related launch
codes:

typedef struct SysAlarmTriggeredParamType {
UInt32 ref;
UInt32 alarmSeconds;
Boolean purgeAlarm;

} SysAlarmTriggeredParamType;

typedef struct SysDisplayAlarmParamType {
UInt32 ref;
UInt32 alarmSeconds;
Boolean soundAlarm;

} SysDisplayAlarmParamType;

In both SysAlarmTriggeredParamType and SysDisplayAlarmParamType, the
ref member stores extra application-defined data related to the alarm, and alarm
Seconds holds the actual time of the alarm, in seconds since January 1, 1904.

If application sets the purgeAlarm member of SysAlarmTriggeredParamType to
true, the alarm manager does not send a sysAppLaunchCmdDisplayAlarm code to
the application for that alarm. You should set purgeAlarm to true if your applica-
tion completely handles incoming alarms when it takes care of the sysAppLaunch
CmdAlarmTriggered launch code. By default, purgeAlarm is false, so if you do
not fiddle with the value of purgeAlarm, the system will send a sysAppLaunchCmd
DisplayAlarm code to your application.

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 287

288 Part III ✦ Programming the Palm OS

According to Palm Computing documentation, the soundAlarm member of Sys
DisplayAlarmParamType should be true if the alarm is to be sounded, false
otherwise. However, the system does not currently use soundAlarm, so you can
safely ignore this value.

Typically, the AlarmTriggered function called from the PilotMain function in the
previous example would contain a call to SndPlaySystemSound to trigger the sys-
tem default alarm sound. If the application stores more than one alarm at a time in
its permanent database, AlarmTriggered should then look through that database
for the next alarm time and set that alarm with a call to AlmSetAlarm.

Playing sounds in the Palm OS is covered later in this chapter, under “Playing
Sounds.” Retrieving values stored in an application’s database is covered in
Chapter 12, “Storing and Retrieving Data.”

Displaying a dialog box in response to sysAppLaunchCmdAlarmTriggered can be
somewhat tricky, because your application might not be running at the time and
must display a dialog box over the top of another application. The following exam-
ple defines a DisplayAlarm function to take care of displaying a simple alarm dialog
box to the user:

static void DisplayAlarm (SysDisplayAlarmParamType *cmdPBP)
{

FormType *form, *curForm;

form = FrmInitForm(AlarmForm);
curForm = FrmGetActiveForm();
if (curForm)

FrmSetActiveForm(form);
FrmSetEventHandler(form, AlarmFormHandleEvent);
FrmDrawForm(form);

// Do something here with cmdPBP->alarmSeconds or
// cmdPBP->ref, such as drawing those values to the
// alarm display using WinDrawChars.

FrmDoDialog(form);
FrmDeleteForm(form);
FrmSetActiveForm(curForm);

}

In the example above, DisplayAlarm first initializes a new form object with
FrmInitForm. The DisplayAlarm function then saves the currently displayed form
in the variable curForm so the application can return to whatever form is currently
on the screen when the alarm goes off. Storing the active form in this way is impor-
tant, because the application handling the alarm might not be active when the

Cross-
Reference

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 288

289Chapter 10 ✦ Programming System Elements

alarm goes off, and suddenly changing to another application in the middle of what
the user is doing can be disorienting at best, or even downright rude at worst.

After storing the current form for later use, DisplayAlarm sets an event handler
for the alarm form. Depending on the needs of the application, the AlarmForm
HandleEvent function can be as simple or as complex as the alarm dialog box
requires. One thing that should be included in the alarm dialog box’s event handler,
though, is a trap for the appStopEvent to prevent switching to another application
until the user dismisses the dialog box. Switching to another application while the
alarm dialog box is displayed can cause crashing behavior because the alarm dialog
box is probably displayed over the top of another application. Also, trapping
appStopEvent serves a very practical purpose: If the user doesn’t hear the alarm
go off, or has the system alarm sound turned off, the dialog box will be the first
thing the user sees when turning on the device again. Here is a short AlarmForm
HandleEvent function that traps appStopEvent:

static Boolean AlarmFormHandleEvent(EventType *event)
{

if (event->eType == appStopEvent)
return true;

else
return false;

}

Moving back to the DisplayAlarm example, once an event handler has been set for
the dialog box, DisplayAlarm then draws the alarm dialog box with FrmDrawForm.
At this point, the application can perform any custom drawing required on the
alarm dialog box, possibly using the values passed from the parameter block in the
sysAppLaunchCmdDisplayAlarm launch code. The DisplayAlarm function then
displays the dialog box using FrmDoDialog. Though the preceding example ignores
the return value from FrmDoDialog, it could also respond differently depending on
which dialog box button the user tapped.

After the user dismisses the alarm dialog box, DisplayAlarm removes the dialog
box from memory with FrmDeleteForm, and then restores the active status of
the form that was on the screen before the alarm dialog box appeared using
FrmSetActiveForm.

Be sure to set the Save Behind attribute of the alarm dialog box when designing
its form resource. Without this attribute, the screen quickly becomes a mess as the
system tries to draw the alarm dialog box over the top of the current form without
first clearing it from the screen.

Responding to Other Launch Codes
There are two other launch codes you should consider responding to in an alarm-
enabled application: sysAppLaunchCmdSystemReset and sysAppLaunchCmd
TimeChange.

Caution

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 289

290 Part III ✦ Programming the Palm OS

The Palm OS alarm manager does not keep track of the alarm queue across system
resets. This means that after any system reset, all alarms disappear from the sys-
tem. Fortunately, the system sends a sysAppLaunchCmdSystemReset launch code
to every application after a system reset. To make your application’s alarms persist
across system resets, respond to the sysAppLaunchCmdSystemReset launch code
by retrieving the next appropriate alarm time from your application’s stored data,
and then setting that time in the system alarm queue with AlmSetAlarm.

When the user changes the system time, the OS sends a sysAppLaunchCmdTime
Change launch code to every application. Applications that handle alarms might be
interested in this event. By default, if an application has an alarm in the queue and
the user changes the system clock to a time beyond the set alarm, the alarm imme-
diately goes off when the clock is changed. For most applications, this is desirable
behavior, because it ensures that the user will not miss any alarms set between the
old system time and the new system time. However, some applications may need to
reset alarms in response to a change in system time, and the sysAppLaunchCmd
TimeChange launch code allows your application to do just that.

Playing Sounds
The current generation of Palm OS devices is very limited in their ability to create
sound. With the exception of the TRGPro, which has more advanced sound capabil-
ities than other Palm OS hardware, only a single tone may be generated at any par-
ticular time through the device’s simple piezoelectric speaker. This limitation
makes the handheld unsuitable for music or accurate voice playback without the
addition of extra hardware, and it also rules out using the device to generate phone-
dialing tones for use as an auto-dialer. The current speaker in Palm devices does
work well for simple alarm beeps and user input feedback, though.

The TRGPro’s improved speaker design is capable of producing dual tone modu-
lated frequency (DTMF) sounds, but you must use TRG’s sound library functions to
access this feature of the TRGPro. This book’s CD-ROM includes the TRGPro SDK,
which contains all the tools and documentation you need to make use of the spe-
cial features of the TRGPro handheld.

The simplest way to make sounds in the Palm OS is the SndPlaySystemSound
function, which allows you to generate one of the predefined system sounds. The
SndPlaySystemSound function takes a single argument of type SndSysBeepType,
which is an enum defined as follows in SoundMgr.h:

typedef enum SndSysBeepType {
sndInfo = 1,
sndWarning,
sndError,
sndStartUp,

On the
CD-ROM

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 290

291Chapter 10 ✦ Programming System Elements

sndAlarm,
sndConfirmation,
sndClick

} SndSysBeepType;

Aside from the predefined system sounds, you may also manually generate your
own tones using SndDoCmd. The SndDoCmd function has the following prototype:

Err SndDoCmd (MemPtr chanP, SndCommandType *cmdP,
Boolean noWait)

The chanP argument to SndDoCmd specifies which audio channel should receive
the sound output. Because current implementations of the Palm OS support only a
single, default channel, you must pass NULL for this argument. Likewise, noWait is
also not fully implemented. In the future, passing 0 for noWait will tell the system
to play the sound synchronously, which is to say SndDoCmd will play the entire
sound before returning. A non-zero value specifies asynchronous playback, which
means that SndDoCmd returns immediately, allowing interruption of the sound
playback by other processes. For now, you must pass 0 for this argument.

All of the real work of SndDoCmd is contained in its second argument, cmdP, which
is a pointer to a SndCommandType structure. The SndCommandType structure may
contain a number of completely different pieces of information, based on the value
of its first member, an enum called SndCmdIDType. The Palm OS header file
SoundMgr.h defines SndCmdIDType and SndCommandType as follows:

typedef enum SndCmdIDType {
sndCmdFreqDurationAmp = 1,
sndCmdNoteOn,
sndCmdFrqOn,
sndCmdQuiet

} SndCmdIDType;

typedef struct SndCommandType {
SndCmdIDType cmd;
Int32 param1;
UInt16 param2;
UInt16 param3;

} SndCommandType;

The only option available in versions of the Palm OS prior to 3.0 is sndCmdFreq
DurationAmp. When this value is passed for the cmd member, param1 specifies
the frequency of the sound to play (in Hertz), param2 specifies the duration of the
sound (in milliseconds), and param3 specifies the amplitude of the sound. When
using sndCmdFreqDurationAmp, the SndDoCmd function always plays the sound
synchronously, unless param3 is sndMaxAmp (a constant defined in SoundMgr.h
that is equal to 0), in which case SndDoCmd plays the sound asynchronously,
returning immediately.

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 291

292 Part III ✦ Programming the Palm OS

All values for cmd other than sndCmdFreqDurationAmp cause the SndDoCmd
function to crash on versions of the Palm OS prior to 3.0. Be sure to check the ver-
sion before making SndDoCmd calls using the other values in the SndCmdIDType
enum if you intend for your application to run on earlier versions of the OS.

The sndCmdNoteOn function allows you to specify a tone to play using the MIDI
(Musical Instrument Digital Interface) format. When using sndCmdNoteOn, param1
specifies the MIDI key index (a value from 0 to 127), param2 specifies the duration
in milliseconds, and param3 specifies the sound’s velocity (another value from 0 to
127, which SndDoCmd interpolates into an amplitude for playback).

The MIDI format is far too complex a topic to cover completely in this book. For
more information about the MIDI specification, point your browser at http://
www.midi.org, the official Web site of the MIDI Manufacturers Association.

Using sndCmdFreqOn is similar to using sndCmdFreqDurationAmp, but it always
plays asynchronously, allowing you to interrupt the sound playback with another
call to SndDoCmd. When cmd is sndCmdFreqOn, param1 specifies frequency in
Hertz, param2 specifies duration in milliseconds, and param3 specifies amplitude
(use the sndMaxAmp constant to set the sound at the maximum amplitude).

The final value in the SndCmdIDType enum is sndCmdQuiet, which stops the play
of the current sound. All three param variables should be set to 0 when using
sndCmdQuiet.

Looking Up Phone Numbers
In Palm OS version 2.0 and later, the system provides an easy way for the user
to look up a phone number in the built-in Address Book application from any
text field. It is almost as simple to add this feature in your own application.
All that is required to implement a phone number lookup is a text field and the
PhoneNumberLookup function.

The PhoneNumberLookup function takes a single argument: a pointer to a field
object. When called, PhoneNumberLookup first searches the Address Book appli-
cation for whatever text is currently selected in the specified field. If no text is
selected in the field, PhoneNumberLookup tries to find whatever word is closest
to the insertion point.

If PhoneNumberLookup finds a match, it replaces the current selection, if any, with
the full name and phone number of the record the function found in the Address
Book database. If PhoneNumberLookup cannot immediately find an unambiguous
match, the function displays the Address Book’s Phone Number Lookup form to
allow the user to manually select a record.

Cross-
Reference

Caution

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 292

293Chapter 10 ✦ Programming System Elements

To maintain consistency with the built-in applications, any program that imple-
ments phone number lookup should have an Options ➪ Phone Lookup menu item,
with an “L” character for its Graffiti command shortcut. The Librarian sample appli-
cation, like the built-in applications, implements a phone lookup in its Note view.
The following section of Librarian’s NoteViewHandleEvent function launches a
phone number lookup when the user selects the Options ➪ Phone Lookup menu
item or enters an “L” after a command stroke:

static Boolean NoteViewDoCommand(UInt16 command)
{

FieldType *field;
Boolean handled = true;

switch (command) {
case notePhoneLookupCmd:

field = GetObjectPtr(NoteField);
PhoneNumberLookup(field);
break;

// Other menu items omitted

default:
handled = false;

}

return (handled);
}

Launching Applications
Normally, launching an application is a simple matter of tapping the silk-screened
Applications button and selecting a program from the Palm OS application launcher.
Well-designed Palm OS applications make this a painless operation by saving what-
ever data the user is working on before switching to the launcher. The constant
readiness of a Palm OS application to drop whatever it’s doing and allow the user to
switch to another application is part of what makes a Palm OS device convenient
and fast to use.

However, some applications, particularly replacements for the system launcher
application, may need to call up the launcher without waiting for the user to tap the
Applications button. In other cases, an application may need to launch another pro-
gram directly, without using the system launcher at all. Also, it can be useful for an
application to send a specific launch code to another application to request that it
perform some sort of action or modify its data in some way.

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 293

294 Part III ✦ Programming the Palm OS

Calling the System Application Launcher
Starting with Palm OS version 3.0, the application launcher is an independent appli-
cation stored in the handheld’s ROM. Prior to 3.0, the launcher is a pop-up dialog
box. Regardless of this difference, there is a method of displaying the launcher that
works on any version of the Palm OS. Simply queue a keyDownEvent that contains
the special launchChr character, and the system takes care of showing the launcher.
The following code assembles the keyDownEvent and adds it to the event queue
with EvtAddEventToQueue:

EventType newEvent;

newEvent.eType = keyDownEvent;
newEvent.data.keyDown.chr = launchChr;
newEvent.data.keyDown.modifiers = commandKeyMask;
EvtAddEventToQueue(&newEvent);

To display the launcher pop-up on Palm OS 2.0 and earlier, you may also use the
SysAppLauncherDialog function, which requires no arguments and has no
return value. The SysAppLauncherDialog function still exists in post-2.0 versions
of the Palm OS for backward compatibility. However, you should always queue a
keyDownEvent containing a launchChr to bring up the system application
launcher to ensure that your code will continue to work without modification on
future versions of the operating system.

Launching Applications Directly
Two functions in the Palm OS are responsible for launching other applications:
SysAppLaunch and SysUIAppSwitch. Both functions allow you to customize how
you wish to launch an application, giving you control over the launch code, launch
flags, and parameter block to send to the other application. The SysAppLaunch
function is for making use of another program, and then returning to the original
application, while SysUIAppSwitch quits the current application and starts another
in its place.

Do not use SysAppLaunch or SysUIAppSwitch to call the system application
launcher. If another application has replaced the default launcher, that application
will open instead of the default system launcher. Instead, queue a keyDownEvent
containing a launchChr to open the system launcher, as described earlier in this
chapter.

The most common use for SysAppLaunch is to send launch codes to other applica-
tions, which enables an application to make use of another program’s features to
perform a task. In effect, SysAppLaunch allows a program to call a specific subrou-
tine in another application. As an example, the Palm OS PhoneNumberLookup
function, discussed earlier in this chapter, uses SysAppLaunch to send a

Caution

Note

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 294

295Chapter 10 ✦ Programming System Elements

sysAppLaunchCmdLookup launch code to the Address Book application, telling the
Address Book to search its database for a particular name and return the phone
number associated with that name.

The prototype for SysAppLaunch looks like this:

Err SysAppLaunch (UInt16 cardNo, LocalID dbID,
UInt16 launchFlags, UInt16 cmd, MemPtr cmdPBP,
UInt32 *resultP)

The cardNo and dbID arguments identify the application that SysAppLaunch
should call, specifying the memory card where that application is located and its
unique database ID. You can retrieve the values for cardNo and dbID with the
DmGetNextDatabaseByTypeCreator function, which returns the card and database
ID given the creator ID of the application.

Chapter 12, “Storing and Retrieving Data,” contains more information about
DmGetNextDatabaseByTypeCreator.

To send a launch code to another application, pass the value 0 for the launchFlags
argument. Other launch flags exist, but they are usually needed only by the system;
see Appendix A, “Palm OS API Quick Reference,” for a list of available launch flags.

The cmd argument specifies the launch code to send to the other application, and
cmdPBP points to a parameter block structure containing information the called
application needs to process the launch code. When the other application is fin-
ished, SysAppLaunch uses resultP to return a pointer to the result of the called
application’s PilotMain routine.

The SysUIAppSwitch function takes the same parameters as SysAppLaunch but
does not have a resultP parameter, because SysUIAppSwitch tells the current
application to quit before launching the new program. However, an extra step may
be necessary when sending anything other than a sysAppLaunchCmdNormalLaunch
launch code. If you pass a parameter block to the new application via the cmdPBP
argument, you should grant ownership of the parameter block to the system with
the MemPtrSetOwner function. Otherwise, the system will free the memory allo-
cated for the parameter block when the calling application quits. The MemPtrSet
Owner function takes two parameters, the pointer itself and the ID of the new
owning application. Passing 0 for the second parameter assigns ownership of the
pointer to the system. For example, the following line of code changes ownership
of cmdPBP to the system:

Err error = MemPtrSetOwner(cmdPBP, 0);

The error return value from MemPtrSetOwner contains 0 if there is no error while
changing ownership, or error contains the constant memErrInvalidParam if an

Cross-
Reference

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 295

296 Part III ✦ Programming the Palm OS

error occurs. Another function, MemHandleSetOwner, exists for changing owner-
ship of handles, which must also be done for any handles within the parameter
block. The MemHandleSetOwner function works the same way as MemPtrSet
Owner, substituting a handle for the pointer in the function’s first argument.

To simplify calls to SysAppLaunch and SysUIAppSwitch, the Palm OS provides two
macros, AppCallWithCommand and AppLaunchWithCommand, which incorporate
a call to DmGetNextDatabaseByTypeCreator. These macros allow you to send
launch codes and launch another application without having to manually find the
application’s card number and database ID. Listing 10-1 shows the definitions of both
of these macros, which are supplied in the Palm OS header file AppLaunchCmd.h.

Listing 10-1: The AppCallWithCommand and
AppLaunchWithCommand macros

#define AppCallWithCommand(appCreator, appCmd, appCmdParams) \
{ \

UInt16 cardNo; \
LocalID dbID; \
DmSearchStateType searchState; \
UInt32 result; \
Err err; \
DmGetNextDatabaseByTypeCreator(true, &searchState, \

sysFileTApplication, appCreator, true, &cardNo, \
&dbID); \

ErrNonFatalDisplayIf(!dbID, “Could not find app”); \
if (dbID) { \

err = SysAppLaunch(cardNo, dbID, 0, appCmd, (Ptr) \
appCmdParams, &result); \

ErrNonFatalDisplayIf(err, “Could not launch app”); \
} \

}

#define AppLaunchWithCommand(appCreator, appCmd, appCmdParams)\
{ \

UInt16 cardNo; \
LocalID dbID; \
DmSearchStateType searchState; \
Err err; \
DmGetNextDatabaseByTypeCreator(true, &searchState, \

sysFileTApplication, appCreator, true, &cardNo, \
&dbID); \

ErrNonFatalDisplayIf(!dbID, “Could not find app”); \
if (dbID) { \

err = SysUIAppSwitch(cardNo, dbID, appCmd, \
appCmdParams); \

ErrNonFatalDisplayIf(err, “Could not launch app”); \
} \

}

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 296

297Chapter 10 ✦ Programming System Elements

Both macros have three arguments. The first, appCreator, is the creator ID of the
application that should be launched. The second, appCmd, is the launch code to
send to the application, and the third, appCmdParams, is a pointer to the parameter
block that should be passed along with the launch code.

As an example of how to use these macros, CodeWarrior’s project stationery for the
Palm OS includes a function called RomVersionCompatible, which checks the cur-
rent version of the operating system when the application starts to see if it meets a
minimum version requirement. If the system version is older than the required ver-
sion, RomVersionCompatible alerts the user about the version requirement, and
then calls AppLaunchWithCommand to launch a “safe” default application that is
guaranteed to exist on that version of the operating system. The relevant lines of
code from RomVersionCompatible are shown in the following example:

if (romVersion < sysMakeROMVersion(2,0,0,sysROMStageRelease,0))
AppLaunchWithCommand(sysFileCDefaultApp,

sysAppLaunchCmdNormalLaunch, NULL);
}

The constant sysFileCDefaultApp is defined in every version of the Palm OS
headers to refer to a default application that exists in that version of the operating
system. On Palm OS 1.0 and 2.0, this default is the Memory application; on Palm OS
3.0 and later, the system Preferences application is the default, because memory
display on the more recent versions of the OS is part of the system launcher appli-
cation, and the Memory application no longer exists.

Sending Launch Codes Globally
If you need to send a particular launch code to every application on the device,
use the SysBroadcastActionCode function. This function takes two arguments: the
launch code to send, and a pointer to the parameter block containing information
needed by any applications that respond to the launch code.

Creating Your Own Launch Codes
The Palm OS allows you to define your own launch codes. This feature can allow
two applications to talk to each other and control each other’s data behind the
scenes without the user’s ever being aware of what the programs are doing. Using
your own launch codes, you can create suites of applications that communicate
with each other, shared libraries that may be called from many different applica-
tions, or very large applications that are composed of multiple smaller applications
that communicate with one another via launch codes.

Launch codes in the Palm OS are 16-bit values. Codes from 0 through 32767 are
reserved for use by Palm Computing for their own launch codes and future

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 297

298 Part III ✦ Programming the Palm OS

enhancements to the operating system, which leaves numbers from 32768 to 65535
for your own applications, which should be more space than any application could
realistically need for launch codes. Using your own launch codes is a simple matter
of deciding what a particular number represents, and then making sure that your
applications respond to that number in their PilotMain routines.

Generating Random Numbers
The SysRandom function is the only built-in pseudo-random number generator in
the Palm OS. For most purposes, SysRandom should be sufficient for the task of
creating random numbers. Some applications that require very random numbers,
such as strong cryptography programs, may not work very well with SysRandom,
requiring that you provide your own algorithms. The limited processor power avail-
able on Palm OS devices pretty much rules them out for applications that require
this kind of complex number-crunching, though, so for any solution that requires
very random numbers, you may want to put together a companion application that
runs on a desktop computer.

The SysRandom function returns an integer value from 0 to sysRandomMax,
which the Palm OS headers define as 32,767. To generate a random number with
SysRandom, pass the function an unsigned long integer value to use as a seed
value, or 0 to use the last seed value. The best way to ensure that your application
produces reasonably random results is to seed the random number generator from
the system clock when you first start the application. The following line of code in
the application’s StartApplication function will seed the random number generator
from the Palm OS device’s onboard clock:

SysRandom(TimGetTicks());

After the random number generator has been seeded, call SysRandom with a value
of 0 each time you need a new random number. With a little simple math, you can
use SysRandom to come up with almost any random number. The following simple
function returns a number from 0 to n - 1, where n is the total number of possible
choices:

UInt16 RandomNum(UInt n) {
return SysRandom(0) / (1 + sysRandomMax / n);

}

For example, passing the value 52 for n causes RandomNum to return a value
between 0 and 51, which would be appropriate for randomly drawing a card from
a standard poker deck.

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 298

299Chapter 10 ✦ Programming System Elements

Random numbers, although necessary for some applications, can make debugging
a nightmare, because the application may not produce the same results each time
it is run. When debugging an application that calls SysRandom, seed the random
number generator with a constant number instead of with TimGetTicks, like this:

SysRandom(1);

When seeded in this way, the random number generator will produce the same
series of “random” numbers each time you run the application, greatly reducing
your frustration level when debugging. When you are ready to distribute the appli-
cation, replace the constant with a call to TimGetTicks so the application will pro-
duce different random numbers each time you run it.

Managing Power
The Palm OS provides the SysBatteryInfo function for determining information
about the handheld’s battery settings. The prototype for SysBatteryInfo looks
like this:

UInt16 SysBatteryInfo (Boolean set, UInt16 *warnThresholdP,
UInt16 *criticalThresholdP, UInt16 *maxTicksP,
SysBatteryKind *kindP, Boolean *pluggedIn, UInt8 *percentP)

The SysBatteryInfo function returns a value equal to the current battery voltage
in hundredths of a volt, which allows the system to store the value as an integer
instead of as a floating-point number. Divide the return value from SysBatteryInfo
by 100 to obtain the actual voltage level of the batteries in volts.

The first argument, set, should be false to retrieve battery settings. Presumably, a
true value for set would change the settings, but the Palm Computing documenta-
tion states that applications should never change battery settings. This restriction
is understandable, because changing the voltage threshold levels at which the
device warns the user about a low battery condition could potentially result in
data loss because of a drained battery. Be careful when using SysBatteryInfo.

Pass NULL for any of the remaining arguments to SysBatteryInfo that you wish to
ignore. For any value you wish to retrieve, allocate a variable of the appropriate
type and pass a pointer to that variable to the SysBatteryInfo function.

The warnThresholdP argument is a pointer to a variable to receive the system bat-
tery warning threshold. The battery warning threshold is the voltage at which the
system first displays a warning to the user, stating that the batteries are low and
should be changed or recharged. Like the return value of SysBatteryInfo, the value
that warnThresholdP points to is the threshold’s voltage level in hundredths of a
volt. The criticalThresholdP argument points to a variable to receive the critical

Tip

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 299

300 Part III ✦ Programming the Palm OS

battery threshold. When the battery voltage reaches the critical threshold level, the
device drops to sleep mode without warning and will not return to normal opera-
tion until the battery voltage is above the critical threshold again. Again, the value
criticalThresholdP points to is the threshold voltage level in hundredths of a volt.

The maxTicksP argument points to a variable to receive the value of the system
battery timeout value, in system ticks, which the system uses internally to deter-
mine when to display the low battery warning dialog box to the user.

The kindP argument points to a variable that receives the type of battery installed
in the device. The battery type alters the values that the system uses to calculate
remaining voltage in the battery. Different battery types are defined in the Palm OS
header file SystemMgr.h in the SysBatteryKind enum:

typedef enum {
sysBatteryKindAlkaline = 0,
sysBatteryKindNiCad,
sysBatteryKindLiIon,
sysBatteryKindRechAlk,
sysBatteryKindLast = 0xFF

} SysBatteryKind;

The pluggedIn argument indicates whether the device is plugged into external
power, which might be the case for a Palm V or similar device with a rechargeable
internal battery when it is resting in its cradle. A true value for pluggedIn indi-
cates that the device is plugged in, and false indicates that the device is not
attached to external power.

Finally, the percentP contains the approximate percentage of power left in the
device’s batteries. Because the power regulation hardware on a Palm OS device is
not very sophisticated, it is difficult for the system to determine the exact voltage
in the device’s batteries. This inaccuracy can result in a brand new set of batteries
appearing to have less than 100 percent power, so SysBatteryInfo actually fudges
the percentP value, returning 100 when the calculated percentage is 90 or higher.

The Palm OS also provides the function SysBatteryInfoV20 for backward compati-
bility reasons. The SysBatteryInfoV20 function is exactly like SysBatteryInfo,
except that it has no percentP argument.

Reacting to Low Battery Conditions
When the batteries in a Palm OS device reach the battery warning threshold level,
the system queues a keyDownEvent containing a special lowBatteryChr character
code. Normally, letting this event fall through to the system’s SysHandleEvent rou-
tine in your application’s event loop should be sufficient, because SysHandleEvent
reacts to this event by displaying the system low battery dialog box. If, for some

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 300

301Chapter 10 ✦ Programming System Elements

reason, your application needs to know when the low battery warning threshold
has been reached, you can react to it in your own application’s event handlers by
reacting to the lowBatteryChr event.

If you do react to a lowBatteryChr event, be sure not to mark the event as han-
dled so that SysHandleEvent still gets a chance to display the system low battery
warning dialog.

Identifying the Device
Starting with the Palm III, some Palm OS devices have a unique 12-digit serial num-
ber in their ROM storage to identify the device. This serial number is stored in a
text buffer with no null terminator. The user can view a device’s serial number in
the application launcher’s Info view. Serial numbers may be used to implement
copy protection for an application that is keyed to a specific handheld. In Palm OS
devices that support wireless connections, the serial number may be used for
authentication purposes to verify the security of a connection between the hand-
held and a remote server.

To retrieve the serial number from ROM, use the SysGetROMToken function. The
prototype for SysGetROMToken looks like this:

Err SysGetROMToken (UInt16 cardNo, UInt32 token, UInt8 **dataP,
UInt16 *sizeP)

If SysGetROMToken successfully retrieves a valid serial number, the function’s
return value should be 0. Because of the inner workings of SysGetROMToken, you
should also verify that dataP is not NULL. Also, if dataP does contain data, its first
character should not be 0xFF. Once you have verified that all these things are true,
you can be sure that SysGetROMToken has retrieved a valid serial number.

The cardNo argument is the memory card holding the ROM to be queried; because
no Palm OS device currently has more than one card, pass 0 for this value.

Pass the constant sysROMTokenSnum, defined in the Palm OS SystemMgr.h header
file, for the token argument. The SysGetROMToken function is capable of retriev-
ing information from ROM other than the device’s serial number, but the serial num-
ber is the only bit of information Palm Computing has made publicly available to
developers, so sysROMTokenSnum is the only thing you can pass in the token
argument and expect to get a useful result from SysGetROMToken.

The dataP argument is a pointer to a text buffer to hold the serial number SysGet
ROMToken retrieves, and sizeP is a pointer to a variable to receive the size of the
retrieved text, in bytes.

Caution

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 301

302 Part III ✦ Programming the Palm OS

As an example, the following function draws a device’s serial number on the screen at
a given location, or a short message indicating the device’s lack of a serial number:

static void DrawSerialNumber(Int16 x, Int16 y)
{

char *buffer;
UInt16 length;
Err error;

error = SysGetROMToken(0, sysROMTokenSnum, (BytePtr *)
&buffer, &length);

if ((! error) && (buffer) && ((Byte) *buffer != 0xFF))
// There is a valid serial number, so draw it.
WinDrawChars(buffer, length, x, y);

else
// There isn’t a valid serial number, so draw a message

indicating this to the user.
WinDrawChars(“No serial number”, 16, x, y);

}

Manipulating Time Values
Because keeping track of dates and times is a common use for handheld computers,
the Palm OS provides many functions for retrieving, converting, and altering time
values.

Internally, the system’s real-time clock keeps track of time as a 32-bit unsigned inte-
ger, representing the number of seconds since midnight on January 1, 1904. The
real-time clock keeps track of date and time in 1-second increments, even while the
device is in sleep mode. A Palm OS device also has a faster timer, which keeps track
of time in system ticks. System ticks occur 100 times per second on an actual Palm
OS device, or 60 times per second in a Palm OS Simulator application running on a
Macintosh. The system resets the ticks counter to 0 whenever the device is reset,
and the ticks counter does not update while the device is in sleep mode.

The Palm OS uses three basic structures in many of its time functions to keep track
of the date, the time, or the date and time as a single unit. These structures are
defined in the Palm OS header file DateTime.h, and they are repeated in the follow-
ing example for reference:

typedef struct {
Int16 second;
Int16 minute;
Int16 hour;
Int16 day;
Int16 month;
Int16 year;

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 302

303Chapter 10 ✦ Programming System Elements

Int16 weekDay; // Days since Sunday (0 to 6)
} DateTimeType;

typedef struct {
UInt8 hours;
UInt8 minutes;

} TimeType;

typedef struct {
UInt16 year :7; // Years since 1904 (Mac format)
UInt16 month :4;
UInt16 day :5;

} DateType;

Retrieving and Setting Time Values
The TimGetSeconds function retrieves the current time from the system’s real-time
clock, in seconds since midnight, January 1, 1904. You can also set the system clock
by passing the appropriate seconds past 1/1/1904 value to the TimSetSeconds
function.

You can implement finer timing by using the TimGetTicks function, which retrieves
the number of ticks that have passed since the last time the device was soft reset.
Because ticks can vary in length between devices, you should use the SysTicksPer
Second macro to retrieve the number of ticks per second on the device, and then
divide the value from TimGetTicks by the value returned by SysTicksPerSecond to
get the actual time in seconds since the device was last reset.

Converting Time Values
The TimSecondsToDateTime function converts between the internal seconds past
1/1/1904 value to a DateTimeType structure. You can convert from a DateTimeType
structure back to seconds using TimDateTimeToSeconds. Much like the TimSeconds
ToDateTime function, DateSecondsToDate converts seconds since 1/1/1904 into a
DateType structure, but there is no corresponding function to convert a DateType
structure back into seconds.

More functions that use the DateType structure include DateDaysToDate, which
converts the number of days since 1/1/1904 into a DateType structure, and
DateToDays, which converts a DateType structure into the number of days past
1/1/1904.

The function DateToAscii allows conversion of a particular date to an ASCII string,
suitable for display to the user. The prototype for DateToAscii looks like this:

void DateToAscii (UInt8 months, UInt8 days, UInt16 years,
DateFormatType dateFormat, Char *pString)

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 303

304 Part III ✦ Programming the Palm OS

The first three arguments to DateToAscii allow you to specify the month (from 1
to 12), day (from 1 to 31), and year (in four-digit format) to convert to text. The
dateFormat argument specifies the format that the date should take, as defined
by the DateFormatType enum in the Palm OS header file Preferences.h:

typedef enum {
dfMDYWithSlashes, // 12/31/95
dfDMYWithSlashes, // 31/12/95
dfDMYWithDots, // 31.12.95
dfDMYWithDashes, // 31-12-95
dfYMDWithSlashes, // 95/12/31
dfYMDWithDots, // 95.12.31
dfYMDWithDashes, // 95-12-31

dfMDYLongWithComma, // Dec 31, 1995
dfDMYLong, // 31 Dec 1995
dfDMYLongWithDot, // 31. Dec 1995
dfDMYLongNoDay, // Dec 1995
dfDMYLongWithComma, // 31 Dec, 1995
dfYMDLongWithDot, // 1995.12.31
dfYMDLongWithSpace, // 1995 Dec 31

dfMYMed, // Dec ‘95
dfMYMedNoPost // Dec 95

} DateFormatType;

The pString argument is a pointer to a string to receive the converted date text.
The string pointed to by pString must be of length dateStringLength for short
date strings, or length longDateStringLength for long date formats.

The DateToDOWDMFormat takes the same arguments as DateToAscii, but it adds a
three-letter day of week abbreviation to the front of whatever string format is speci-
fied by the dateFormat argument. For example, the following call to DateToDOWDM
Format fills the variable dateStr with the string Sun Dec 31, 1995:

DateToDOWDMFormat(12, 31, 1995, dfMDYLongWithComma, dateStr);

If you need to determine which ordinal day of the month a particular date lies on,
you can use the DayOfMonth function. The value returned by this function is not
the cardinal date (for example, 31 for the 31st of December), but rather the day’s
relative position within the month (for example, the last Sunday of December). The
DayOfMonth function returns a value from the enum DayOfWeekType, defined in
DateTime.h as follows:

typedef enum {
dom1stSun, dom1stMon, dom1stTue, dom1stWen, dom1stThu,

dom1stFri, dom1stSat,
dom2ndSun, dom2ndMon, dom2ndTue, dom2ndWen, dom2ndThu,

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 304

305Chapter 10 ✦ Programming System Elements

dom2ndFri, dom2ndSat,
dom3rdSun, dom3rdMon, dom3rdTue, dom3rdWen, dom3rdThu,

dom3rdFri, dom3rdSat,
dom4thSun, dom4thMon, dom4thTue, dom4thWen, dom4thThu,

dom4thFri, dom4thSat,
domLastSun, domLastMon, domLastTue, domLastWen, domLastThu,

domLastFri, domLastSat
} DayOfWeekType;

The DaysInMonth function returns the number of days in a month, given a month
and a year, and the Palm OS also provides the DayOfWeek function, which, given a
month, day, and year, returns the day of the week as a value from 0 to 6, where 0
represents Sunday.

Altering Time Values
Two functions, DateAdjust and TimAdjust, allow for quick changes in dates, which
free you of the burden of manually changing the month or the year when the addi-
tion or subtraction of a certain amount of time from an initial date would cause the
date to wrap to a new month or year.

The DateAdjust function takes a pointer to a DateType structure and a number of
days as arguments, altering the passed DateType structure by the specified num-
ber of days. If the number of days is positive, DateAdjust adds the days to the date;
for a negative number of days, DateAdjust subtracts the number of days.

The TimAdjust function works like DateAdjust, except that it modifies a DateTime
Type structure by a specified number of seconds.

Using the Clipboard
The built-in applications allow for cutting, copying, and pasting of data between
text fields. The area of memory the system maintains for this kind of temporary
data storage is called the clipboard.

There are actually three different clipboards, each used to store a different kind of
data. The header file Clipboard.h defines the following enumerated type to iden-
tify these different types of clipboard data:

enum clipboardFormats {
clipboardText,
clipboardInk,
clipboardBitmap

};
typedef enum clipboardFormats ClipboardFormatType;

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 305

306 Part III ✦ Programming the Palm OS

The clipboardText format stores textual data, and the clipboardBitmap format
stores bitmap image data. As of this writing, the clipboardInk format is reserved
for future use, but as its name implies, it is probably intended for storing “digital
ink,” a hybrid between text and bitmap data. Digital ink data represents something
that the user has drawn directly on the screen, composed of a doodle or text that
has not been converted by the Graffiti engine, or even a mixture of pictures and text.

Adding cut, copy, and paste behavior to a field is the easiest way to use the clip-
board. The functions FldCut, FldCopy, and FldPaste all take a pointer to a field
object as an argument:

void FldCut (FieldType* fldP)
void FldCopy (const FieldType* fldP)
void FldPaste (FieldType* fldP)

Both FldCut and FldCopy copy the currently selected text from the indicated field
and place it on the text clipboard. The FldCut function also deletes the selected
text from the field. The FldPaste function replaces the currently selected text in the
field with the contents of the text clipboard, or if there is no selection in the text,
inserts the contents of the clipboard at the field’s insertion point.

If you need to place text data on the clipboard directly, without using a field, or if
you want to put bitmap data on the clipboard, you should use the ClipboardAdd
Item function. The prototype for ClipboardAddItem looks like this:

void ClipboardAddItem (const ClipboardFormatType format,
const void *ptr, UInt16 length)

The first argument to ClipboardAddItem is format, which specifies which clipboard,
text or bitmap, should accept the incoming data. The other two arguments, ptr and
length, are a pointer to the beginning of the data and the length of that data in bytes,
respectively. Whatever data you place on a clipboard with ClipboardAddItem over-
writes the current contents of that clipboard.

The maximum size of text data on the clipboard is 1000 bytes.

Starting with Palm OS version 3.2, the ClipboardAppendItem function is available,
which allows you to write more data onto the end of the clipboard without deleting
what is already there, allowing you to build up larger clipboard contents from many
smaller pieces of text. The ClipboardAppendItem function takes the same parame-
ters as ClipboardAddItem. Because ClipboardAppendItem is only intended for use
with text data, you should be sure to pass the clipboardText constant for the first
argument to ClipboardAppendItem.

You can retrieve data from the clipboard with the ClipboardGetItem function,
which has the following prototype:

MemHandle ClipboardGetItem (const ClipboardFormatType format,
UInt16 *length)

Note

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 306

307Chapter 10 ✦ Programming System Elements

The ClipboardGetItem function returns a handle to the actual memory chunk that
contains the requested clipboard data. Because this is a handle to the clipboard’s
actual memory, attempting to modify the contents of this handle directly will result
in an error. Copy the data out of the handle with the MemCopy function before
attempting to modify the data. Likewise, do not free the handle returned from
ClipboardGetItem; the system frees this handle automatically the next time data
is copied to the clipboard.

Text data in the clipboard is not NULL-terminated, so be sure to use the value
returned in the ClipboardGetItem function’s length parameter to determine
how much text is in the clipboard.

Summary
In this chapter, you got to take a look at functions that help you program the guts of
your application, the parts that do all the work but that the user never sees. After
reading this chapter, you should understand the following:

✦ Not all features of the Palm OS are present in all devices or in all versions of
the OS, but the system does provide a way to query what features exist by
using the FtrGet function.

✦ The Palm OS provides many functions for manipulating text, including font
functions for handling on-screen display of text and string functions that mir-
ror many basic functions in the C standard library.

✦ You can directly handle pen and key events before the operating system gets
them to allow your application to do special things with stylus and hardware
button input.

✦ Setting alarms in the Palm OS requires calling the AlmSetAlarm function, as
well as handling the sysAppLaunchCmdAlarmTriggered, sysAppLaunch
CmdDisplayAlarm, sysAppLaunchCmdTimeChange, and sysAppLaunchCmd
SystemReset launch codes.

✦ The Palm OS allows you to programmatically activate the system’s application
launcher, or you can launch applications manually within your program’s
code using the SysAppLaunch and SysUIAppSwitch functions.

✦ Because managing time is an important part of a handheld digital assistant,
the Palm OS provides a very complete set of functions for manipulating, con-
verting, and setting time and date values.

✦ Many other utility functions exist in the Palm OS for doing things such as play-
ing sounds, looking up phone numbers in the built-in Address Book, generat-
ing random numbers, managing battery power, and retrieving the device’s
onboard serial number.

✦ ✦ ✦

Caution

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 307

4676-7 ch10.f.qc 9/29/00 12:52 PM Page 308

Programming
Tables

Tables are some of the most complex user interface ele-
ments in the Palm OS and, hence, some of the most diffi-

cult to implement. Although many internal functions of tables
are handled by the Palm OS table manager, the system does
not provide much of what users of the ROM applications
expect as default behavior from a table. In this regard, tables
are somewhat like gadgets; the Palm OS provides you with a
user interface object to attach to your program, but much of
the hard work that makes the object tick comes from the
application itself. Fortunately, the built-in applications pro-
vide good examples of how to implement tables that operate
in ways users expect to see, and much of the code required to
operate a table is simply a boilerplate that you can modify
slightly and re-use in your own applications.

Palm makes the source code for the Table Manager avail-
able on their Web site (http://www.palm.com). Looking
through the source is an excellent way to gain insight into
the subtle nuances of tables.

Both tables and lists tend to look and act in similar ways. How
do you decide which to use, a table or a list? Tables are more
suited to editing data in place, and lists are optimized for
selecting items. If you want to allow a user to edit data in a
tabular format, such as the way the interface for the Date
Book and To Do List applications works, use a table. If you
just want to present the user with a list of choices, a list is
much easier to use.

This chapter is divided into two sections, “Creating a Simple
Table” and “Creating More Complex Tables.” The first section
explains the basic mechanics of creating, initializing, and
drawing a simple table by way of a small sample program. The
second section examines adding more complex behavior to a
table, such as database interaction, scrolling, and expanding
text fields, and uses the Librarian sample application to
demonstrate these techniques.

Note

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding how
tables work

Initializing tables

Handling table events

Hiding and showing
rows and columns

Attaching data
to a table

Scrolling tables

Handling table
text fields

✦ ✦ ✦ ✦

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 309

310 Part III ✦ Programming the Palm OS

Most tables are intimately linked to an application’s database, so some Palm OS
database terminology appears throughout this chapter. Refer to Chapter 12, “Storing
and Retrieving Data,” and to Chapter 13, “Manipulating Records,” for more informa-
tion about Palm OS database routines.

Creating a Simple Table
The example application in this section of the chapter demonstrates all of the avail-
able table item types. Figure 11-1 shows Table Example as it looks after you start
the program.

Figure 11-1: The Table Example application

The Table Example program and source code are available on the CD-ROM that
accompanies this book.

Table Example contains a single main form, which is host to only four objects: the
table, a list (hidden from view until invoked by the table’s pop-up triggers), and two
buttons for demonstrating how to hide rows and columns in the table. The follow-
ing PilRC resource definition, from the file table.rcp, defines the form and its
elements:

FORM ID MainForm 0 0 160 160
MENUID MainFormMenuBar
USABLE
BEGIN

TITLE “Table Example”
TABLE ID MainTable AT (0 16 160 121) ROWS 11 COLUMNS 9

COLUMNWIDTHS 12 25 12 18 12 33 17 20 9
BUTTON “Hide Rows” ID MainHideRowsButton

AT (1 147 50 12)
BUTTON “Hide Columns” ID MainHideColumnsButton

AT (56 147 64 12)
GRAFFITISTATEINDICATOR AT (140 PrevTop)
LIST “X” “Y” “Z” ID MainList AT (120 141 19 33) NONUSABLE

VISIBLEITEMS 3
END

The table in the example program is 11 rows high, which in the standard Palm OS
font fills most of the screen, leaving just enough room across the bottom of the

On the
CD-ROM

Cross-
Reference

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 310

311Chapter 11 ✦ Programming Tables

form for command buttons. There are nine columns in the table, one for each kind
of table item supported by the table manager. Table items are described in the next
section.

Understanding How Tables Work
Palm OS tables are essentially containers for a variety of other form elements, such
as pop-up lists, text fields, and check boxes, and as such, each table maintains a
complex array of subordinate controls. The Palm OS table manager keeps track of
each item in a table with the TableItemType structure, which is declared as fol-
lows in Table.h:

typedef struct {
TableItemStyleType itemType;
FontID fontID;
Int16 intValue;
Char * ptr;

} TableItemType;

The itemType field in the structure determines how the system draws each item,
and it also controls which of the other three TableItemType fields are used with
a particular table item. Different table items store different data in the fontID,
intValue, and ptr fields. Some table item types allow the user to edit the value dis-
played in their table cells, whereas others are for display purposes only. Table 11-1
provides an overview of the available values for itemType and shows which are user-
editable and which of the other three TableItemType fields each item type uses.

Table 11-1
Table Item Types

Editable TableItemType Fields
Item Type by User? Used by This Type

checkboxTableItem Yes intValue

customTableItem Yes None, although you may store data in the
intValue and ptr fields if required by
your application.

dateTableItem No intValue

labelTableItem No ptr

numericTableItem No intValue

popupTriggerTableItem Yes intValue, ptr

textTableItem Yes fontID, ptr

textWithNoteTableItem Yes fontID, ptr

narrowTextTableItem Yes fontID, intValue, ptr

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 311

312 Part III ✦ Programming the Palm OS

The Palm OS provides several functions for retrieving and setting values in a table
item. The TblSetItemStyle function sets the value of a table item’s itemType field,
given a pointer to the table, the row and column of the item to set, and the type
desired. In a similar vein, TblSetItemFont sets the fontID for a table item, Tbl
SetItemInt sets the intValue, and TblSetItemPtr sets the ptr field. There are also
three functions for retrieving table item values — TblGetItemFont, TblGetItemInt,
and TblGetItemPtr — which all retrieve the desired value given a pointer to the
table and the row and column of the desired table item. The use of these functions
is covered in more detail later in this chapter.

Always use the various Palm OS table functions to modify the values of a table
item’s TableItemType structure. Directly editing this structure’s values can con-
fuse the table manager, resulting in unpredictable behavior and possible system
crashes.

The following sections describe each data type in more detail.

checkboxTableItem
A checkboxTableItem is a simple check box without a label. The user may toggle
the check box on or off by tapping the table cell containing the check box. This
table item stores the value of the check box in intValue, with 0 representing an
unchecked box and 1 representing a checked box.

customTableItem
The customTableItem type is the table equivalent of a gadget object, allowing you
to create your own type of table item if none of the others fits the bill. Your applica-
tion code should install a callback routine to draw the contents of a customTable
Item cell. The callback function may use the cell’s intValue and ptr fields to store
whatever data might be required by the custom cell.

dateTableItem
This table item is display-only, showing the date in the form month/day. The date
itself is stored in the table item’s intValue field, and it should be a value that can
be cast as a DateType. The Palm OS header file DateTime.h defines DateType as
follows:

typedef struct {
UInt16 year :7; // years since 1904 (MAC format)
UInt16 month :4;
UInt16 day :5;

} DateType;

If the value of intValue is -1, the date table item displays a hyphen (-) instead of a
date, and if the date in intValue occurs on or before today’s date according to the
handheld’s system clock, the table manager displays an exclamation point (!) after
the date. The table manager always draws a dateTableItem in the current font.

Caution

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 312

313Chapter 11 ✦ Programming Tables

This display behavior should sound familiar to anyone who has used the built-in To
Do application, because its due date column is composed of dateTableItem cells.

labelTableItem
A labelTableItem is simply a text label that the user cannot edit, except that
instead of only displaying the string pointed to by its ptr field, the label table item
appends a colon (:) to the text. The table manager draws the label in the system’s
default font. Selecting the label, or a text field in the same row as the label, high-
lights the label. Most of the field labels in the Address Book application belong to
this type of table item.

numericTableItem
Numeric table items display the value stored in their intValue fields. The number
cannot be directly edited by the user. The table manager draws the number in the
system’s default bold font.

popupTriggerTableItem
A popupTriggerTableItem allows the user to call up a pop-up list and make a
selection from the list by tapping the table cell containing the pop-up trigger table
item. The popupTriggerTableItem displays the currently selected list item and
stores the index of the list selection in the intValue field. This table item keeps a
pointer to the pop-up trigger’s associated list in the table item’s ptr field. Keep in
mind that, as with an ordinary pop-up trigger object, you must provide a separate
list object resource to attach to the pop-up trigger table item. The table manager
draws the list and the currently selected item in the system’s default font.

textTableItem
A textTableItem is an editable text field contained within a single table cell. The
table item’s fontID field stores the font used to display the text, and ptr contains
a pointer to the string that contains the field’s text. You must provide callback func-
tions to load and save the text in each textTableItem cell.

textWithNoteTableItem
The textWithNoteTableItem type is identical to the textTableItem type, except
that textWithNoteTableItem also has a note icon on the right side of the cell.

narrowTextTableItem
A narrowTextTableItem is similar to a textTableItem, but it has a certain
amount of space reserved at the right side of the cell. The intValue field of the
cell stores the number of pixels to set aside at the right of the cell. This space is
useful for displaying small icons, such as the repeat and alarm indicators used in
the built-in Date Book application. Along with the callbacks for loading and saving
the text contents of the cell, a narrowTextTableItem should also have a callback
function to draw the icons. This drawing callback is similar to the callback function
used for a customTableItem.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 313

314 Part III ✦ Programming the Palm OS

Initializing a Table
Before you can implement user interaction with a table, or even use the table to dis-
play data, you must prepare the table for use. Initializing a table primarily involves
telling the table manager what item type each cell of the table should be, along with
setting up callback functions for certain columns to perform custom drawing rou-
tines, or to save and retrieve text from fields in the table.

You need to initialize a table before the system draws it to the screen. The best time
to perform this initialization is when handling a form’s frmOpenEvent. In Table
Example, the main form’s event handler, MainFormHandleEvent, delegates initial-
ization of the table to MainFormInit:

static Boolean MainFormHandleEvent(EventType *event)
{

Boolean handled = false;
FormType *form;

switch (event->eType) {
case frmOpenEvent:

form = FrmGetActiveForm();
MainFormInit(form);
FrmDrawForm(form);
handled = true;

// Other event handling omitted.

default:
break;

}

return handled;
}

The MainFormInit function itself is shown in Listing 11-1.

Listing 11-1: MainFormInit

static void MainFormInit(FormType *form)
{

TableType *table;
Int16 numRows;
Int16 i;
DateType dates[11], today;
UInt32 now;
UInt32 curDate;
ListType *list;

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 314

315Chapter 11 ✦ Programming Tables

// Initialize the dates. The first date in the table is
// set to the constant noTime so it will display as a
// hyphen. The rest of the dates will range from four days
// ago to five days ahead of the current date on the
// handheld.
* ((Int16 *) &dates[0]) = noTime;
DateSecondsToDate(TimGetSeconds(), &today);
now = DateToDays(today);
for (i = 1; i < sizeof(dates) / sizeof(*dates); i++) {

curDate = now - 5 + i;
DateDaysToDate(curDate, &(dates[i]));

}

table = FrmGetObjectPtr(form, FrmGetObjectIndex(form,
MainTable));

list = FrmGetObjectPtr(form, FrmGetObjectIndex(form,
MainList));

// Set item types and values.
numRows = TblGetNumberOfRows(table);
for (i = 0; i < numRows; i++) {

TblSetItemStyle(table, i, 0, labelTableItem);
TblSetItemPtr(table, i, 0, gLabels[i]);

TblSetItemStyle(table, i, 1, dateTableItem);
TblSetItemInt(table, i, 1, DateToInt(dates[i]));

TblSetItemStyle(table, i, 2, numericTableItem);
TblSetItemInt(table, i, 2, i);

TblSetItemStyle(table, i, 3, textTableItem);

TblSetItemStyle(table, i, 4, checkboxTableItem);
TblSetItemInt(table, i, 4, i % 2);

TblSetItemStyle(table, i, 5, narrowTextTableItem);
TblSetItemInt(table, i, 5, ((i % 3) * 7) + 6);

TblSetItemStyle(table, i, 6, popupTriggerTableItem);
TblSetItemInt(table, i, 6, i % 3);
TblSetItemPtr(table, i, 6, list);

TblSetItemStyle(table, i, 7, textWithNoteTableItem);

TblSetItemStyle(table, i, 8, customTableItem);
TblSetItemInt(table, i, 8, i % 3);

}

// Set columns usable and adjust column spacing.
for (i = 0; i < numTableColumns; i++) {

TblSetColumnUsable(table, i, true);

Continued

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 315

316 Part III ✦ Programming the Palm OS

Listing 11-1 (continued)

switch (i) {
case 2:

TblSetColumnSpacing(table, i, 2);
break;

default:
TblSetColumnSpacing(table, i, 0);
break;

}
}

// Set callback functions for loading, saving, and drawing.
TblSetLoadDataProcedure(table, 3, LoadTextTableItem);
TblSetLoadDataProcedure(table, 5, LoadTextTableItem);
TblSetLoadDataProcedure(table, 7, LoadTextTableItem);

TblSetSaveDataProcedure(table, 3, SaveTextTableItem);

TblSetCustomDrawProcedure(table, 5,
DrawNarrowTextTableItem);

TblSetCustomDrawProcedure(table, 8, DrawCustomTableItem);

// Draw the form.
FrmDrawForm(form);

}

Before we delve into MainFormInit, it would be useful to take a look at some of the
constants and global variables used in Table Example, because these items furnish
the values for some of the labels and text fields in the table. The following global
variables are from the top of table.c:

// Table constants
#define numTextColumns 3
#define numTableColumns 9
#define numTableRows 11

// Global variables
static Char * gLabels[] = {“00”, “01”, “02”, “03”, “04”, “05”,

“06”, “07”, “08”, “09”, “10”};
MemHandle gTextHandles[numTextColumns][numTableRows];
Boolean gRowsHidden = false;
Boolean gColumnsHidden = false;

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 316

317Chapter 11 ✦ Programming Tables

The constants numTableColumns and numTableRows are fairly self-explanatory,
simply declaring how many columns and rows the table has; numTextColumns
states the number of columns that contain a text field item. Labels for each row in
the table are stored in the gLabels array, which Table Example initializes in the
gLabels variable declaration. The gTextHandles two-dimensional array of mem-
ory handles stores the handles to each of the text fields in the table. Table Example
uses gRowsHidden and gColumnsHidden to keep track of whether the application
is currently hiding any rows or columns in the table.

Before MainFormInit can use the gTextHandles array, the application must initial-
ize the array. Table Example accomplishes this in its StartApplication routine:

static Err StartApplication(void)
{

Int16 i, j;

for (i = 0; i < numTextColumns; i++) {
for (j = 0; j < numTableRows; j++) {

Char *str;

gTextHandles[i][j] = MemHandleNew(1);
str = MemHandleLock(gTextHandles[i][j]);
*str = ‘\0’;
MemHandleUnlock(gTextHandles[i][j]);

}
}

return false;
}

The StartApplication function iterates over the gTextHandles array, allocating a
new memory handle for each array element and filling the handle’s contents with
a single trailing null.

Now that all the global variables that Table Example requires have been readied,
the program can get to the work of initializing the table with the MainFormInit
function, shown in Listing 11-1.

The first part of MainFormInit simply fills dates, an array of DateType structures,
with a few dates so the table’s second column will have data to display:

// Initialize the dates. The first date in the table is
// set to the constant noTime so it will display as a
// hyphen. The rest of the dates will range from four days
// ago to five days ahead of the current date on the
// handheld.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 317

318 Part III ✦ Programming the Palm OS

* ((Int16 *) &dates[0]) = noTime;
DateSecondsToDate(TimGetSeconds(), &today);
now = DateToDays(today);
for (i = 1; i < sizeof(dates) / sizeof(*dates); i++) {

curDate = now - 5 + i;
DateDaysToDate(curDate, &(dates[i]));

}

After MainFormInit fills in the dates array, the real work of initializing the table
begins. The first task is to iterate over the rows of the table and set the table item
type for each cell.

Setting item types
Use the TblSetItemStyle function to set the item type for a particular cell column.
The TblSetItemStyle function takes four arguments: a pointer to a table, the row of
the cell to set, the column of the cell to set, and a TableItemStyleType value. It is
possible to set cells within a column to different item types, though it is more com-
mon to make all of a column’s cells share the same type.

In particular, textTableItem, textWithNoteTableItem, and narrowText
TableItem types do not play well with other data types, because the functions
for setting load and save callback functions for text type table items, TblSet
LoadDataProcedure and TblSetSaveDataProcedure, allow you to specify only
an entire column. Setting a text loading or saving callback function for a cell that
does not have a text field in it will cause your application to crash.

Because MainFormInit is iterating over the table’s rows with a for loop, this is a
handy time to set the intValue and ptr fields for each cell that requires these
values. The TblSetItemInt and TblSetItemPtr functions accomplish this task in
MainFormInit.

The first three columns of the table contain data types that the user cannot directly
alter. Column one is a simple label. MainFormInit fills in the text for the labels from
the global gLabels array:

TblSetItemStyle(table, i, 0, labelTableItem);
TblSetItemPtr(table, i, 0, gLabels[i]);

Values for the second column were set earlier in MainFormInit in the dates array.
After MainFormInit sets the second column’s type to dateTableItem, it fills in the
date for each date cell with TblSetItemInt:

TblSetItemStyle(table, i, 1, dateTableItem);
TblSetItemInt(table, i, 1, DateToInt(dates[i]));

Caution

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 318

319Chapter 11 ✦ Programming Tables

The DateToInt “function” used here is not documented anywhere in the Palm OS
SDK Reference. Instead, DateToInt is a macro defined in the Palm OS header file
DateTime.h as follows:

#define DateToInt(date) (*(UInt16 *) &date)

Because the DateType structure is exactly sixteen bits long, the DateToInt macro
is very useful for shoehorning a DateType into a normal sixteen-bit integer value,
such as the intValue field of a table item.

The third column, last of the columns that are not user-editable, is a numericTable
Item. MainFormInit simply tosses the index of the current row into the intValue
for each item in this column:

TblSetItemStyle(table, i, 2, numericTableItem);
TblSetItemInt(table, i, 2, i);

The table’s fourth column is a textTableItem. Because a text table item’s intValue
field is unused and its ptr field is set via a callback function later in MainFormInit,
the only thing initially set in this for loop is the cell’s type:

TblSetItemStyle(table, i, 3, textTableItem);

The fifth column is a check box. After MainFormInit sets the cell’s item type to
checkboxTableItem, it sets every other check box in the column to be checked:

TblSetItemStyle(table, i, 4, checkboxTableItem);
TblSetItemInt(table, i, 4, i % 2);

After the check box comes the sixth column, which contains another type of text
field: a narrowTextTableItem. A narrow text item’s intValue indicates the amount
of space to reserve at the right side of the text field for custom drawing. In Table
Example, the space is reserved for drawing the alarm and repeat icons from the
built-in Address Book application. Both of these icons are seven pixels wide apiece,
and the for loop initializes space for neither, one, or both icons, depending on the
row’s index number:

TblSetItemStyle(table, i, 5, narrowTextTableItem);
TblSetItemInt(table, i, 5, ((i % 3) * 7) + 6);

The extra six pixels added to the space are a fudge factor to ensure that the icons
at the right of the field are not cut off by the next column’s pop-up triggers. Pop-up
triggers are ill-behaved when it comes to staying within their allotted space in a
table, and because they are right-justified, they will gladly overlap anything to their
left if the text displayed in the trigger is too long to fit, as is the case in Table
Example.

Note

Note

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 319

320 Part III ✦ Programming the Palm OS

The seventh column contains pop-up triggers. Besides setting the item type for this
column, MainFormInit also sets the intValue field to 0, 1, or 2, depending on the
table row, and sets the ptr field to point to MainList, a pop-up list containing three
items. The intValue determines which list element from MainList is currently
selected, and therefore drawn as the trigger’s label. Note that a popupTrigger
TableItem appends a colon (:) to the end of the pop-up trigger label, but this
colon does not display in the pop-up list itself.

TblSetItemStyle(table, i, 6, popupTriggerTableItem);
TblSetItemInt(table, i, 6, i % 3);
TblSetItemPtr(table, i, 6, list);

Occupying the eighth column is the last type of table text field, a textWithNote
TableItem. Like the textTableItem in column four, the item type is the only thing
that needs to be set in this for loop:

TblSetItemStyle(table, i, 7, textWithNoteTableItem);

The ninth and last column contains a customTableItem. In the Table Example
program, the custom widget displayed in this column’s cells displays nothing,
the alarm icon, or the repeat icon, depending on whether the value of the cell’s
intValue field is 0, 1, or 2, respectively. Tapping in the last column causes the cell
to cycle to the next icon. The for loop sets up the initial value for each of this col-
umn’s cells, but the code that actually handles drawing and responding to taps is
elsewhere in the application:

TblSetItemStyle(table, i, 8, customTableItem);
TblSetItemInt(table, i, 8, i % 3);

Setting static row height
In the ROM applications, tables that contain text fields automatically expand and
contract the height of the row containing a text field when the user enters more text
than will fit in the field. As a matter of fact, expansion and contraction of table fields
is their default behavior, and the table manager handles adjustments to the height
of the row automatically. Unfortunately, the table manager does only half the work
required. The system will resize a row without help from your application, but if
expanding the field shoves other table rows off the bottom of the table, and then
the user deletes enough text to allow other rows to have space again, the table
manager does not redraw the rows, resulting in a large blank space in the bottom
part of the table.

Properly implementing expanding text fields in a table requires a fair amount of
complex scrolling code in your application. Because Table Example is supposed
to be a simple example without any scrolling, preventing rows from automatically
resizing as text is added to their fields is necessary. Fortunately, the Palm OS

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 320

321Chapter 11 ✦ Programming Tables

provides the TblSetRowStaticHeight function, which takes a pointer to a table, the
row in the table to set, and a Boolean value indicating whether the row’s height
should be unchangeable (true) or resizable (false). The MainFormInit function in
Table Example calls TblSetRowStaticHeight as its last action while iterating over
each row in the table:

TblSetRowStaticHeight(table, i, true);

Setting column usability and spacing
After iterating over the rows of the table, MainFormInit needs to iterate over the
columns to further set up the table:

for (i = 0; i < numTableColumns; i++) {
TblSetColumnUsable(table, i, true);
switch (i) {

case 2:
TblSetColumnSpacing(table, i, 2);
break;

default:
TblSetColumnSpacing(table, i, 0);
break;

}
}

By default, table columns are not usable and, hence, not drawn by the table man-
ager. To make each column visible, MainFormInit calls the TblSetColumnUsable
function. A companion function, TblSetRowUsable, also exists to set the usability
(and visibility) of table rows, but because rows default to usable, it is not necessary
to call TblSetRowUsable in the table initialization.

After setting column usability, MainFormInit sets the spacing between columns.
Without any intervention from your application code, each column in a cell auto-
matically has a single space following it to separate it from the next column.
Because the Table Example program is pressed for available screen space, Main
FormInit uses TblSetColumnSpacing to set most of the columns to have no trailing
space at all.

In a real application, text fields are easier to use with a bit of leading space before
them; MainFormInit sets the spacing in the third column (column index 2) to two
pixels to make the textTableItem in column four easier to read. Compare col-
umn four with columns six and eight, which have no leading space, to see the dif-
ference that leaving space in front of a text field can make.

Tip

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 321

322 Part III ✦ Programming the Palm OS

Setting custom load routines
The MainFormInit function, having finished with formatting and loading data into
the table’s cells, must now turn its attention to setting up callback functions for
retrieving and saving the text in each of the table’s text fields. First, MainFormInit
sets the callbacks for loading data:

TblSetLoadDataProcedure(table, 3, LoadTextTableItem);
TblSetLoadDataProcedure(table, 5, LoadTextTableItem);
TblSetLoadDataProcedure(table, 7, LoadTextTableItem);

Setting a table item’s data loading callback function requires the use of TblSetLoad
DataProcedure. As parameters, TblSetLoadProcedure takes a pointer to the table,
the index of the column that will use the callback function to load its data, and a
pointer to a function of type TableLoadDataFuncType. The prototype for Table
LoadDataFuncType looks like this:

Err TableLoadDataFuncType (void *tableP, Int16 row,
Int16 column, Boolean editable, MemHandle *dataH,
Int16 *dataOffset, Int16 *dataSize, FieldType *fld)

In TableLoadDataFuncType, tableP is a pointer to a table, and row and column
indicate the row and column of the cell in tableP that should be loaded. If the sys-
tem passes a value of true for the editable parameter, a text cell somewhere in
the table is currently being edited; if editable is false, the table is merely being
drawn, not edited. The dataH parameter is a pointer to a handle, which your appli-
cation should fill with the unlocked handle of a block of memory containing a null-
terminated string. You need to set dataOffset to the offset within dataH, in bytes,
where the string data begins.

The dataOffset parameter allows you to store string data for table use in a
memory structure other than a simple string. For example, consider the following
structure:

typedef struct {
Int16 someValue;
Char *string;

} MyDataType;

The MyDataType structure contains an integer value before its string data, but you
can still pass a handle to memory containing this structure in the dataH parame-
ter of TableLoadDataFuncType if you also pass the value 16 in the dataOff
set parameter, to indicate that the string data begins sixteen bytes into the
structure.

Your application should set dataSize to the allocated size of the text string in
bytes; be sure not to set dataSize to the length of the string, because this may be
different from its memory size. Finally, the fld parameter contains a pointer to the
field in the cell that should be loaded.

Note

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 322

323Chapter 11 ✦ Programming Tables

Table Example’s implementation of TableLoadDataFuncType is LoadTextTable
Item, which looks like this:

static Err LoadTextTableItem (void *table, Int16 row,
Int16 column, Boolean editable, MemHandle *dataH,
Int16 *dataOffset, Int16 *dataSize, FieldType *field)

{
*dataH = gTextHandles[GetTextColumn(column)][row];
*dataOffset = 0;
*dataSize = MemHandleSize(*dataH);

return 0;
}

The LoadTextTableItem is very simple, merely retrieving the cell’s text from the
previously initialized gTextHandles array and passing it to the table manager. The
GetTextColumn function called in LoadTextTableItem is a helper function that maps
table column indices to the indices of the first dimension in the gTextHandles
array. Here is what GetTextColumn looks like:

static Int16 GetTextColumn(Int16 column)
{

Int16 result;

switch (column) {
case 3:

result = 0;
break;

case 5:
result = 1;
break;

case 7:
result = 2;
break;

default:
ErrFatalDisplay(“Invalid text column”);
break;

}

return result;
}

Because the data stored in the handles in gTextHandles is composed of the
desired strings only, LoadTextTableItem sets dataOffset to 0 to indicate the start
of the data in the handle. Then LoadTextTableItem calls the Palm OS function

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 323

324 Part III ✦ Programming the Palm OS

MemHandleSize to retrieve the amount of memory occupied by the string and
passes this value back via the dataSize parameter.

Setting custom save routines
Strictly speaking, a custom save routine is not necessary if your application needs
to save only the text entered in each table field verbatim. If you want to perform
some processing on the text before saving it, you should also set up a callback
function to customize the data saving behavior with TblSetSaveDataProcedure:

TblSetSaveDataProcedure(table, 3, SaveTextTableItem);

The TblSetSaveDataProcedure function takes three parameters: a pointer to a
table, the index of a column in that table whose save behavior should be modified,
and a callback function of type TableSaveDataFuncType to perform the saving.
The TableSaveDataFuncType callback type is simpler than TableLoadData
FuncType, and its prototype looks like this:

Boolean TableSaveDataFuncType (void *tableP, Int16 row,
Int16 column);

In TableSaveDataFuncType, the tableP parameter is a pointer to a table object,
and row and column contain the row and column of the cell in that table whose
data should be processed before saving. A function implementing TableSaveData
FuncType should return true if the callback function changed the text in the field,
or it should return false if the function left the text alone. The implementation of
TableSaveDataFuncType in Table Example is SaveTextTableItem:

static Boolean SaveTextTableItem(void *table, Int16 row,
Int16 column)

{
Boolean result = false;
FieldType *field;
MemHandle textH;
Char *str;
Int16 i;

field = TblGetCurrentField(table);

// If the field has been changed, uppercase its text.
if (field && FldDirty(field)) {

textH = gTextHandles[GetTextColumn(column)][row];
str = MemHandleLock(textH);
for (i = 0; str[i] != ‘\0’; i++) {

if (str[i] >= ‘a’ && str[i] <= ‘z’) {
str[i] -= ‘a’ - ‘A’;

}
}

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 324

325Chapter 11 ✦ Programming Tables

MemHandleUnlock(textH);
TblMarkRowInvalid(table, row);
result = true;

}

return result;
}

The SaveTextTableItem function first uses the TblGetCurrentField function to
retrieve a pointer to the field the user is currently editing. If no field currently has
the focus in the table, TblGetCurrentField returns NULL, which is why the next if
statement first checks to see if field has a value. The if also uses FldDirty to see
if the field has been changed at all; if the field hasn’t been changed, there is no need
to run the rest of the code in SaveTextTableItem.

If the user changes the contents of the field, SaveTextTableItem retrieves and locks a
handle to the field’s text, and then converts the characters in the field to uppercase
letters. Then SaveTextTableItem unlocks the handle and marks the row invalid with
TblMarkRowInvalid. The call to TblMarkRowInvalid is important, as it forces the
table manager to redraw the row and display the changes that SaveTextTableItem
made to the field’s text. Finally, SaveTextTableItem sets the return value of the func-
tion to true to indicate to the table manager that the text has been changed by the
callback function.

Setting custom drawing routines
Table Example uses two custom drawing routines, one for adding icons to the ends
of the narrowTextTableItem cells in the table’s sixth column, and one for drawing
the customTableItem in the ninth column. The MainFormInit function sets the
custom drawing callback functions using TblSetCustomDrawProcedure:

TblSetCustomDrawProcedure(table, 5, DrawNarrowTextTableItem);
TblSetCustomDrawProcedure(table, 8, DrawCustomTableItem);

The TblSetCustomDrawProcedure function takes three parameters: a pointer to
a table, the column in that table that should have custom drawing behavior, and a
pointer to a TableDrawItemFuncType function. The TableDrawItemFuncType
prototype looks like this:

void TableDrawItemFuncType (void *tableP, Int16 row,
Int16 column, RectangleType *bounds)

In TableDrawItemFuncType, tableP is a pointer to a table, row and column are the
row and column of the table cell to draw, and bounds is a pointer to a rectangle that
defines the boundaries of the table cell.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 325

326 Part III ✦ Programming the Palm OS

Table Example implements two versions of TableDrawItemFuncType. The first,
DrawNarrowTextTableItem, draws the icons on the end of the narrowText
TableItem in column six:

static void DrawNarrowTextTableItem(void *table, Int16 row,
Int16 column, RectangleType *bounds)

{
Char symbol[3];
Int16 i;
Int16 length = 0;

for (i = 0; i < 3; i++)
symbol[i] = ‘\0’;

switch(TblGetItemInt(table, row, column)) {
case 13:

symbol[0] = symbolAlarm;
length = 1;
break;

case 20:
symbol[0] = symbolAlarm;
symbol[1] = symbolRepeat;
length = 2;
break;

default:
break;

}

if (symbol[0] != ‘\0’) {
FontID curFont = FntSetFont(symbolFont);
Coord x;

x = (bounds->topLeft.x + bounds->extent.x) -
((length * 7) + 6);

WinDrawChars(&symbol[0], length, x, bounds->topLeft.y);
FntSetFont(curFont);

}
}

The DrawNarrowTextTableItem function starts by setting up a three-character-
long string (symbol) and initializing its characters to trailing nulls. Then the call-
back function uses the TblGetItemInt function to retrieve the intValue stored in
this table cell. As you will recall from earlier in this chapter, the intValue in a
narrowTextTableItem represents the number of pixels to reserve at the right of
the cell. The MainFormInit function sets up space for 0, 1, or 2 icons, each of which

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 326

327Chapter 11 ✦ Programming Tables

is seven pixels wide, with six pixels of padding to allow space for the pop-up trigger
in the next column. As a result, the value stored in intValue will be 0, 13 (7×1+6),
or 20 (7×2+6), which form the comparison values for the switch statement in
DrawNarrowTextTableItem.

Depending on the number of icons that should be drawn, DrawNarrowTextTable
Item fills the first part of the symbol string with symbolAlarm and symbolRepeat
characters from the Palm OS symbol font, as appropriate, and then draws symbol
at the correct screen location, using the rectangle pointed to by bounds as a guide.

The DrawCustomTableItem function in Table Example requires much less math
to accomplish its simple goals. Depending on the value stored in the custom table
cell’s intValue field, DrawCustomTableItem draws nothing, an alarm icon, or a
repeat icon:

static void DrawCustomTableItem(void *table, Int16 row,
Int16 column, RectangleType *bounds)

{
FontID curFont;
Char symbol[2];
Int16 i;

for (i = 0; i < 2; i++)
symbol[i] = ‘\0’;

switch(TblGetItemInt(table, row, column)) {
case 1:

symbol[0] = symbolAlarm;
break;

case 2:
symbol[0] = symbolRepeat;
break;

default:
break;

}

if (symbol[0] != ‘\0’) {
curFont = FntSetFont(symbolFont);
WinDrawChars(&symbol[0], 1, bounds->topLeft.x + 1,

bounds->topLeft.y);
FntSetFont(curFont);

}
}

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 327

328 Part III ✦ Programming the Palm OS

Handling Table Events
The tblSelectEvent provides a mechanism for reacting to taps within the bounds
of a table. In a fully fledged application, a form’s event handler would look for a
tblSelectEvent and perform some action in response to the user’s tapping a
particular column and row, such as launching another form or dialog box.

Because it is only a sample program, Table Example does not require this level of
interactivity. However, it does handle the tblEnterEvent to toggle the icon dis-
played by the customTableItem in the last column of the table. The following code
from MainFormHandleEvent takes care of taps on cells in the last column; this
technique is suitable for responding to pen events for any customTableItem.

case tblEnterEvent:
{

Int16 row = event->data.tblEnter.row;
Int16 column = event->data.tblEnter.column;

if (column == 8) {
TableType *table = event->data.tblEnter.pTable;
Int16 oldValue = TblGetItemInt(table, row, column);

TblSetItemInt(table, row, column, (oldValue + 1) % 3);
TblMarkRowInvalid(table, row);
TblRedrawTable(table);
handled = true;

}
}
break;

When the main form receives a tblEnterEvent, MainFormEventHandler checks
to see if the stylus came down within the last column. If so, MainFormEvent
Handler uses TblSetItemInt to cycle the tapped cell’s intValue to the next num-
ber, and then marks the row invalid with TblMarkRowInvalid to ensure that the
table manager will redraw the row. A call to TblRedrawTable forces the system to
redraw invalid rows, causing the customTableItem cell’s custom drawing routine
to draw the appropriate new icon for the cell’s new intValue.

Hiding Rows and Columns
Often an application with a table needs to be able to hide rows and columns from
view. For example, hiding parts of the table allows for customizing the display by
adding or removing columns. The built-in To Do application uses column hiding to
great effect, letting the user choose how much information should be shown for
each To Do item.

Hiding a column requires the TblSetColumnUsable function, which was introduced
earlier in this chapter as part of Table Example’s MainFormInit function. Columns
are set unusable by default, so it is necessary to activate them in the initialization

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 328

329Chapter 11 ✦ Programming Tables

of your table. After the table is up and running, you can use TblSetColumnUsable
to toggle columns on and off. Likewise, the TblSetRowUsable function allows you to
turn rows in the column on and off.

To demonstrate hiding and showing parts of a table, Table Example has two but-
tons at the bottom of its main form, MainHideRowsButton and MainHideColumns
Button. The MainFormHandleEvent routine handles ctlSelectEvents from these
buttons by calling the ToggleRow or ToggleColumn function, as appropriate:

case ctlSelectEvent:
switch (event->data.ctlSelect.controlID) {

case MainHideRowsButton:
ToggleRows();
handled = true;
break;

case MainHideColumnsButton:
ToggleColumns();
handled = true;
break;

default:
break;

}
break;

Figure 11-2 shows what the Table Example program looks like when the user taps the
two buttons in all their permutations. Notice that when the columns are hidden, the
slightly oversized pop-up triggers overlap part of the check box column to their left.
When all the columns are visible, this overlap is not apparent, because the code in
MainFormInit and DrawNarrowTextTableItem compensates for the six pixels of
overlap by drawing the narrow text table item’s icons six pixels farther to the left.

Figure 11-2: The Table Example
program demonstrates hiding rows
and columns. Clockwise from upper
left: nothing hidden, rows hidden,
both rows and columns hidden,
columns hidden.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 329

330 Part III ✦ Programming the Palm OS

The ToggleRows function appears as shown in the following example:

static void ToggleRows(void)
{

FormType *form;
TableType *table;
ControlType *ctl;
Int16 i;

form = FrmGetActiveForm();
table = FrmGetObjectPtr(form,

FrmGetObjectIndex(form, MainTable));
ctl = FrmGetObjectPtr(form,

FrmGetObjectIndex(form, MainHideRowsButton));

for (i = 0; i < numTableRows; i++) {
if (i % 2)

TblSetRowUsable(table, i , gRowsHidden);
TblMarkRowInvalid(table, i);

}

if (gRowsHidden)
CtlSetLabel(ctl, “Hide Rows”);

else
CtlSetLabel(ctl, “Show Rows”);

TblRedrawTable(table);
gRowsHidden = !gRowsHidden;

}

The ToggleRows function iterates over the rows of the table, hiding or showing every
other row with TblSetRowUsable, depending on the value of gRowsHidden. Also,
TblSetRowUsable marks every row in the table invalid with TblMarkRowInvalid; in
order to hide or show rows, the entire table needs to be redrawn. After invalidating
rows, ToggleRows changes the text of the MainHideRowsButton to an appropriate
caption, redraws the table with TblRedrawTable, and toggles the value of
gRowsHidden.

Table Example’s ToggleColumns function is almost identical to that of ToggleRows:

static void ToggleColumns(void)
{

FormType *form;
TableType *table;
ControlType *ctl;
Int16 i;

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 330

331Chapter 11 ✦ Programming Tables

form = FrmGetActiveForm();
table = FrmGetObjectPtr(form,

FrmGetObjectIndex(form, MainTable));
ctl = FrmGetObjectPtr(form,

FrmGetObjectIndex(form, MainHideColumnsButton));

for (i = 0; i < numTableColumns; i++) {
if (i % 2)

TblSetColumnUsable(table, i , gColumnsHidden);
}

for (i = 0; i < numTableRows; i++)
TblMarkRowInvalid(table, i);

if (gColumnsHidden)
CtlSetLabel(ctl, “Hide Columns”);

else
CtlSetLabel(ctl, “Show Columns”);

TblRedrawTable(table);
gColumnsHidden = !gColumnsHidden;

}

Notice that ToggleColumns contains an extra for loop to invalidate table rows.
This step is necessary because the first for loop iterates over the table’s columns,
not its rows.

Creating More Complex Tables
Now that you have been introduced to the basics of initializing and interacting with
tables, it is time to look at a more complicated example. The Librarian sample appli-
cation has two forms that contain tables: the List view and the Edit view, pictured in
Figure 11-3. The List view’s table is mostly for display purposes, and it contains a
variable number of columns depending on what kind of status information the user
wishes to display in the view. Status information may be altered by tapping a status
cell, which pops up a list for selection of a new status value. The Edit view’s table
has only two columns: a set of row labels and a series of variable-height text fields.

Figure 11-3: Librarian’s List (left)
and Edit (right) views

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 331

332 Part III ✦ Programming the Palm OS

The biggest difference between these tables and the table in Table Example is that
Librarian’s tables are scrollable, allowing them to provide access to more informa-
tion than will fit on a single screen. Before getting too far into the intricacies of
scrolling tables, though, this chapter will look at how Librarian initializes its tables.

Connecting a Table to Data
This section will use Librarian’s List view table to demonstrate one of the most
common uses for tables, which is to display information from an application’s
database. Each row in the table represents a single record from Librarian’s
database. The List view table has the following PilRC resource definition:

TABLE ID ListTable AT (0 16 160 121) ROWS 11 COLUMNS 6
COLUMNWIDTHS 113 10 10 10 10 6

The six columns in the List view table, from left to right, are used to display a
record’s title, book status, print status, format, read or unread status, and a note
indicator to let the user know that a particular record has an attached note.
Librarian uses a number of constants to identify these columns, defined in
librarian.h as follows:

// List view constants
#define titleColumn 0
#define bookStatusColumn 1
#define printStatusColumn 2
#define formatColumn 3
#define readColumn 4
#define noteColumn 5

Initializing the List view table
To initialize this table, the form handler for the List view, ListFormHandleEvent,
calls ListFormInit in response to a frmOpenEvent. Listing 11-2 shows the List
FormInit function.

Listing 11-2: Librarian’s ListFormInit function

static void ListFormInit(FormType *form)
{

UInt16 row;
UInt16 rowsInTable;
TableType *table;
ControlType *ctl;
Int16 statusWidth;
FontID curFont;
char noteChar;
Boolean statusExists;

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 332

333Chapter 11 ✦ Programming Tables

curFont = FntSetFont(gListFont);

// Initialize the book list table.
table = FrmGetObjectPtr(form,

FrmGetObjectIndex(form, ListTable));
rowsInTable = TblGetNumberOfRows(table);
for (row = 0; row < rowsInTable; row++) {

TblSetItemStyle(table, row, titleColumn,
customTableItem);

TblSetItemStyle(table, row, bookStatusColumn,
customTableItem);

TblSetItemStyle(table, row, printStatusColumn,
customTableItem);

TblSetItemStyle(table, row, formatColumn,
customTableItem);

TblSetItemStyle(table, row, readColumn,
customTableItem);

TblSetItemStyle(table, row, noteColumn,
customTableItem);

if (gROMVersion >=
sysMakeROMVersion(3,0,0,sysROMStageRelease,0)) {
TblSetItemFont(table, row, titleColumn, gListFont);
TblSetItemFont(table, row, bookStatusColumn,

gListFont);
TblSetItemFont(table, row, printStatusColumn,

gListFont);
TblSetItemFont(table, row, formatColumn,

gListFont);
TblSetItemFont(table, row, readColumn, gListFont);

}

TblSetRowUsable(table, row, false);
}

TblSetColumnUsable(table, titleColumn, true);
TblSetColumnUsable(table, bookStatusColumn,

gShowBookStatus);
TblSetColumnUsable(table, printStatusColumn,

gShowPrintStatus);
TblSetColumnUsable(table, formatColumn, gShowFormat);
TblSetColumnUsable(table, readColumn, gShowReadUnread);
TblSetColumnUsable(table, noteColumn, true);

// Set the width of the book status column.
if (gShowBookStatus) {

TblSetColumnWidth(table, bookStatusColumn,
FntCharWidth(libWidestBookStatusChr));

if (gShowPrintStatus || gShowFormat || gShowReadUnread)
TblSetColumnSpacing(table, bookStatusColumn, 0);

else

Continued

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 333

334 Part III ✦ Programming the Palm OS

Listing 11-2 (continued)

TblSetColumnSpacing(table, bookStatusColumn, 1);
}

// Set the width of the print status column.
if (gShowPrintStatus) {

TblSetColumnWidth(table, printStatusColumn,
FntCharWidth(libWidestPrintStatusChr));

if (gShowFormat || gShowReadUnread)
TblSetColumnSpacing(table, printStatusColumn, 0);

else
TblSetColumnSpacing(table, printStatusColumn, 1);

}

// Set the width of the format column.
if (gShowFormat) {

TblSetColumnWidth(table, formatColumn,
FntCharWidth(libWidestFormatStatusChr));

if (gShowReadUnread)
TblSetColumnSpacing(table, formatColumn, 0);

else
TblSetColumnSpacing(table, formatColumn, 1);

}

// Set the width of the read column.
if (gShowReadUnread) {

TblSetColumnWidth(table, readColumn,
FntCharWidth(libWidestReadUnreadChr));

TblSetColumnSpacing(table, readColumn, 1);
}

// Set the width of the note column.
FntSetFont(symbolFont);
noteChar = symbolNote;
TblSetColumnWidth(table, noteColumn,

FntCharWidth(noteChar));
FntSetFont(gListFont);

statusExists = (gShowBookStatus || gShowPrintStatus ||
gShowFormat || gShowReadUnread);

// Set the width and column spacing of the title column.
statusWidth = ((statusExists ? spaceBeforeStatus + 1 : 1) +

(gShowBookStatus ? TblGetColumnWidth(table,
bookStatusColumn) : 0) +

(gShowPrintStatus ? TblGetColumnWidth(table,
printStatusColumn) : 0) +

(gShowFormat ? TblGetColumnWidth(table,
formatColumn) : 0) +

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 334

335Chapter 11 ✦ Programming Tables

(gShowReadUnread ? TblGetColumnWidth(table,
readColumn) : 0) +

TblGetColumnWidth(table, noteColumn) + 1);

TblSetColumnWidth(table, titleColumn,
table->bounds.extent.x - statusWidth);

if (statusExists)
TblSetColumnSpacing(table, titleColumn,

spaceBeforeStatus);
else

TblSetColumnSpacing(table, titleColumn, 1);

// Set the callback routine that will draw the records.
TblSetCustomDrawProcedure(table, titleColumn,

ListFormDrawRecord);
TblSetCustomDrawProcedure(table, bookStatusColumn,

ListFormDrawRecord);
TblSetCustomDrawProcedure(table, printStatusColumn,

ListFormDrawRecord);
TblSetCustomDrawProcedure(table, formatColumn,

ListFormDrawRecord);
TblSetCustomDrawProcedure(table, readColumn,

ListFormDrawRecord);
TblSetCustomDrawProcedure(table, noteColumn,

ListFormDrawRecord);

// Load records into the address list.
ListFormLoadTable();

FntSetFont(curFont);

// Other form initializing code omitted.
}

The first thing ListFormInit takes care of is defining what kind of data each table cell
contains. Just as in the Table Example program, Librarian iterates over each row in
the table with a for loop, but unlike Table Example, Librarian sets every single cell
to the customTableItem type. Although the labelTableItem type allows for static
display of text, which is primarily what the ListTable is for, labelTableItem cells
tack a colon (:) onto the end of their text strings, an unwelcome side effect for the
List view’s table.

Within the first for loop, ListFormInit also sets the font of the four status cells if
Librarian is running on Palm OS 3.0 or later:

if (gROMVersion >=
sysMakeROMVersion(3,0,0,sysROMStageRelease,0)) {

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 335

336 Part III ✦ Programming the Palm OS

TblSetItemFont(table, row, titleColumn, gListFont);
TblSetItemFont(table, row, bookStatusColumn, gListFont);
TblSetItemFont(table, row, printStatusColumn, gListFont);
TblSetItemFont(table, row, formatColumn, gListFont);
TblSetItemFont(table, row, readColumn, gListFont);

}

Since Palm OS versions 3.0 and later have the big, legible largeBoldFont available
for use, Librarian allows the user to customize the display font used in the List view.
The user can select the standard Palm OS font to fit as much information on the
screen as possible, or the larger font when readability from a distance is an issue.
Calling TblSetItemFont for each of the table’s cells to set that cell’s font to gListFont
(a Librarian global variable that keeps track of the current font for the List view)
ensures that the cells are the proper height to hold their contents, whether those
contents are in stdFont, boldFont, or largeBoldFont. Note that it is unnecessary
to set the last column’s font, because the note icon it contains will never be taller
than the default stdFont height.

After setting fonts for each row’s cells, ListFormInit makes all the rows of the table
unusable:

TblSetRowUsable(table, row, false);

Librarian makes all the rows unusable by default because there may not be enough
records displayed to fill the entire screen, which would result in empty rows that
still responded to user interaction. The rows become usable only if they contain
data, which the ListFormLoadTable function (described in the next section) han-
dles as it fills the table from Librarian’s database.

Next, ListFormInit sets the usability of the table’s columns:

TblSetColumnUsable(table, titleColumn, true);
TblSetColumnUsable(table, bookStatusColumn,

gShowBookStatus);
TblSetColumnUsable(table, printStatusColumn,

gShowPrintStatus);
TblSetColumnUsable(table, formatColumn, gShowFormat);
TblSetColumnUsable(table, readColumn, gShowReadUnread);
TblSetColumnUsable(table, noteColumn, true);

The titleColumn and noteColumn are always visible in the List view, but Librarian
allows the user to turn the four status columns on or off. Librarian uses four global
variables, gShowBookStatus, gShowPrintStatus, gShowFormat, and gShowRead
Unread, to keep track of which fields should be displayed. A true value in any of
these variables indicates that the appropriate column should show up in the List
view. Figure 11-4 shows three views of the List form with varying numbers of the
status columns turned on or off.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 336

337Chapter 11 ✦ Programming Tables

Figure 11-4: Librarian’s List view, with all the status columns displayed (left),
only two status columns displayed (middle), and none of the status columns
displayed (right)

To make the most efficient use of the handheld’s limited screen real estate,
Librarian resizes the columns in the List view to allow the largest amount of space
possible for the first column. To determine the size of the first column, ListFormInit
first calculates and sets the widths of the four status columns and the note indica-
tor column:

// Set the width of the book status column.
if (gShowBookStatus) {

TblSetColumnWidth(table, bookStatusColumn,
FntCharWidth(libWidestBookStatusChr));

if (gShowPrintStatus || gShowFormat || gShowReadUnread)
TblSetColumnSpacing(table, bookStatusColumn, 0);

else
TblSetColumnSpacing(table, bookStatusColumn, 1);

}

// Set the width of the print status column.
if (gShowPrintStatus) {

TblSetColumnWidth(table, printStatusColumn,
FntCharWidth(libWidestPrintStatusChr));

if (gShowFormat || gShowReadUnread)
TblSetColumnSpacing(table, printStatusColumn, 0);

else
TblSetColumnSpacing(table, printStatusColumn, 1);

}

// Set the width of the format column.
if (gShowFormat) {

TblSetColumnWidth(table, formatColumn,
FntCharWidth(libWidestFormatStatusChr));

if (gShowReadUnread)
TblSetColumnSpacing(table, formatColumn, 0);

else
TblSetColumnSpacing(table, formatColumn, 1);

}

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 337

338 Part III ✦ Programming the Palm OS

// Set the width of the read column.
if (gShowReadUnread) {

TblSetColumnWidth(table, readColumn,
FntCharWidth(libWidestReadUnreadChr));

TblSetColumnSpacing(table, readColumn, 1);
}

// Set the width of the note column.
FntSetFont(symbolFont);
noteChar = symbolNote;
TblSetColumnWidth(table, noteColumn,

FntCharWidth(noteChar));
FntSetFont(gListFont);

The widest character that can appear in each status column is stored in a constant
value, one of libWidestBookStatusChr, libWidestPrintStatusChr, libWidest
FormatStatusChr, or libWidestReadUnreadChr. Feeding the character constant
to the FntCharWidth function determines the width in pixels of the character,
which is suitable to pass to TblSetColumnWidth to actually set the width of each
column.

To conserve screen space, the four status columns are jammed next to each other
with no intervening space, but to provide a little visual separation between the sta-
tus columns and the note indicator, the last visible status column should have a sin-
gle pixel of separation between it and the note column. The ListFormInit function
uses TblSetColumnSpacing to set the after-column spacing of each status column.

After the widths of the last five columns have been calculated, it is possible to set
the width of the titleColumn:

statusExists = (gShowBookStatus || gShowPrintStatus ||
gShowFormat || gShowReadUnread);

// Set the width and column spacing of the title column.
statusWidth = ((statusExists ? spaceBeforeStatus + 1 : 1) +

(gShowBookStatus ? TblGetColumnWidth(table,
bookStatusColumn) : 0) +

(gShowPrintStatus ? TblGetColumnWidth(table,
printStatusColumn) : 0) +

(gShowFormat ? TblGetColumnWidth(table,
formatColumn) : 0) +

(gShowReadUnread ? TblGetColumnWidth(table,
readColumn) : 0) +

TblGetColumnWidth(table, noteColumn) + 1);

TblSetColumnWidth(table, titleColumn, table->bounds.extent.x -
statusWidth);

if (statusExists)
TblSetColumnSpacing(table, titleColumn, spaceBeforeStatus);

else
TblSetColumnSpacing(table, titleColumn, 1);

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 338

339Chapter 11 ✦ Programming Tables

The Boolean value statusExists, if true, indicates that at least one status col-
umn is visible in the table. Armed with this information, ListFormInit can fill in
statusWidth with the width in pixels of any visible status column plus the width of
the note column, using the Palm OS function TblGetColumnWidth to determine the
widths of the appropriate columns. Then ListFormInit can calculate the width of
titleColumn as the total width of the table, less statusWidth.

Finally, if any status columns are displayed, ListFormInit sets the spacing after
titleColumn to the constant value spaceBeforeStatus (three pixels), which pro-
vides some visual separation between titleColumn and the first status column.
This separation is important, because titleColumn and the status columns are
composed of text in the same font, and without a little extra space, it is hard to tell
where the title ends and the status indicators begin.

The ListFormInit function uses TblSetCustomDrawProcedure to set the same call-
back function for all the table’s columns:

TblSetCustomDrawProcedure(table, titleColumn,
ListFormDrawRecord);

TblSetCustomDrawProcedure(table, bookStatusColumn,
ListFormDrawRecord);

TblSetCustomDrawProcedure(table, printStatusColumn,
ListFormDrawRecord);

TblSetCustomDrawProcedure(table, formatColumn,
ListFormDrawRecord);

TblSetCustomDrawProcedure(table, readColumn,
ListFormDrawRecord);

TblSetCustomDrawProcedure(table, noteColumn,
ListFormDrawRecord);

Now that the table has been initialized, all that remains is to fill it with data from
Librarian’s database. The ListFormInit function calls another of Librarian’s func-
tions, ListFormLoadTable, to accomplish this task.

Loading data into the table
Listing 11-3 contains the ListFormLoadTable function, which is responsible for fill-
ing the List form’s table with data.

Listing 11-3: Librarian’s ListFormLoadTable function

static void ListFormLoadTable(void)
{

UInt16 row, numRows, visibleRows;
UInt16 lineHeight;
UInt16 recordNum;
FontID curFont;
TableType *table;

Continued

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 339

340 Part III ✦ Programming the Palm OS

Listing 11-3 (continued)

table = GetObjectPtr(ListTable);

TblUnhighlightSelection(table);

// Try going forward to the last record that should be
// visible.
visibleRows = ListFormNumberOfRows(table);
recordNum = gTopVisibleRecord;
if (! SeekRecord(&recordNum, visibleRows - 1,

dmSeekForward)) {
// At least one line has no record. Fix it.
// Try going backwards one page from the last record.
gTopVisibleRecord = dmMaxRecordIndex;
if (! SeekRecord(&gTopVisibleRecord, visibleRows - 1,

dmSeekBackward)) {
// Not enough records to fill one page. Start with
// the first record.
gTopVisibleRecord = 0;
SeekRecord(&gTopVisibleRecord, 0, dmSeekForward);

}
}

curFont = FntSetFont(gListFont);
lineHeight = FntLineHeight();
FntSetFont(curFont);

recordNum = gTopVisibleRecord;

for (row = 0; row < visibleRows; row++) {
if (! SeekRecord(&recordNum, 0, dmSeekForward))

break;

// Make the row usable.
TblSetRowUsable(table, row, true);

// Mark the row invalid so that it will draw when we
// call the draw routine.
TblMarkRowInvalid(table, row);

// Store the record number as the row ID.
TblSetRowID(table, row, recordNum);

TblSetRowHeight(table, row, lineHeight);

recordNum++;
}

// Hide the items that don’t have any data.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 340

341Chapter 11 ✦ Programming Tables

numRows = TblGetNumberOfRows (table);
while (row < numRows) {

TblSetRowUsable(table, row, false);
row++;

}

// Update the List view’s scroll buttons.
ListFormUpdateScrollButtons();

}

Because ListFormLoadTable completely redraws the items displayed in the table,
the highlighted selection becomes invalid. The first thing ListFormLoadTable does
is to retrieve a handle to the List form’s table and unhighlight the table’s current
selection with the TblUnhighlightSelection function.

The ListFormLoadTable function then retrieves the number of rows the table can
display at once using the helper function ListFormNumberOfRows:

static UInt16 ListFormNumberOfRows(TableType *table)
{

UInt16 rows, rowsInTable;
UInt16 tableHeight;
FontID curFont;
RectangleType r;

rowsInTable = TblGetNumberOfRows(table);

TblGetBounds(table, &r);
tableHeight = r.extent.y;

curFont = FntSetFont(gListFont);
rows = tableHeight / FntLineHeight();
FntSetFont(curFont);

if (rows <= rowsInTable)
return (rows);

else
return (rowsInTable);

}

The ListFormNumberOfRows function simply compares the height of a line in the
current font, determined using the FntLineHeight function, with the height of the
table itself. If the user changes the display font Librarian uses for drawing the List
form’s data, the number of displayable rows changes because some fonts are taller
than others. For example, the stdFont allows for eleven table rows, whereas the
largeBoldFont allows space for only eight.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 341

342 Part III ✦ Programming the Palm OS

Once the number of visible rows is stored in the variable visibleRows, ListForm
LoadTable looks for an appropriate record in the database to use as a starting point
for filling in the table. The global variable gTopVisibleRecord stores the record ID
of the record at the top of the table. If the program is just starting up, gTopVisible
Record is equal to 0, representing the first record in Librarian’s database. In order
for a record to be a good candidate for gTopVisibleRecord, the following things
must be true:

1. There must be enough displayable records after gTopVisibleRecord in
Librarian’s database to fill the entire table, leaving no blank rows at the end.

2. Failing that, gTopVisibleRecord should be the first displayable record in the
database.

The ListFormLoadTable function determines the viability of gTopVisibleRecord
with the following code:

// Try going forward to the last record that should be visible.
visibleRows = ListFormNumberOfRows(table);
recordNum = gTopVisibleRecord;
if (! SeekRecord(&recordNum, visibleRows - 1, dmSeekForward)) {

// At least one line has no record. Fix it.
// Try going backwards one page from the last record.
gTopVisibleRecord = dmMaxRecordIndex;
if (! SeekRecord(&gTopVisibleRecord, visibleRows - 1,

dmSeekBackward)) {
// Not enough records to fill one page. Start with the
// first record.
gTopVisibleRecord = 0;
SeekRecord(&gTopVisibleRecord, 0, dmSeekForward);

}
}

Librarian’s SeekRecord function is a wrapper for the Palm OS function DmSeek
RecordInCategory, which looks for the next available record in the database that
is a certain offset from the current record. The details of using DmSeekRecordIn
Category are best left for Chapter 13, “Manipulating Records,” but for the purpose
of understanding how ListFormLoadTable works, all that is necessary is to under-
stand what SeekRecord does. Here is the prototype for SeekRecord:

static Boolean SeekRecord(UInt16 *index, Int16 offset,
Int16 direction)

The index parameter is the index of a record in the database, offset is an integer
value indicating how many records from index the search should start at, and
direction tells SeekRecord whether to search forward or backward through the
database.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 342

343Chapter 11 ✦ Programming Tables

See Chapter 13, “Manipulating Records,” for more details of how to use DmSeek
RecordInCategory and other database-related functions.

The first thing ListFormLoadTable attempts to do is search forward through the
database for a record that is visibleRows - 1 records away from the current
record at the top of the list. If such a record does not exist, there will be one or more
empty rows at the bottom of the table. To prevent empty rows, ListFormLoadTable
then searches backward through the database, starting with the last record, again
looking visibleRows - 1 records away. If no record exists to satisfy that condition
either, then there are not enough records in the entire database to fill the table. In
that case, ListFormLoadTable resigns itself to using the first record in the database
as the top of the table, assigning 0 to gTopVisibleRecord.

One more call to SeekRecord is necessary, though, because the first record might
not be in the category Librarian is currently displaying; therefore, this last call to
SeekRecord advances to the first displayable record in the database.

Now that ListFormLoadTable has determined a starting point in the database, it
can get to the business of actually filling in the table:

curFont = FntSetFont(gListFont);
lineHeight = FntLineHeight();
FntSetFont(curFont);

recordNum = gTopVisibleRecord;

for (row = 0; row < visibleRows; row++) {
if (! SeekRecord(&recordNum, 0, dmSeekForward))

break;

// Make the row usable.
TblSetRowUsable(table, row, true);

// Mark the row invalid so that it will draw when we
// call the draw routine.
TblMarkRowInvalid(table, row);

// Store the record number as the row ID.
TblSetRowID(table, row, recordNum);

TblSetRowHeight(table, row, lineHeight);

recordNum++;
}

For each visible row, ListFormLoadTable searches for the next displayable record
using SeekRecord; if it doesn’t find one, ListFormLoadTable is finished filling in

Cross-
Reference

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 343

344 Part III ✦ Programming the Palm OS

records and breaks out of the for loop. The ListFormLoadTable function sets
each row that does have a record usable with TblSetRowUsable, and then marks
that row invalid with TblMarkRowInvalid so that the table manager redraws the
row when it next draws the table.

Most important, the for loop stores the index of the record as the row’s ID number
with the TblSetRowID function. Every row in a table has an ID value, which you may
use to store whatever unsigned 16-bit integer value you wish. This ID number is an
ideal place to stash the database index of the record displayed in a particular row.
The Palm OS also provides the companion functions TblGetRowID and TblFind
RowID. The TblGetRowID function simply returns the ID value assigned to a row,
given the row number. If you need to retrieve the row number and all you have is
the row’s ID number, use the TblFindRowID function instead.

The for loop finishes by setting the height of each row with the TblSetRowHeight
function.

After filling in the table, ListFormLoadTable hides with a while loop the rows that
do not contain any data:

// Hide the items that don’t have any data.
numRows = TblGetNumberOfRows (table);
while (row < numRows) {

TblSetRowUsable(table, row, false);
row++;

}

Finally, ListFormLoadTable calls Librarian’s ListFormUpdateScrollButtons func-
tion, which makes sure that any changes to the table made by ListFormLoadTable
are reflected in the appearance the repeating arrow buttons in the lower right
corner of the List form:

// Update the List view’s scroll buttons.
ListFormUpdateScrollButtons();

The details of ListFormUpdateScrollButtons are omitted here; see the next sec-
tion’s description of the Edit form’s table for more information about implementing
scrolling tables.

Drawing individual rows
The part of Librarian that does all the drawing work in the List form’s table is the
ListFormDrawRecord callback function, which ListFormInit sets up for all six
columns in the table. Listing 11-4 shows the code for ListFormDrawRecord.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 344

345Chapter 11 ✦ Programming Tables

Listing 11-4: Librarian’s ListFormDrawRecord callback
function

static void ListFormDrawRecord (MemPtr table, Int16 row,
Int16 column, RectangleType *bounds)

{
UInt16 recordNum;
Err error;
MemHandle recordH;
char noteChar;
FontID curFont;
LibDBRecordType record;
char statusChr;
Int16 x;
UInt8 showInList;

#ifdef __GNUC__
CALLBACK_PROLOGUE;

#endif

curFont = FntSetFont(gListFont);

// Get the record number that corresponds to the table item
// to draw.
recordNum = TblGetRowID(table, row);

// Retrieve a locked handle to the record. Remember to
// unlock recordH later when finished with the record.
error = LibGetRecord(gLibDB, recordNum, &record, &recordH);
ErrNonFatalDisplayIf((error), “Record not found”);
if (error) {

MemHandleUnlock(recordH);
return;

}

switch (column) {
case titleColumn:

showInList = LibGetSortOrder(gLibDB);
DrawRecordName(&record, bounds, showInList,

&gNoAuthorRecordString,
&gNoTitleRecordString);

break;

case bookStatusColumn:
switch (record.status.bookStatus) {

case bookStatusHave:
statusChr = libHaveStatusChr;
break;

Continued

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 345

346 Part III ✦ Programming the Palm OS

Listing 11-4 (continued)

case bookStatusWant:
statusChr = libWantStatusChr;
break;

case bookStatusOnOrder:
statusChr = libOnOrderStatusChr;
break;

case bookStatusLoaned:
statusChr = libLoanedStatusChr;
break;

default:
break;

}
x = bounds->topLeft.x + (bounds->extent.x / 2) -

(FntCharWidth(statusChr) / 2);
WinDrawChars(&statusChr, 1, x, bounds->topLeft.y);
break;

case printStatusColumn:
switch (record.status.printStatus) {

case printStatusInPrint:
statusChr = libInPrintStatusChr;
break;

case printStatusOutOfPrint:
statusChr = libOutOfPrintStatusChr;
break;

case printStatusNotPublished:
statusChr = libNotPublishedStatusChr;
break;

default:
break;

}
x = bounds->topLeft.x + (bounds->extent.x / 2) -

(FntCharWidth(statusChr) / 2);
WinDrawChars(&statusChr, 1, x, bounds->topLeft.y);
break;

case formatColumn:
switch (record.status.format) {

case formatHardcover:
statusChr = libHardcoverStatusChr;
break;

case formatPaperback:
statusChr = libPaperbackStatusChr;
break;

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 346

347Chapter 11 ✦ Programming Tables

case formatTradePaperback:
statusChr = libTradePaperStatusChr;
break;

case formatOther:
statusChr = libOtherStatusChr;
break;

default:
break;

}
x = bounds->topLeft.x + (bounds->extent.x / 2) -

(FntCharWidth(statusChr) / 2);
WinDrawChars(&statusChr, 1, x, bounds->topLeft.y);
break;

case readColumn:
if (record.status.read)

statusChr = libReadStatusChr;
else

statusChr = libUnreadStatusChr;
x = bounds->topLeft.x + (bounds->extent.x / 2) -

(FntCharWidth(statusChr) / 2);
WinDrawChars(&statusChr, 1, x, bounds->topLeft.y);
break;

case noteColumn:
// Draw a note symbol if the field has a note.
if (record.fields[libFieldNote]) {

FntSetFont(symbolFont);
noteChar = symbolNote;
WinDrawChars (¬eChar, 1, bounds->topLeft.x,

bounds->topLeft.y);
FntSetFont(gListFont);

}
break;

default:
break;

}

// Since the handle returned from LibGetRecord (recordH) is
// no longer needed, unlock it.
MemHandleUnlock(recordH);

FntSetFont(curFont);

#ifdef __GNUC__
CALLBACK_EPILOGUE;

#endif
}

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 347

348 Part III ✦ Programming the Palm OS

When called by the table manager, ListFormDrawRecord first determines from the
row’s ID number the database index of the record displayed in a particular row,
using the TblGetRowID function. Then ListFormDrawRecord passes this index to
Librarian’s LibGetRecord function to retrieve the actual record from the database
as follows:

// Get the record number that corresponds to the table item
// to draw.
recordNum = TblGetRowID(table, row);

// Retrieve a locked handle to the record. Remember to
// unlock recordH later when finished with the record.
error = LibGetRecord(gLibDB, recordNum, &record, &recordH);
ErrNonFatalDisplayIf((error), “Record not found”);
if (error) {

MemHandleUnlock(recordH);
return;

}

The details of LibGetRecord are not important to this discussion; see Chapter 13,
“Manipulating Records,” for more information about Librarian’s database-handling
routines.

After retrieving the record, ListFormDrawRecord enters a large switch statement
to perform different drawing tasks based on the column value passed to the call-
back function by the table manager.

If the column that should be drawn is the titleColumn, ListFormDrawRecord calls
the LibGetSortOrder and DrawRecordName helper functions to draw the appropri-
ate record title data into the first column in the table:

case titleColumn:
showInList = LibGetSortOrder(gLibDB);
DrawRecordName(&record, bounds, showInList,

&gNoAuthorRecordString,
&gNoTitleRecordString);

break;

The LibGetSortOrder function retrieves the current display style for the List form,
which is one of three things:

✦ Author of the book followed by title

✦ Title of the book followed by author

✦ Title of the book only

Passing the showInList value retrieved by LibGetSortOrder to DrawRecordName
allows the latter function to know which database fields it should pull from
Librarian’s database and the order in which they should be displayed. The Draw
RecordName function performs the actual drawing to the screen, within the limits
of the bounds parameter provided to ListFormDrawRecord by the table manager.

Cross-
Reference

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 348

349Chapter 11 ✦ Programming Tables

The LibGetSortOrder and DrawRecordName functions both involve a fair amount
of database access, which is a topic better left to another chapter of this book.
Chapter 13, “Manipulating Records,” covers these Librarian functions in more detail.

If the column to be drawn is one of the status columns, ListFormDrawRecord looks
at the database record to determine the correct character to display in the cell, and
then draws that character in the appropriate place on the screen. The four status
column sections of the switch statement and the note column section perform
nearly identical operations, so only the part that handles the bookStatusColumn
is shown in the following example for reference:

case bookStatusColumn:
switch (record.status.bookStatus) {

case bookStatusHave:
statusChr = libHaveStatusChr;
break;

case bookStatusWant:
statusChr = libWantStatusChr;
break;

case bookStatusOnOrder:
statusChr = libOnOrderStatusChr;
break;

case bookStatusLoaned:
statusChr = libLoanedStatusChr;
break;

default:
break;

}
x = bounds->topLeft.x + (bounds->extent.x / 2) -

(FntCharWidth(statusChr) / 2);
WinDrawChars(&statusChr, 1, x, bounds->topLeft.y);
break;

Based on the value of bounds, which is a rectangle defining the edges of the cell to
draw in, ListFormDrawRecord centers the status character horizontally in the cell
and draws it with the WinDrawChars function.

After drawing the status and note columns, ListFormDrawRecord performs some
cleanup, unlocking the handle to the row’s database record and setting the font
back to its former state before ListFormDrawRecord started playing around with it:

// Since the handle returned from LibGetRecord (recordH) is
// no longer needed, unlock it.
MemHandleUnlock(recordH);

FntSetFont(curFont);

Cross-
Reference

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 349

350 Part III ✦ Programming the Palm OS

Scrolling Tables
Librarian’s Edit form contains a table that is ideal for demonstrating table scrolling,
because one of the form’s two columns is full of text fields that expand and contract
in height as the user adds text to or removes it from the fields, which is a fairly
complex scenario to implement. Figure 11-5 illustrates what happens to the table
as a user enters more text than will fit in a field at once. On the left, the user has
entered text almost to the end of a line in a text field. On the right, the field has
expanded by one line to accommodate more text, pushing the table rows under-
neath down a line, which causes the last line in the table to disappear entirely.

Figure 11-5: Two views of the
Edit form, both before (left) and
after (right) expanding a field to
hold more text

Initializing a table with resizable text fields
The PilRC resource definition of the Edit form’s table looks like this:

TABLE ID EditTable AT (0 18 160 121) ROWS 11 COLUMNS 2
COLUMNWIDTHS 45 115

Librarian initializes the table in the function EditFormInit. The most important things
that happen in EditFormInit are setting the table item types and setting the callback
functions for loading and saving data in the text field column. The EditFormInit func-
tion is also responsible for setting the widths of the table’s two columns as follows:

// Initialize the edit table.
table = FrmGetObjectPtr(form, FrmGetObjectIndex(form,

EditTable));
rowsInTable = TblGetNumberOfRows(table);
for (row = 0; row < rowsInTable; row++) {

TblSetItemStyle(table, row, labelColumn, labelTableItem);
TblSetItemStyle(table, row, dataColumn, textTableItem);
TblSetRowUsable(table, row, false);

}

TblSetColumnUsable(table, labelColumn, true);
TblSetColumnUsable(table, dataColumn, true);

TblSetColumnSpacing(table, labelColumn, spaceBeforeData);

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 350

351Chapter 11 ✦ Programming Tables

// Set the callback routines that will load and save the data
// column.
TblSetLoadDataProcedure(table, dataColumn,
EditFormGetRecordField);
TblSetSaveDataProcedure(table, dataColumn,
EditFormSaveRecordField);

// Compute the width of the data column; account for the space
// between the two columns.
TblGetBounds(table, &bounds);
dataColumnWidth = bounds.extent.x - spaceBeforeData -

gEditLabelColumnWidth;

TblSetColumnWidth(table, labelColumn, gEditLabelColumnWidth);
TblSetColumnWidth(table, dataColumn, dataColumnWidth);

EditFormLoadTable();

After setting up the table itself, EditFormInit calls EditFormLoadTable, which
performs a similar function to the List view’s ListFormLoadTable. The EditForm
LoadTable function, shown in Listing 11-5, is somewhat more complex than List
FormLoadTable, because unlike those in List view, rows in the Edit view’s table
can have different heights.

Listing 11-5: Librarian’s EditFormLoadTable function

static void EditFormLoadTable(void)
{

UInt16 row, numRows;
UInt16 lineHeight;
UInt16 fieldIndex, lastFieldIndex;
UInt16 dataHeight;
UInt16 tableHeight;
UInt16 columnWidth;
UInt16 pos, oldPos;
UInt16 height, oldHeight;
FontID fontID;
FontID curFont;
FormType *form;
TableType *table;
Boolean rowUsable;
Boolean rowsInserted = false;
Boolean lastItemClipped;
RectangleType r;

Continued

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 351

352 Part III ✦ Programming the Palm OS

Listing 11-5 (continued)

LibDBRecordType record;
MemHandle recordH;
LibAppInfoType *appInfo;
Boolean fontChanged;

appInfo = MemHandleLock(LibGetAppInfo(gLibDB));

form = FrmGetActiveForm();

// Get the current record
LibGetRecord(gLibDB, gCurrentRecord, &record, &recordH);

// Get the height of the table and the width of the data
// column.
table = GetObjectPtr(EditTable);
TblGetBounds(table, &r);
tableHeight = r.extent.y;
columnWidth = TblGetColumnWidth(table, dataColumn);

// If a field is currently selected, make sure that it is
// not above the first visible field.
if (gCurrentFieldIndex != noFieldIndex) {

if (gCurrentFieldIndex < gTopVisibleFieldIndex)
gTopVisibleFieldIndex = gCurrentFieldIndex;

}

row = 0;
dataHeight = 0;
oldPos = pos = 0;
fieldIndex = gTopVisibleFieldIndex;
lastFieldIndex = fieldIndex;

// Load fields into the table.
while (fieldIndex <= editLastFieldIndex) {

// Compute the height of the field’s text string.
height = EditFormGetFieldHeight(table, fieldIndex,

columnWidth, tableHeight, &record, &fontID);

// Is there enough room for at least one line of the
// data?
curFont = FntSetFont(fontID);
lineHeight = FntLineHeight();
FntSetFont (curFont);
if (tableHeight >= dataHeight + lineHeight) {

rowUsable = TblRowUsable(table, row);

// Get the height of the current row.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 352

353Chapter 11 ✦ Programming Tables

if (rowUsable)
oldHeight = TblGetRowHeight(table, row);

else
oldHeight = 0;

// If the field is not already displayed in the
// current row, load the field into the table.
if (gROMVersion >=

sysMakeROMVersion(3,0,0,sysROMStageRelease,0))
fontChanged = (TblGetItemFont(table, row,

dataColumn) != fontID);
else

fontChanged = false;

if ((! rowUsable) ||
(TblGetRowID(table, row) != fieldIndex) ||
fontChanged) {
EditInitTableRow(table, row, fieldIndex,

height, fontID,
&record, appInfo);

}

// If the height or the position of the item has
// changed, draw the item.
else if (height != oldHeight) {

TblSetRowHeight(table, row, height);
TblMarkRowInvalid(table, row);

}
else if (pos != oldPos) {

TblMarkRowInvalid(table, row);
}

pos += height;
oldPos += oldHeight;
lastFieldIndex = fieldIndex;
fieldIndex++;
row++;

}

dataHeight += height;

// Is the table full?
if (dataHeight >= tableHeight) {

// If a field is currently selected, make sure that
// it is not below the last visible field. If the
// currently selected field is the last visible
// record, make sure the whole field is visible.

Continued

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 353

354 Part III ✦ Programming the Palm OS

Listing 11-5 (continued)

if (gCurrentFieldIndex == noFieldIndex)
break;

// Above last visible?
else if (gCurrentFieldIndex < fieldIndex)

break;

// Last visible?
else if (fieldIndex == lastFieldIndex) {

if ((fieldIndex == gTopVisibleFieldIndex) ||
(dataHeight == tableHeight))
break;

}

// Remove the top item from the table and reload
// the table again.
gTopVisibleFieldIndex++;
fieldIndex = gTopVisibleFieldIndex;

row = 0;
dataHeight = 0;
oldPos = pos = 0;

}
}

// Hide the items that don’t have any data.
numRows = TblGetNumberOfRows(table);
while (row < numRows) {

TblSetRowUsable(table, row, false);
row++;

}

// If the table is not full and the first visible field is
// not the first field in the record, display enough fields
// to fill out the table by adding fields to the top of the
// table.
while (dataHeight < tableHeight) {

fieldIndex = gTopVisibleFieldIndex;
if (fieldIndex == 0) break;
fieldIndex--;

// Compute the height of the field.
height = EditFormGetFieldHeight(table, fieldIndex,

columnWidth, tableHeight, &record, &fontID);

// If adding the item to the table will overflow the
// height of the table, don’t add the item.
if (dataHeight + height > tableHeight)

break;

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 354

355Chapter 11 ✦ Programming Tables

// Insert a row before the first row.
TblInsertRow(table, 0);

EditInitTableRow(table, 0, fieldIndex, height, fontID,
&record, appInfo);

gTopVisibleFieldIndex = fieldIndex;
rowsInserted = true;
dataHeight += height;

}

// If rows were inserted to fill out the page, invalidate
// the whole table; it all needs to be redrawn.
if (rowsInserted)

TblMarkTableInvalid(table);

// If the height of the data in the table is greater than
// the height of the table, then the bottom of the last row
// is clipped and the table is scrollable.
lastItemClipped = (dataHeight > tableHeight);

// Update the scroll arrows.
EditFormUpdateScrollers(form, lastFieldIndex,

lastItemClipped);

MemHandleUnlock(recordH);
MemPtrUnlock(appInfo);

}

The EditFormLoadTable function begins by retrieving Librarian’s application
info block with the helper function LibGetAppInfo and the current record from
Librarian’s database with LibGetRecord.

See Chapter 12, “Storing and Retrieving Data,” for more information about appli-
cation info blocks and Librarian’s LibGetAppInfo function; and Chapter 13,
“Manipulating Records,” for more information about retrieving records from
databases and Librarian’s LibGetRecord function.

After setting up a few values that will come in handy later in the function, EditForm
LoadTable checks to see if the field that is currently selected, represented by the
global variable gCurrentFieldIndex, is less than the first displayable field in the
table, which is held in the global variable gTopVisibleFieldIndex. If gCurrent
FieldIndex is less than gTopVisibleFieldIndex, EditFormLoadTable makes
gTopVisibleFieldIndex equal the currently selected field index:

// If a field is currently selected, make sure that it is not
// above the first visible field.
if (gCurrentFieldIndex != noFieldIndex) {

Cross-
Reference

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 355

356 Part III ✦ Programming the Palm OS

if (gCurrentFieldIndex < gTopVisibleFieldIndex)
gTopVisibleFieldIndex = gCurrentFieldIndex;

}

The EditFormLoadTable then starts to load data into the table. This process is
tricky, because unlike in the List view’s table, there is not a one-to-one relationship
between the number of data fields in each record and the number of rows available
in the Edit view’s table. Each field may occupy more than one row. Figure 11-6
shows the extremes involved in filling the table. The EditFormLoadTable function
must be able to handle having fewer data fields than table rows, fewer table rows
than data fields, and everything in between.

Figure 11-6: The Edit view in
Librarian must handle the
extremes of fewer data fields
than table rows (left) and fewer
table rows than data fields (right).

The logic in the massive while loop at the heart of EditFormLoadTable goes some-
thing like this:

1. Starting with the topmost visible data field, stored in gTopVisibleField
Index, iterate through the data fields until the last data field, represented by
the constant editLastFieldIndex, has been reached.

2. Call the helper function EditFormGetFieldHeight to retrieve the amount of
vertical space the current field would occupy on the screen and store that
value in the variable height for later use.

3. Check to see if at least one line of the current field’s data will fit within the
table:

if (tableHeight >= dataHeight + lineHeight)

The while loop uses the variable dataHeight to keep track of the total
height of the data displayed in the field, tableHeight is the total height
available in the table itself, and lineHeight is the height of a single line
of table text. If the first line of the current field does not fit, skip to Step 9.

4. Determine if the current table row is usable by calling TblRowUsable:

rowUsable = TblRowUsable(table, row);

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 356

357Chapter 11 ✦ Programming Tables

5. If the row is usable, find the height of the current table row with TblGetRow
Height and store this value in the variable oldHeight:

oldHeight = TblGetRowHeight(table, row);

If the row is not usable, set oldHeight equal to 0.

6. Determine whether the current table row needs to be initialized. The row
needs to be initialized if any of the following criteria are met:

• The row is not usable (rowUsable != true). A usable row has already
been initialized.

• The row’s ID does not match the index of the current field (TblGetRow
ID(table, row) != fieldIndex). If it does match, the current field is
already drawn in the current row.

• The font has changed (fontChanged == true).

If the row requires initialization, call the helper function EditInitTableRow to
do the job.

7. If the row’s height or position has changed, mark the row invalid so it will be
redrawn:

else if (height != oldHeight) {
TblSetRowHeight(table, row, height);
TblMarkRowInvalid(table, row);

}
else if (pos != oldPos) {

TblMarkRowInvalid(table, row);
}

8. Increment and set values for the next pass through the while loop:

pos += height;
oldPos += oldHeight;
lastFieldIndex = fieldIndex;
fieldIndex++;
row++;

9. Check to see if the table is full:

if (dataHeight >= tableHeight)

If the table is not full, the while loop repeats with the new values set in Step 8.

10. If the table is full, check to see that the currently selected field (gCurrent
FieldIndex) appears on the screen. The selected field is visible if its index is
less than the index of the current fieldIndex used by the while loop, or if
the selected field is the only field displayed in the table. If the selected field
is visible, break out of the while loop:

if (gCurrentFieldIndex == noFieldIndex)
break;

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 357

358 Part III ✦ Programming the Palm OS

// Above last visible?
else if (gCurrentFieldIndex < fieldIndex)

break;

// Last visible?
else if (fieldIndex == lastFieldIndex) {

if ((fieldIndex == gTopVisibleFieldIndex) ||
(dataHeight == tableHeight))
break;

}

11. The field is full, but the selected field is not visible. Peel the top row off the
table to bump all the other rows up one slot, and start at the beginning of the
while loop again:

// Remove the top item from the table and reload the table
// again.
gTopVisibleFieldIndex++;
fieldIndex = gTopVisibleFieldIndex;

row = 0;
dataHeight = 0;
oldPos = pos = 0;

Once this while loop is completed, EditFormLoadTable hides any table rows that
do not contain data:

numRows = TblGetNumberOfRows(table);
while (row < numRows) {

TblSetRowUsable(table, row, false);
row++;

}

At this point, you might be thinking that this function (not to mention the developer
who wrote it) should take a long and well-deserved vacation, but EditFormLoad
Table is not quite finished. After EditFormLoadTable has run through all the preced-
ing code, it is still possible that the table is not quite filled and that the first field visi-
ble in the table is not the first field in the record. In this case, EditFormLoadTable
tries to pad out the empty space in the table by adding more fields at the top of the
table, pushing the rest of the table data down the page. Another while loop kicks off
this whole process, set to run while the height of the displayed data is less than the
height of the table itself:

while (dataHeight < tableHeight)

The new while loop walks backward through all the fields before the field currently
displayed at the top of the table. If the height of the previous field, as returned by
EditFormGetFieldHeight, is short enough to fit within the table, EditFormLoadTable

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 358

359Chapter 11 ✦ Programming Tables

calls the Palm OS function TblInsertRow to put a new row at the top of the table as
follows:

// Insert a row before the first row.
TblInsertRow(table, 0);

EditInitTableRow(table, 0, fieldIndex, height, fontID, &record,
appInfo);

gTopVisibleFieldIndex = fieldIndex;
rowsInserted = true;
dataHeight += height;

The TblInsertRow function does not actually increase the total number of table
rows; it merely bumps all the other rows down by one, losing the last row of the
table. A companion to TblInsertRow is TblRemoveRow, which also does not affect
the number of rows in a table but rather moves the indicated row to the bottom
of the table and marks it unusable. Neither TblInsertRow nor TblRemoveRow
redraws the display, so the application must call TblRedrawTable to make the
changes made by these row insertion and deletion functions visible.

After inserting the new row with TblInsertRow, EditFormLoadTable calls EditInit
TableRow to set up the new row. Once the while loop either runs out of previous
fields to try or encounters a field that would make the total data height larger than
the height of the table, EditFormLoadTable is in the home stretch. All that remains
is to mark the entire table invalid, using TblMarkTableInvalid, if the second while
loop inserted any rows; update the Edit form’s scroll buttons by calling EditForm
UpdateScrollers; and unlock the record and application info block handles:

// If rows were inserted to fill out the page, invalidate the
// whole table, it all needs to be redrawn.
if (rowsInserted)

TblMarkTableInvalid(table);

// If the height of the data in the table is greater than the
// height of the table, then the bottom of the last row is
// clipped and the table is scrollable.
lastItemClipped = (dataHeight > tableHeight);

// Update the scroll arrows.
EditFormUpdateScrollers(form, lastFieldIndex, lastItemClipped);

MemHandleUnlock(recordH);
MemPtrUnlock(appInfo);

The EditInitTableRow function, used in a couple places in EditFormLoadTable to
initialize individual table rows, looks like this:

static void EditInitTableRow(TablePtr table, UInt16 row,
UInt16 fieldIndex, short rowHeight, FontID fontID,

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 359

360 Part III ✦ Programming the Palm OS

LibDBRecordType *record, LibAppInfoType *appInfo)
{

// Make the row usable.
TblSetRowUsable(table, row, true);

// Set the height of the row to the height of the data text
// field.
TblSetRowHeight(table, row, rowHeight);

// Store the record number as the row ID.
TblSetRowID(table, row, fieldIndex);

// Mark the row invalid so that it will draw when calling
// the draw routine.
TblMarkRowInvalid(table, row);

// Set the text font if Librarian is running on version 3.0
// or later.
if (gROMVersion >=

sysMakeROMVersion(3,0,0,sysROMStageRelease,0))
TblSetItemFont(table, row, dataColumn, fontID);

// Set the labels in the label column.
TblSetItemPtr(table, row, labelColumn,

appInfo->fieldLabels[fieldIndex]);
}

Scrolling a table
Most of the hard work required to scroll the Edit view’s table has already been
taken care of by the EditFormLoadTable function. Scrolling involves changing the
top visible field index (stored in the global gTopVisibleFieldIndex), marking the
table invalid, and then calling EditFormLoadTable to redraw the table in its new
position. Listing 11-6 shows the EditFormScroll function, which determines what
the new value of gTopVisibleFieldIndex should be, given a direction to scroll.

Listing 11-6: Librarian’s EditFormScroll function

static void EditFormScroll(WinDirectionType direction)
{

UInt16 row;
UInt16 height;
UInt16 fieldIndex;
UInt16 columnWidth;
UInt16 tableHeight;
TableType *table;
FontID curFont;
RectangleType r;

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 360

361Chapter 11 ✦ Programming Tables

LibDBRecordType record;
MemHandle recordH;

curFont = FntSetFont(stdFont);

table = GetObjectPtr(EditTable);
TblReleaseFocus(table);

// Get the height of the table and the width of the
// description column.
TblGetBounds(table, &r);
tableHeight = r.extent.y;
height = 0;
columnWidth = TblGetColumnWidth(table, dataColumn);

// Scroll the table down.
if (direction == winDown) {

// Get the index of the last visible field; this will
// become the index of the top visible field, unless it
// occupies the whole screen, in which case the next
// field will be the top field.
row = TblGetLastUsableRow(table);
fieldIndex = TblGetRowID(table, row);

// If the last visible field is also the first visible
// field, then it occupies the whole screen.
if (row == 0)

fieldIndex = min(editLastFieldIndex,
fieldIndex + 1);

}

// Scroll the table up.
else {

// Scan the fields before the first visible field to
// determine how many fields we need to scroll. Since
// the heights of the fields vary, total the height of
// the records until we get a screenful.
fieldIndex = TblGetRowID(table, 0);
ErrFatalDisplayIf(fieldIndex > editLastFieldIndex,

“Invalid field Index”);
// If we’re at the top of the fields already, there is
// no need to scroll.
if (fieldIndex == 0) {

FntSetFont(curFont);
return;

}

// Get the current record.
LibGetRecord(gLibDB, gCurrentRecord, &record,

&recordH);

Continued

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 361

362 Part III ✦ Programming the Palm OS

Listing 11-6 (continued)

height = TblGetRowHeight(table, 0);
if (height >= tableHeight)

height = 0;

while (height < tableHeight && fieldIndex > 0) {
height +=
FldCalcFieldHeight(record.fields[fieldIndex - 1],

columnWidth) * FntLineHeight();
if ((height <= tableHeight) ||

(fieldIndex == TblGetRowID(table, 0)))
fieldIndex--;

}

MemHandleUnlock(recordH);
}

TblMarkTableInvalid(table);
gCurrentFieldIndex = noFieldIndex;
gTopVisibleFieldIndex = fieldIndex;
gEditRowIDWhichHadFocus = editFirstFieldIndex;
gEditFieldPosition = 0;

// Remove the highlight before reloading the table to
// prevent the selection information from being out of
// bounds, which can happen if the newly loaded data has
// fewer rows than the old data.
TblUnhighlightSelection(table);
EditFormLoadTable();
TblRedrawTable(table);
FntSetFont(curFont);

}

When the user scrolls down, the EditFormScroll finds the last visible field in the table
and makes it the topmost field, unless the last visible field occupies the entire screen,
in which case EditFormScroll scrolls to the next field after the last visible one:

row = TblGetLastUsableRow(table);
fieldIndex = TblGetRowID(table, row);

// If the last visible field is also the first visible
// field, then it occupies the whole screen.
if (row == 0)

fieldIndex = min(editLastFieldIndex,
fieldIndex + 1);

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 362

363Chapter 11 ✦ Programming Tables

The TblGetLastUsableRow function returns the index of the last usable row in the
table. From this index, EditFormScroll can determine which field occupies the last
usable row by calling TblGetRowID, because the row IDs in the Edit view’s table
store the indices of each row’s associated field.

Scrolling up is somewhat more complex, because EditFormScroll must iterate
through the fields prior to the current top visible field, calculating their total height
until a screenful has been accumulated or until there are no more prior fields to
look at. The EditFormScroll function calls Librarian’s LibGetRecord to retrieve the
current record so it may look through the record’s fields and directly calculate the
height of each using the Palm OS function FldCalcFieldHeight.

The FldCalcFieldHeight function determines the number of lines long a field will be
in the current font, given a pointer to the text occupying the field and the width of
the field in pixels. From this information, multiplying the number of lines in the field
by the height of a single line gives the total vertical space occupied by the text field:

height += FldCalcFieldHeight(record.fields[fieldIndex - 1],
columnWidth) * FntLineHeight();

Once EditFormScroll has determined what the new top visible field index is, it sets
appropriate variables related to the table’s new position, marks the entire table
invalid, reloads the table with EditFormLoadTable, and redraws it with TblRedraw
Table:

TblMarkTableInvalid(table);
gCurrentFieldIndex = noFieldIndex;
gTopVisibleFieldIndex = fieldIndex;
gEditRowIDWhichHadFocus = editFirstFieldIndex;
gEditFieldPosition = 0;

// Remove the highlight before reloading the table to prevent
// the selection information from being out of bounds, which
// can happen if the newly loaded data has fewer rows than the
// old data.
TblUnhighlightSelection(table);
EditFormLoadTable();
TblRedrawTable(table);
FntSetFont(curFont);

The Edit form’s event handler, EditFormHandleEvent, calls EditFormScroll in
response to a ctlRepeatEvent from either of the form’s two repeating arrow
buttons, or in response to a keyDownEvent containing either a pageUpChr or a
pageDownChr, the two of which are generated by the hardware scroll buttons.

One more thing is required to keep scrolling running smoothly in the Edit form: the
repeating scroll buttons must be visually updated to reflect the current scroll state
of the form. The Palm OS function FrmUpdateScrollers, given the right information,

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 363

364 Part III ✦ Programming the Palm OS

takes care of redrawing a pair of scroll arrows so they reflect a specific scroll status.
Librarian contains an EditFormUpdateScrollers function that wraps FrmUpdate
Scrollers and gives it the information it needs:

static void EditFormUpdateScrollers(FormType *form,
UInt16 bottomFieldIndex, Boolean lastItemClipped)

{
UInt16 upIndex;
UInt16 downIndex;
Boolean scrollableUp;
Boolean scrollableDown;

// If the first field displayed is not the first field in
// the record, enable the up scroller.
scrollableUp = gTopVisibleFieldIndex > 0;

// If the last field displayed is not the last field in the
// record, enable the down scroller.
scrollableDown = (lastItemClipped ||

(bottomFieldIndex < editLastFieldIndex));

// Update the scroll button.
upIndex = FrmGetObjectIndex(form, EditScrollUpRepeating);
downIndex = FrmGetObjectIndex(form,

EditScrollDownRepeating);
FrmUpdateScrollers(form, upIndex, downIndex, scrollableUp,

scrollableDown);
}

The FrmUpdateScrollers function takes five arguments: a pointer to a form, the
index of the scroll up button, the index of the scroll down button, a Boolean value
indicating whether it is currently possible to scroll up, and another Boolean to indi-
cate the possibility of scrolling down. Depending on the values of scrollableUp
and scrollableDown, FrmUpdateScrollers will enable, disable, or redraw the
scroll buttons according to the values listed in Table 11-2.

Table 11-2
FrmUpdateScroller Function Behavior

scrollableUp scrollableDown Result

true true Both arrows drawn solid

true false Up arrow draw solid, down arrow drawn
grayed out

false true Down arrow drawn solid, up arrow drawn
grayed out

false false Both arrows disabled (not visible)

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 364

365Chapter 11 ✦ Programming Tables

The EditFormUpdateScrollers function knows that the table may be scrolled up
if the top visible field index is not the first field in the record. Likewise, if the last
field displayed in the table is not the last field in the record, or if the bottom of the
last displayed field is clipped, scrolling down is possible.

Handling Table Text Fields
When tables, already a complex user interface object, collide with text fields,
another very complex object, all manner of mysterious behavior can result. Text
fields contained within a table require some special handling above and beyond
what a regular text field requires, and this section will attempt to unravel some of
the mystery and point out a few “gotchas” you might encounter when implementing
text field table items.

Understanding fields in tables
The basic underlying principle behind text fields in a table is that there is only ever
one field object associated with a table at any one time. Only the field that is cur-
rently being edited actually exists; the table manager creates, draws, and discards
field objects as needed to give the illusion of multiple fields in a table.

What effect does this amazing fact have on your Palm OS table programming?
Because the table manager maintains only one active field at a time, it discards the
text handle for a field as soon as it finishes drawing that field, unless the field is cur-
rently being edited. Whenever an application performs an action that releases the
focus from the current field, the system calls the TableSaveDataFuncType call-
back function you have set up (using the TblSetSaveDataProcedure function) for
the column that contains the current field.

Within the save data callback, you should copy any value contained in the current
field’s text handle rather than just save a pointer to the handle itself, because when
the table manager destroys the field, it deallocates the field’s text handle. You can
retrieve a reference to the current field with the TblGetCurrentField function. As
an example, here are the relevant portions of Librarian’s EditFormSaveRecordField
function, which EditFormInit attaches to the text fields in the Edit view’s data
column:

static Boolean EditFormSaveRecordField (MemPtr table,
Int16 row, Int16 column)

{
FieldType *field;
MemHandle textH;
Char *text;
Boolean redraw = false;

#ifdef __GNUC__
CALLBACK_PROLOGUE;

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 365

366 Part III ✦ Programming the Palm OS

#endif

field = TblGetCurrentField(table);
textH = FldGetTextHandle(field);

if (FldDirty(field)) {
if (textH == 0)

text = NULL;
else {

text = MemHandleLock(textH);
if (text[0] == ‘\0’)

text = NULL;
}

// EditFormSaveRecordField saves the text data to
// Librarian’s database here, using the contents of the
// text character pointer. Most of the code has been
// omitted for clarity.
if (text)

MemPtrUnlock(text);
}

// Free the memory used for the field’s text.
FldFreeMemory(field);

#ifdef __GNUC__
CALLBACK_PROLOGUE;

#endif

// The code that actually sets EditFormSaveRecordField’s
// return value has been omitted.
return redraw;

}

After retrieving the current field’s text handle, the EditFormSaveRecordField func-
tion checks to see if any changes have been made to the field by calling FldDirty. If
so, EditFormSaveRecordField locks the text handle, providing access to its con-
tents via the text character pointer.

Once the callback has saved the data contained in text, EditFormSaveRecordField
unlocks the text handle and frees the memory allocated for the field object by call-
ing FldFreeMemory. This last step is important to prevent memory leaks; although
the system discards the text handle, it does not deallocate it. Any handle you allo-
cate within the save callback function must be deallocated before the end of the
function.

Tables have an edit mode, which is activated as soon as a tblEnterEvent occurs
within an editable text field in the table, or when your application calls the Tbl
GrabFocus function to deliberately select a specific text cell for editing. You can

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 366

367Chapter 11 ✦ Programming Tables

check whether a table is in edit mode by calling the TblEditing function, which
returns true if a text field is currently active for editing. It is also possible to
retrieve a pointer to the current field, if any, by calling TblGetCurrentField.

The table manager calls the save data callback function any time the current field
loses the focus. This can occur when the user changes the focus by tapping in a dif-
ferent table cell, when the user taps a note indicator in a textWithNoteTableItem
cell, or if your code explicitly calls TblReleaseFocus. Calling TblReleaseFocus manu-
ally is necessary any time your code redraws the table in such a way that the cur-
rent field may no longer appear in the table, thus causing it to lose the focus. For
example, Librarian’s EditFormScroll function calls TblReleaseFocus before attempt-
ing to scroll the table.

Handling resizable text table items
The event handler for a form with a table that contains resizable text fields, such as
those in Librarian’s Edit view or the built-in Date Book and Address Book applica-
tions, needs to handle the fldHeightChangedEvent to properly deal with changes
to a text field’s height. Whenever the height of a field changes in response to user
input, the system posts a fldHeightChangedEvent to the queue.

Librarian’s EditFormHandleEvent takes care of a fldHeightChangeEvent by call-
ing the EditFormResizeData function, shown here:

static void EditFormResizeData(EventType *event)
{

UInt16 pos;
Int16 row, column;
UInt16 lastRow;
UInt16 fieldIndex, lastFieldIndex, topFieldIndex;
FieldType *field;
TableType *table;
Boolean restoreFocus = false;
Boolean lastItemClipped;
RectangleType itemR;
RectangleType tableR;
RectangleType fieldR;

// Get the current height of the field;
field = event->data.fldHeightChanged.pField;
FldGetBounds(field, &fieldR);

// Have the table object resize the field and move the
// items below the field up or down.
table = GetObjectPtr(EditTable);
TblHandleEvent(table, event);

// If the field’s height has expanded, we’re done.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 367

368 Part III ✦ Programming the Palm OS

if (event->data.fldHeightChanged.newHeight >=
fieldR.extent.y) {
topFieldIndex = TblGetRowID(table, 0);
if (topFieldIndex != gTopVisibleFieldIndex)

gTopVisibleFieldIndex = topFieldIndex;
else {

// Since the table has expanded we may be able to
// scroll when before we might not have.
lastRow = TblGetLastUsableRow(table);
TblGetBounds(table, &tableR);
TblGetItemBounds(table, lastRow, dataColumn,

&itemR);
lastItemClipped =(itemR.topLeft.y +

itemR.extent.y > tableR.topLeft.y +
tableR.extent.y);

lastFieldIndex = TblGetRowID(table, lastRow);

EditFormUpdateScrollers(FrmGetActiveForm(),
lastFieldIndex, lastItemClipped);

return;
}

}

// If the field’s height has contracted and the first edit
// field is not visible, then the table may be scrolled.
// Release the focus, which will force saving the currently
// edited field.
else if (TblGetRowID (table, 0) != editFirstFieldIndex) {

TblGetSelection(table, &row, &column);
fieldIndex = TblGetRowID(table, row);

field = TblGetCurrentField(table);
pos = FldGetInsPtPosition(field);
TblReleaseFocus(table);

restoreFocus = true;
}

// Add items to the table to fill in the space made
// available by shortening the field.
EditFormLoadTable();
TblRedrawTable(table);

// Restore the insertion point position.
if (restoreFocus) {

TblFindRowID(table, fieldIndex, &row);
TblGrabFocus(table, row, column);
FldSetInsPtPosition(field, pos);
FldGrabFocus(field);

}
}

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 368

369Chapter 11 ✦ Programming Tables

The EditFormResizeData function determines if expanding or contracting a text
field requires redrawing the form, which can occur when a text field shrinks, caus-
ing new rows to appear at the bottom of the table. It also checks to see if the
change in size of a text field makes it possible to scroll when it was not possible
before, which happens when the expansion of a text field causes the field to expand
below the bottom of the table.

Enabling autoshifting in table text fields
Autoshifting in a standard text field is easy to set up. Simply define autoshifting as
part of the field’s properties when you create the field resource.

Unfortunately, this easy solution is not possible for text fields in a table. Because of
the “virtual” nature of a table’s fields, there is no way to set the autoshifting prop-
erty at design time. Instead, you must enable it via application code.

Librarian’s Edit table enables autoshifting in the EditFormGetRecordField function,
which is the callback EditFormInit sets up for the Edit table’s dataColumn. Within
EditFormGetRecordField is a call to a helper function, EditSetGraffitiMode, which
is listed in the following example:

static void EditSetGraffitiMode(FieldType *field)
{

FieldAttrType attr;

if (field) {
FldGetAttributes(field, &attr);
attr.autoShift = true;
FldSetAttributes(field, &attr);

}
}

The EditSetGraffitiMode function manually sets a field’s autoshift attribute.
Because the table manager calls EditFormGetRecordField every time it needs to
draw one of the Edit view’s text fields, all the fields in the table gain the autoshift
attribute when they are initialized.

Summary
In this chapter, you have learned the ins and outs of programming tables, the most
complex user interface element in the Palm OS. After reading this chapter, you
should know the following:

✦ Palm OS tables can be composed of nine different item types.

✦ A table must be initialized before it can be used.

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 369

370 Part III ✦ Programming the Palm OS

✦ Initializing a table involves defining each cell’s item type with TblSetItem
Style, setting initial values for nontext table items with TblSetItemInt and Tbl
SetItemPtr, and attaching callback functions for drawing, loading, and saving
with TblSetCustomDrawProcedure, TblSetLoadDataProcedure, and
TblSetSaveDataProcedure.

✦ You can hide and display rows and columns of a table with the TblSetRow
Usable and TblSetColumnUsable functions.

✦ Tables that must support scrolling require a function to load and redraw the
table whenever its data changes.

✦ Only one text field ever exists at any one time in a table.

✦ ✦ ✦

4676-7 ch11.f.qc 9/29/00 12:52 PM Page 370

Storing and
Retrieving Data

In its role as a portable data storage and display device, a
handheld running the Palm OS must be able to store a vari-

ety of different data and allow the user quick access to that
data. Because all data storage in the Palm OS occurs in RAM,
creating and maintaining space for permanent data in the
Palm OS requires an approach different from those desktop
systems use to store files on non-volatile storage media. The
first part of this chapter details the mechanics involved with
creating, finding, and accessing Palm OS databases, the major
Palm OS memory structures that contain data for long-term
storage.

For information on handling individual records within a
database, see Chapter 13, “Manipulating Records.”

Not all data that should be saved between invocations of a
particular program is appropriate for storage in a database.
For example, keeping track of the last view the user visited in
an application, or storing the user’s preferred display font,
requires saving a trivial amount of data, probably too little
to go to the trouble of trying to store it in a database. For
this kind of small data storage, the Palm OS offers application
preferences, which this chapter also covers.

Finally, some special applications may require the use of
another Palm OS storage technique called feature memory.
The last part of this chapter discusses what feature memory
is and how to use it.

Understanding the Data Manager
As mentioned in Chapter 2, “Understanding the Palm OS,” a
Palm OS database is simply a list of memory chunks in the

Cross-
Reference

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
data manager

Creating and
deleting databases

Opening and closing
databases

Finding databases

Retrieving and
modifying database
information

Creating an
application
info block

Reading and writing
application and
system preferences

Using feature
memory

✦ ✦ ✦ ✦

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 373

374 Part IV ✦ Storing Information on the Handheld

handheld’s storage RAM, along with some header information that describes the
database itself. In order to allow for better use of limited memory, each record in
the database may actually be contained in any memory heap on the handheld,
often mixed in with records from other application’s databases. This mixture of
records allows the system to shuffle data around at will, allowing records to be
moved if the space they occupy is needed to store a larger record that needs to
occupy a single, contiguous area of memory.

Within the database’s record list, each record is listed by its LocalID, a memory off-
set from the beginning address of the card that contains the record. Storing record
locations as LocalIDs instead of using pointers to the records lets the system relo-
cate an entire memory card without needing to adjust the location of each record
stored in a database’s record list.

The system can relocate data at will within the handheld’s storage area, so
LocalIDs are valid only between the time you open a database and the time you
close it again. Saving the LocalID of a database record or even of the start of a
database is futile, because once your application has closed a database, the sys-
tem could move the data anywhere, thereby invalidating the LocalID you have
saved.

Even though the database’s record list uses LocalIDs to keep track of its records,
application code actually requests records by their index within the record list.
The Palm OS data manager uses the index to look up the LocalID of the requested
record, converts the LocalID to a handle based on the card the database header is
located in, and then returns the handle to the requesting application.

More details about getting, modifying, and deleting database records are available
in Chapter 13, “Manipulating Records.”

Figure 12-1 shows the general layout of a database, starting with its header and
record list. Notice how the actual records in the database do not need to share
the same storage heap as the database header.

The database header consists of a number of fields, outlined in Table 12-1, that
describe everything from the name of the database to the number of records the
database contains.

The format of the database header may change in future versions of the Palm OS.
When working with database structures, never assume that the database has a
specific format; always use the Palm OS database functions.

Caution

Cross-
Reference

Caution

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 374

375Chapter 12 ✦ Storing and Retrieving Data

Figure 12-1: A typical Palm OS database and its relation to its records

Table 12-1
Palm OS Database Header

Field Size in Bytes Description

name 32 Null-terminated string containing the
name of the database

attributes 2 Flags specifying properties of the
database

version 2 Version number of the database format,
and value that is application-defined and
does not necessarily equal the version
number of the application itself

Continued

Storage Heap Storage Heap

Database

name
attributes
...
appInfoID
...
record List

nextRecordList
numRecords
firstEntry

localChunkID
attributes
uniqueID

localChunkID
attributes
uniqueID

localChunkID
attributes
uniqueID

localChunkID
attributes
uniqueID

Record
0

Record
3

Record
2

Record
1

Record
3

Application Info Block

data

Record
1

data

data

Record
2

data

Record
0

data

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 375

376 Part IV ✦ Storing Information on the Handheld

Table 12-1 (continued)

Field Size in Bytes Description

creationDate 4 Date and time when the database was
created, expressed in seconds since
midnight, January 1, 1904

modificationDate 4 Date and time when the database was
last modified, expressed in seconds since
midnight, January 1, 1904

lastBackupDate 4 Date and time when the database was
last backed up during a HotSync
operation

modificationNumber 4 Incremented every time an application
adds, modifies, or deletes a record in
the database

appInfoID 4 LocalID where the database’s application
info block, if any, begins

sortInfoID 4 LocalID where the database’s sort info
block, if any, begins

type 4 Application-defined database type

creator 4 Creator ID of the database

uniqueIDSeed 4 Used by the system to generate a unique
ID number for each record in the
database

recordList 4 LocalID of the first record list, and value
that is 0 if there is only one record list
for this database

The recordList field of the header holds the LocalID of the database’s first record
list. A database may contain only one record list structure if it has few enough
records to fit the entire list within the database header; otherwise, the record list’s
nextRecordList field will contain the LocalID of the next list of records. The struc-
ture of a record list is outlined in Table 12-2.

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 376

377Chapter 12 ✦ Storing and Retrieving Data

Table 12-2
Record List Structure

Field Size in Bytes Description

nextRecordListID 4 LocalID of the next list of records. This value
is 0 if there are no other record lists beyond
the current list.

numRecords 2 Number of records in this record list.

firstEntry 2 Placeholder for the memory address of the
first record entry in this list.

Starting at the memory location of the firstEntry field in the record list, each
record list contains an array of record entries, whose structure is outlined in
Table 12-3. This structure holds the LocalID of the actual record, the record’s
attribute flags, and a unique ID for the record within its database. The HotSync
Manager uses the unique ID of each record when performing synchronization
with the desktop version of a database; if the unique ID of a record on the desktop
matches the unique ID of a handheld record, the HotSync Manager considers them
to be the same record.

For further details of the inner workings of the HotSync Manager, see Chapter 19,
“Understanding Conduits.”

Table 12-3
Record List Element

Field Size in Bytes Description

localChunkID 4 LocalID of the actual record

attributes 1 Attribute and category information for this record

uniqueID 3 Unique ID for this record

A record entry’s attributes field contains four flags and a 4-bit number indicating
which category the record belongs to. Table 12-4 shows the byte offsets and mean-
ings of the contents of the attributes byte.

Cross-
Reference

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 377

378 Part IV ✦ Storing Information on the Handheld

Table 12-4
Record Entry Attributes

Field Offset Description

category 0x00 Category of the record

secret 0x10 If set, indicates that this record is marked private

busy 0x20 If set, indicates that this record is currently in use

dirty 0x40 If set, indicates that this record should be archived at the next
HotSync operation

delete 0x80 If set, indicates that this record should be deleted at the next
HotSync operation

Resource Databases
The database format described so far in this chapter is what the Palm OS uses to
store record information. There is also a database format in the Palm OS for storing
resources. Unlike standard records, a resource contained in a database is tagged
with a resource type and an ID number.

Palm OS applications are simply resource databases containing the data, code,
and user interface resources necessary to run a program.

Resource databases differ from record databases only in the structure used in the
record list to indicate each resource stored in the database. Table 12-5 outlines the
structure of a resource entry.

Table 12-5
Record List Resource Element

Field Size in Bytes Description

type 4 Resource type

id 2 ID number for the resource, which is unique
among all resources in a database that share
the same type

localChunkID 4 LocalID of the actual resource

More details about handling individual resources within a database are available
in Chapter 13, “Manipulating Records.”

Cross-
Reference

Note

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 378

379Chapter 12 ✦ Storing and Retrieving Data

Working with Databases
Databases on a Palm OS handheld are roughly analogous to files on a desktop com-
puter, except that Palm OS databases reside in RAM instead of the permanent stor-
age medium occupied by desktop files. Using functions in the Palm OS API, your
application can create and delete databases, as well as open and close them, much
as a desktop system handles its files. Where a Palm OS database differs most from
a desktop file is in reading data from and writing data to the database.

Creating Databases
To create a new database, call the DmCreateDatabase function. The prototype for
DmCreateDatabase looks like this:

Err DmCreateDatabase (UInt16 cardNo, const Char * nameP,
UInt32 creator, UInt32 type,
Boolean resDB)

The cardNo parameter is the memory card on which you wish to create the
database.

As of this writing, no Palm OS handheld actually has more than one memory card,
so you can pass 0 for the cardNo parameter to indicate the first card on the
device.

The nameP parameter of DmCreateDatabase accepts a string to use as the human-
readable name for the database. As shown earlier in this chapter, only 32 bytes are
available in the database header to store this name, which includes 1 byte for the
terminating null, so database names can be a maximum of 31 ASCII characters long.

Aside from meeting the size requirement for a database name, you should also take
steps to ensure that the name of your database will be unique. The best way to do
this is to append the application’s creator ID to the end of the database name. For
example, the Librarian sample application’s database is named Librarian-LFlb.

The creator parameter takes a 4-byte creator ID code. Every database belonging
to a particular application should be marked with that application’s creator ID.
Among other things, this ensures that the system application launcher can properly
delete all of a program’s data along with the program itself when the user chooses
to delete it. This also makes it easy for your application to find databases that
belong to it.

Another 4-byte code goes into the type parameter. This code is application-specific,
and it identifies what type of data the database contains. Unlike the creator ID, the
type code does not need to be unique among all Palm OS applications. The Palm OS

Tip

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 379

380 Part IV ✦ Storing Information on the Handheld

reserves the code appl to represent executable applications; other than this, you
can assign just about any 4-byte code you wish, preferably a mnemonic to help you
identify the kind of data in the database. By convention, most applications use the
code Data or DATA to indicate a normal database that just contains an application’s
records.

Many applications require only one database, which is true of all four of the basic
ROM applications: the built-in applications all use the type DATA for their databases.
A good example of multiple database usage is Palm Computing’s Expense applica-
tion, which uses three databases. Expense stores its main records in a DATA data-
base, a list of cities in a city database, and a list of vendors in a vend database.

Another common database type is HACK, which is used by Edward Keyes’s
HackMaster application to represent a system hack application. There is nothing to
stop you from using HACK for a database type, should you wish to, but it could be
confusing to HackMaster users, because your application would then appear in
HackMaster as an installed hack.

The last parameter to DmCreateDatabase, resDB, is a Boolean value that tells the
data manager to create a resource database instead of a record database if resDB
is set to true. For most normal application databases, leave resDB set to false.

In general, an application should check for the existence of its database in its
StartApplication routine. If the database does not exist, StartApplication can then
call DmCreateDatabase to make a new database for the application. The following
excerpt from Librarian’s StartApplication function checks for Librarian’s database
and creates it if it does not already exist:

#define libDBName “LibrarianDB-LFlb”
#define libDBType ‘DATA’
#define libCreatorID ‘LFlb’

Err error = 0;
UInt16 mode;

// Code to set the database mode omitted

// Find Librarian’s database. If it doesn’t exist, create it.
gLibDB = DmOpenDatabaseByTypeCreator(libDBType, libCreatorID,

mode);
if (! gLibDB) {

error = DmCreateDatabase(0, libDBName, libCreatorID,
libDBType, false);

if (error)
return error;

gLibDB = DmOpenDatabaseByTypeCreator(libDBType,

Tip

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 380

381Chapter 12 ✦ Storing and Retrieving Data

libCreatorID, mode);
if (! gLibDB)

return DmGetLastErr();

// Code for initializing the application info block omitted
}

The StartApplication routine first checks to see if Librarian’s database exists by
attempting to open it with DmOpenDatabaseByTypeCreator, which returns either
a reference to the open database or the value 0. If the database does not exist,
StartApplication calls DmCreateDatabase with Librarian’s database name, creator
ID, and the type DATA to create the new database. Then StartApplication opens
the newly created database so that Librarian will have access to it. If this second
database opening fails, StartApplication calls the DmGetLastErr function to get the
code of the last error encountered by the data manager and passes this error code
back to the PilotMain routine.

Opening Databases
The DmOpenDatabaseByTypeCreator function, shown in the previous example,
opens a database given the type and creator ID of the database, and it returns a
reference to the open database if successful. The Palm OS type used for an open
database reference, and for the gLibDB global variable in the last example, is
DmOpenRef.

A third parameter to DmOpenDatabaseByTypeCreator sets the mode in which the
database should be opened. The Palm OS provides a number of constants, shown in
Table 12-6, for defining database access modes. Your code should OR these values
together to form the mode parameter to DmOpenDatabaseByTypeCreator.

Table 12-6
Database Access Mode Constants

Constant Description

dmModeReadWrite Read/write access

dmModeReadOnly Read-only access

dmModeWriteOnly Write-only access

dmModeLeaveOpen Leave the database open after the application quits

dmModeExclusive Exclude other applications from opening this database

dmModeShowSecret Show records in this database that are marked private

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 381

382 Part IV ✦ Storing Information on the Handheld

Most of the time, you should use the dmModeReadWrite mode when your application
starts, because that mode will allow modification and display of the application’s
data. To support private records in your application, also check the system prefer-
ences to see if the user currently has private records hidden or not, and then set
the dmModeShowSecret mode as appropriate. The following code from Librarian’s
StartApplication sets the mode to read/write access and sets the mode to show or
hide private records:

if (gPrivateRecordStatus == hidePrivateRecords)
mode = dmModeReadWrite;

else
mode = dmModeReadWrite | dmModeShowSecret;

The global gPrivateRecordStatus variable is of type privateRecordViewEnum,
an enumeration defined in the Palm OS 3.5 header PrivateRecords.h as follows:

typedef enum privateRecordViewEnum {
showPrivateRecords = 0x00,
maskPrivateRecords,
hidePrivateRecords

} privateRecordViewEnum;

Librarian uses gPrivateRecordStatus in various parts of its code to determine
how private records should be displayed.

You are entirely responsible for implementing private record behavior in your
application if you want to allow the user to mark records as private; the only thing
the operating system does to maintain private records is to keep track of how they
should be displayed. Your application code must do all the work of checking the
system preferences and making sure that hidden records are displayed, masked,
or hidden, as appropriate.

Besides DmOpenDatabaseByTypeCreator, the Palm OS also allows opening data-
bases with DmOpenDatabase. Instead of the type and creator ID of the desired
database, DmOpenDatabase requires the database’s card number and LocalID.
See the “Finding Databases” section later in this chapter for information on how
to determine a database’s LocalID.

Closing Databases
When your application is finished with a database, it should call DmCloseDatabase
to close it. The DmCloseDatabase function takes a DmOpenRef type reference to an
open database as a parameter:

DmCloseDatabase(gLibDB);

Caution

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 382

383Chapter 12 ✦ Storing and Retrieving Data

An application’s StopApplication function is a good place to put a call to
DmCloseDatabase, right after any code that performs any other cleanup required
by the application.

The system allocates approximately 50-100 bytes of memory from the dynamic
heap for each open database, so be sure to close databases when they are no
longer needed to avoid a memory leak. More importantly, any future attempt to
open a database that is already open will fail, including attempts from a desktop
conduit during synchronization. Only a soft reset will close databases that are
left open.

Finding Databases
A number of functions exist for finding databases on the handheld, given differ-
ent criteria. The most basic is DmFindDatabase, which returns the LocalID of a
database header given a card number and the name of the database to search for:

LocalID dbID;

LocalID = DmFindDatabase(0, “Librarian-LFlb”);

If DmFindDatabase cannot find a database that matches the given name, it returns
0; in this case, call DmGetLastErr to find out the exact reason DmFindDatabase
failed.

See Appendix A, “Palm OS API Quick Reference,” for a complete list of error codes
that may be returned by DmGetLastErr.

The DmGetDatabase function returns the LocalID of a database given a card num-
ber and the index of the database on the card. Use DmGetDatabase to retrieve a list
of all the databases on a card. Index numbers for databases range from 0 to the
total number of databases on the card, minus one. If you pass the card number to
the function DmNumDatabases to determine the number of databases, you can
then iterate over all the databases on that card:

LocalID dbID;
Int16 i;

for (i = 0; i < DmNumDatabases(0); i++) {
dbID = DmGetDatabase(0, i);
// Do something with the dbID, the database’s LocalID.

}

Finally, the Palm OS also offers DmGetNextDatabaseByTypeCreator for more com-
plex searches. The DmGetNextDatabaseByTypeCreator function searches all the

Cross-
Reference

Note

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 383

384 Part IV ✦ Storing Information on the Handheld

handheld’s memory cards for a database given a type, creator ID, or both, and it
has the following prototype:

Err DmGetNextDatabaseByTypeCreator (Boolean newSearch,
DmSearchStatePtr stateInfoP, UInt32 type, UInt32 creator,
Boolean onlyLatestVers, UInt16* cardNoP, LocalID* dbIDP)

The DmGetNextDabaseByTypeCreator function returns 0 if it successfully found a
matching database, or the constant dmErrCantFind if no database matching the
supplied type or creator can be found.

It is necessary to call DmGetNextDatabaseByTypeCreator more than once to get
all the databases on the handheld with the specified criteria. The first parameter,
newSearch, tells DmGetNextDatabaseByTypeCreator to start a brand new search
if its value is true. Passing a pointer to a DmSearchStateType structure in the
stateInfoP parameter allows the function to keep track of its search state, so
subsequent calls to the function with a newSearch value of false can pick up the
search where it left off after the last call to DmGetNextDatabaseByTypeCreator.

The type and creator parameters accept the database type and creator ID you
wish to search for, respectively. You may pass NULL for either of these parameters
to specify a wildcard search. If type is NULL, the routine returns databases of any
type that match the specified creator. Likewise, if creator is NULL, the search
will return databases of the specified type, but with any creator ID. Passing NULL
to both parameters returns every database on the handheld.

Pass true for the value of the onlyLatestVers parameter to restrict the search to
the latest version of each database. A false value for onlyLatestVers allows for
retrieval of all databases matching the specified type and creator, regardless of
their versions.

Databases in RAM are always considered a more recent version than databases
stored in ROM memory. This allows you to replace any of the built-in applications
stored in ROM with your own.

There is a special case to look out for when onlyLatestVers is set to true that
has to do with changes in implementation of DmGetNextDatabaseByTypeCreator
between Palm OS versions 3.0 and 3.1. If multiple databases exist on the handheld
that all share the same type, creator ID, and version, Palm OS 3.0 and earlier return
all of those databases. However, Palm OS 3.1 and later return only one of the mul-
tiple databases when onlyLatestVers is true, effectively selected at random. If
onlyLatestVers is false, DmGetNextDatabaseByTypeCreator works the same
way across all versions of the Palm OS.

Tip

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 384

385Chapter 12 ✦ Storing and Retrieving Data

To ensure that calls to DmGetNextDatabaseByTypeCreator work in the same
way across all versions of the Palm OS, either set onlyLatestVers to false
when specifying both the type and creator parameters or pass NULL for the
value of type, creator, or both.

The two remaining parameters to DmGetNextDatabaseByTypeCreator, cardNoP
and dbIDP, receive the card number in which a found database resides and the
database’s LocalID on that card.

The following helper function counts the number of databases on the handheld
matching a given type and creator ID:

Int16 CountDatabases(UInt32 type, UInt32 creator) {
DmSearchStateType searchState;
Int16 count = 0;
UInt16 cardNo;
LocalID dbID;

if (DmGetNextDatabaseByTypeCreator(true, &searchState,
type, creator, false, &cardNo, &dbID) {
do {

count++;
// Do something with each database here, if
// desired, using cardNo and dbID.

} while (DmGetNextDatabaseByTypeCreator(false,
&searchState, myType, myCreator, false,
&cardNo, &dbID);

}

return count;
}

Deleting Databases
To remove a database and all its records from the handheld, call the DmDelete
Database function. The function takes two parameters, the card number where the
database is located and the database’s LocalID, and it returns 0 if successful or an
error code if deletion failed for some reason. Use one of the functions in the previ-
ous section to retrieve the card and LocalID for the database you wish to delete.

There is no way to recover data deleted using DmDeleteDatabase, so be careful
how you use this function.

Caution

Tip

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 385

386 Part IV ✦ Storing Information on the Handheld

A related function, DmDatabaseProtect, allows you to prevent a database from being
deleted, thus allowing you to keep a particular record or resource in a database
locked without keeping the database open. The DmDatabaseProtect function oper-
ates by increasing or decreasing the protection count on a particular database. If the
protection count assigned to a database is greater than 0, the database may not be
deleted. The prototype for DmDatabaseProtect looks like this:

Err DmDatabaseProtect (UInt16 cardNo, LocalID dbID,
Boolean protect)

The cardNo and dbID parameters accept the card number and LocalID of the
database to modify, respectively. Passing a value of true the protect parameter
increments the protection count; a false protect value decrements the protection
counter.

The system keeps protection count information in dynamic memory, so all data-
bases become “unprotected” whenever the handheld is reset.

Retrieving and Modifying Database Information
A database stores a lot of information about itself in its header. The Palm OS func-
tion for retrieving this information is DmDatabaseInfo, which has the following
prototype:

Err DmDatabaseInfo (UInt16 cardNo, LocalID dbID, Char* nameP,
UInt16* attributesP, UInt16* versionP, UInt32* crDateP,
UInt32* modDateP, UInt32* bckUpDateP, UInt32* modNumP,
LocalID* appInfoIDP, LocalID* sortInfoIDP, UInt32* typeP,
UInt32* creatorP)

The cardNo and dbID parameters take the card number and LocalID of the
database whose information you wish to retrieve. Only the first two parameters
provide input to DmDatabaseInfo; everything else receives return values from the
function. Pass NULL for the value of any of the remaining parameters to ignore that
particular piece of information.

First in the long list of properties is nameP, which retrieves the name of the data-
base. Make sure the character array whose pointer you pass in nameP is 32 bytes
long so it has enough room to contain the longest possible database name string.

The attributesP parameter receives the attribute flags associated with the
database. In the Palm OS header file DataMgr.h, a number of constants are defined
for handling database attributes. Table 12-7 shows the attribute constants and what
they mean.

Note

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 386

387Chapter 12 ✦ Storing and Retrieving Data

Table 12-7
Database Attribute Flag Constants

Constant Value Description

dmHdrAttrResDB 0x0001 Set if database is a resource database.

dmHdrAttrReadOnly 0x0002 Set if database is read-only.

dmHdrAttrAppInfoDirty 0x0004 Set if application info block is dirty.

dmHdrAttrBackup 0x0008 Set if this database should be backed
up to the desktop during a HotSync
operation; this bit should be set if there
is no conduit associated with this
application to perform backup duties.

dmHdrAttrOKToInstallNewer 0x0010 Set if it is okay for the HotSync backup
conduit to install a newer version of this
database with a different name if this
database is currently open.

dmHdrAttrResetAfterInstall 0x0020 Set if the handheld requires a reset
after installing this database.

dmHdrAttrCopyPrevention 0x0040 Set if the database should not be
copied via IR beaming or other
methods.

dmHdrAttrStream 0x0080 Set if this database is a file stream.

dmHdrAttrHidden 0x0100 Set if this database should be hidden
from view. For example, the application
launcher on Palm OS 3.2 and later
hides applications with this bit set. For
record databases, setting this bit hides
the record count in the application
launcher’s Info screen.

DmHdrAttrLaunchableData 0x0200 Set on a non-application database if
this database may be “launched” by its
name being passed to its owner (an
application database with the same
creator ID) via the sysAppLaunch
CmdOpenNamedDB launch code; for
example, Palm Query Applications
(PQAs) have this bit set so they will
appear in the application launcher,
even though they are not actually
applications.

DmHdrAttrOpen 0x8000 Set if the database is open.

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 387

388 Part IV ✦ Storing Information on the Handheld

The DataMgr.h header also defines the constants dmAllHdrAttrs and dmSysOnly
HdrAttrs, which are bit masks representing all the header attributes and attributes
that may be altered only by the system, respectively:

#define dmAllHdrAttrs (dmHdrAttrResDB | \
dmHdrAttrReadOnly | \
dmHdrAttrAppInfoDirty | \
dmHdrAttrBackup | \
dmHdrAttrOKToInstallNewer | \
dmHdrAttrResetAfterInstall | \
dmHdrAttrCopyPrevention | \
dmHdrAttrStream | \
dmHdrAttrOpen)

#define dmSysOnlyHdrAttrs (dmHdrAttrResDB | \
dmHdrAttrOpen)

The versionP parameter receives the version number for this database. By default,
databases all have a version of 0.

If you change the format of the records within a database between different ver-
sions of your application, it is also a good idea to increment the database version
so your application can tell the difference between old and new database formats
and deal with them appropriately.

Three parameters, crDateP, modDateP, and bckUpDateP, receive timestamps
related to the database; crDateP is the database’s creation date, modDateP is the
data of the last modification made to the database, and bckUpDateP is the last time
the database was backed up via a HotSync operation. All of these values are stored
as the number of seconds since midnight on January 1, 1904.

Different versions of the Palm OS deal differently with the modification date field.
Version 1.0 never updates the modification date, and version 2.0 updates the mod-
ification date when a database opened in writable mode is closed. Not until version
3.0 does the system actually update the modification date only when something in
the database has actually been changed, such as adding, deleting, archiving, rear-
ranging, or resizing records; setting a record’s dirty bit via DmReleaseRecord; rear-
ranging or deleting categories; or updating the database’s header fields using
DmSetDatabaseInfo. If you need to ensure that the modification date is updated
the same way across all versions of the Palm OS, set the modification date manu-
ally with the DmSetDatabaseInfo function.

The modNumP parameter receives the database’s modification number, a value that
the system increments every time a record in the database is added, modified, or
deleted.

Note

Tip

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 388

389Chapter 12 ✦ Storing and Retrieving Data

Retrieving the appInfoIDP and sortInfoIDP values gives you the LocalIDs of the
application info block and sort info block for this database, respectively. Because
both of these blocks are optional in any database, these values will be NULL if no
application info block or sort info block exists for the database.

The typeP and creatorP parameters receive the type and creator ID of the
database, respectively.

To set database header information, use DmSetDatabaseInfo. Like its companion
DmDatabaseInfo, DmSetDatabaseInfo has a lot of parameters:

Err DmSetDatabaseInfo (UInt16 cardNo, LocalID dbID,
const Char* nameP, UInt16* attributesP, UInt16* versionP,
UInt32* crDateP, UInt32* modDateP, UInt32* bckUpDateP,
UInt32* modNumP, LocalID* appInfoIDP, LocalID* sortInfoIDP,
UInt32* typeP, UInt32* creatorP)

Just as in DmDatabaseInfo, the first two parameters to DmSetDatabaseInfo are the
card number and LocalID of the database to work with. All the other parameters are
pointers to values that should be modified in the database. Passing NULL for any
parameter leaves that parameter’s associated value unchanged in the database
header.

As an example of how to use DmSetDatabaseInfo, the following code snippet from
Librarian’s StartApplication routine sets the backup bit on a newly created database:

UInt16 cardNo;
LocalID dbID;
UInt16 attributes;

DmOpenDatabaseInfo(gLibDB, &dbID, NULL, NULL, &cardNo, NULL);
DmDatabaseInfo(cardNo, dbID, NULL, &attributes, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULL, NULL);
attributes |= dmHdrAttrBackup;
DmSetDatabaseInfo(cardNo, dbID, NULL, &attributes, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULL, NULL);

Setting a database’s attributes field is a two-step process. First, you must retrieve
the existing attributes using DmDatabaseInfo. Then, you can OR the retrieved
attributes together with one or more of the database attribute constants, such as
dmHdrAttrBackup.

If you do not plan to write a conduit for an application, you should set the backup bit
on its database so the HotSync backup conduit will make a copy of the application’s
data in the user’s backup folder on the desktop machine. If you wish to convert a
Palm OS application’s saved data to a more desktop-friendly format, you will need
to either write a conduit or a desktop application that can perform the conversion.

Tip

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 389

390 Part IV ✦ Storing Information on the Handheld

Aside from the database header functions just mentioned, the Palm OS also pro-
vides functions for retrieving other pieces of valuable data about databases on the
handheld. The DmOpenDatabaseInfo function returns information about an open
database, and it has the following prototype:

Err DmOpenDatabaseInfo (DmOpenRef dbP, LocalID* dbIDP,
UInt16* openCountP, UInt16* modeP, UInt16* cardNoP,
Boolean* resDBP)

The first parameter, dpP, is a pointer to an open database reference. Much as its
cousin DmDatabaseInfo does, the rest of the parameters retrieve various pieces
of data about the database. Pass NULL for the value of any parameter you are not
interested in.

Retrieving dpIDP gives you the LocalID of the database. The openCountP param-
eter receives the number of applications that have this database open, modeP
receives the mode used to open the database, cardNoP holds the number of the
card where this database resides, and resDBP, if requested, contains true if this
is a resource database or false if it is a regular record database.

Use the DmGetDatabaseLockState function to retrieve information about the num-
ber of locked and busy records in a database:

void DmGetDatabaseLockState (DmOpenRef dbR, UInt8* highest,
UInt32* count, UInt32* busy)

Pass an open database reference for the value of the dbR parameter, and DmGet
DatabaseLockState returns the highest lock count of any of the database’s records
in highest, the number of records having the lock count specified by highest in
the count parameter, and the number of records with their busy bits set in busy.
As usual, pass NULL for any value you do not wish to retrieve.

The DmDatabaseSize function returns information about the size of the database:

Err DmDatabaseSize (UInt16 cardNo, LocalID dbID,
UInt32* numRecordsP, UInt32* totalBytesP,
UInt32* dataBytesP)

Given the card number and LocalID of a database, DmDatabaseSize returns the
number of records in the database via the numRecordsP parameter, the total size
in bytes occupied by the database in totalBytesP, and the total memory occupied
by just the data, not counting the overhead in the database’s header, in the
dataBytesP parameter.

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 390

391Chapter 12 ✦ Storing and Retrieving Data

Creating an Application Info Block
The application info block is an optional block that stores application-defined data
related to the database as a whole, as opposed to the data stored in individual
records. Among other things, most of the ROM applications use an application info
block to keep track of the user-customizable category names in the application. The
memory devoted to an application info block, much like the memory used for indi-
vidual records, may be located anywhere on the same card as a database’s header,
which keeps track of the LocalID of the application info block.

Databases may also have an optional sort info block, which Palm Computing orig-
inally intended to contain information about how the records in the database
should be sorted. However, under current implementations of the Palm OS, the
HotSync manager does not back up the sort info block, so it is not a good place to
store information that needs to persist across synchronizations. You could use the
sort info block to temporarily cache information about the database that can be
regenerated from other data, but most Palm OS applications do not use it at all.

When you first create a new database that has an application info block, you should
initialize the new database’s application info block. The Librarian sample applica-
tion calls a helper function, LibAppInfoInit, from its StartApplication routine to
take care of creating the new application info block:

error = LibAppInfoInit(gLibDB);
if (error) {

DmCloseDatabase(gLibDB);
DmDeleteDatabase(cardNo, dbID);
return error;

}

Notice that if LibAppInfoInit fails for some reason to create the application info
block, StartApplication cannot successfully complete its mission to create Librarian’s
database, so it calls DmCloseDatabase to close the empty database it just created,
then DmDeleteDatabase to remove it.

Librarian’s application info block is a structure called LibAppInfoType, defined as
follows in librarianDB.h:

typedef struct {
UInt16 renamedCategories; // bit field of categories with

// a different name
char categoryLabels[dmRecNumCategories][dmCategoryLength];
UInt8 categoryUniqIDs[dmRecNumCategories];
UInt8 lastUniqID;
UInt8 reserved1; // from the compiler word aligning things
UInt16 reserved2;
// End of category structure; Librarian-specific

Note

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 391

392 Part IV ✦ Storing Information on the Handheld

// application info starts here.
UInt8 showInList; // Current sort order for database
libLabel fieldLabels[libNumFieldLabels]; // Labels in

// Edit view
// The following are status strings for the Record view:
libLabel bookStatusStrings[libNumBookStatusStrings];
libLabel printStatusStrings[libNumPrintStatusStrings];
libLabel formatStatusStrings[libNumFormatStatusStrings];
libLabel readStatusStrings[libNumReadStatusStrings];

} LibAppInfoType;

The first six fields in LibAppInfoType are required in the application info block of
any application that supports the standard implementation of Palm OS categories;
just tack these fields onto the front of any application info structure you define for
your own application, and the various Palm OS category functions will be able to
function properly.

Chapter 13, “Manipulating Data,” covers the category functions in detail.

The showInList field stores the current sort order used to display records in
Librarian’s List view. Librarian’s librarianDB.h header defines the following
constants for keeping track of sort order:

#define libShowAuthorTitle 0
#define libShowTitleAuthor 1
#define libShowTitleOnly 2

The rest of the fields in LibAppInfoType store the various strings used to display
status information about a record in Librarian’s Record view. These strings are
things like “Got this book,” “Paperback,” and “Unread,” and Librarian has applica-
tion info string resources containing these string values. To save time while the
application is running, Librarian avoids retrieving these resource strings from the
application’s resources every time it needs them. Instead, it copies these resources
into the application info block when it first creates and initializes its database. In
that way, Librarian needs to open the application info block only once each time it
runs to retrieve these values, instead of having to retrieve each individual string
every time it is needed.

More details of the mechanism Librarian uses to keep track of status strings in the
Record view are available in Chapter 13, “Manipulating Records.”

The relevant portions of Librarian’s LibAppInfoInit function look like this:

Err LibAppInfoInit(DmOpenRef db)
{

UInt16 cardNo;
LocalID dbID, appInfoID;

Cross-
Reference

Cross-
Reference

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 392

393Chapter 12 ✦ Storing and Retrieving Data

MemHandle h;
LibAppInfoType *appInfo;

if (DmOpenDatabaseInfo(db, &dbID, NULL, NULL, &cardNo,
NULL))
return dmErrInvalidParam;

if (DmDatabaseInfo(cardNo, dbID, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, &appInfoID, NULL, NULL, NULL))
return dmErrInvalidParam;

// If there isn’t an app info block make space for one.
if (appInfoID == NULL) {

h = DmNewHandle(db, sizeof(LibAppInfoType));
if (!h) return dmErrMemError;

appInfoID = MemHandleToLocalID(h);
DmSetDatabaseInfo(cardNo, dbID, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, &appInfoID, NULL, NULL, NULL);
}

appInfo = MemLocalIDToLockedPtr(appInfoID, cardNo);

// Clear the app info block.
DmSet(appInfo, 0, sizeof(LibAppInfoType), 0);

// Code for initializing categories and fields omitted

MemPtrUnlock(appInfo);

return 0;
}

The LibAppInfoInit function first retrieves the card number and LocalID of the
database using the DmOpenDatabaseInfo function, and then passes these values to
DmDatabaseInfo to retrieve appInfoID, the LocalID of the database’s application
info block.

If appInfoID is equal to NULL, then there is no application info block defined for the
database, in which case LibAppInfoInit proceeds to make space for a new applica-
tion info block by calling DmNewHandle. Notice that LibAppInfoInit uses the
DmNewHandle function here instead of MemHandleNew. DmNewHandle allocates
space in the same storage heap occupied by Librarian’s database, as opposed to
MemHandleNew, which would allocate space in the dynamic heap. Also, because
handles cannot be stored in the database, LibAppInfoInit converts the handle to a
LocalID with the MemHandleToLocalID function, and then passes this value to
DmSetDatabaseInfo to set the application info block location in the database’s
header.

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 393

394 Part IV ✦ Storing Information on the Handheld

Then LibAppInfoInit locks a pointer to the new application info block using the
MemLocalIDToLocketPtr function. With this pointer, LibAppInfoInit can zero the
memory of the application info block using DmSet, the storage heap equivalent of
the MemSet function.

After creating the new application info block, LibAppInfoInit initializes the cate-
gories and other fields in the appInfo structure. This initialization delves into man-
aging categories and retrieving individual resources, topics left for a later chapter.

Chapter 13, “Manipulating Records,” revisits the LibAppInfoInit function and fills
in the details of initializing individual fields in an application info block.

Once all the values have been initialized, LibAppInfoInit is finished with the pointer
to the application info block, so it unlocks it with MemPtrUnlock.

Storing Application Preferences
Devoting an entire database to the storage of small pieces of data, such as which
columns are visible in a given application view, is simply overkill. Databases are
well suited to storing many pieces of data with a common format, but there is a bet-
ter way to keep track of smaller odds and ends that a program needs to remember
between invocations: application preferences. Application preferences are some-
what analogous to .ini files in Windows or rc files in Unix, in that they are a handy
place to store configuration data for an application.

The Palm OS maintains a database of preference information for all the applica-
tions on the device that wish to use it. Each record in this database is application-
defined, so a program can store whatever data it needs to for its own purposes.

Before using application preferences, you need to define a structure to contain them.
As an example, the following code from librarian.c defines LibPreferenceType,
the structure used in Librarian to store application preferences:

typedef struct {
UInt16 currentCategory;
Boolean showAllCategories;
Boolean showBookStatus;
Boolean showPrintStatus;
Boolean showFormat;
Boolean showReadUnread;
Boolean saveBackup;
FontID listFont;
FontID recordFont;
FontID editFont;
FontID noteFont;

} LibPreferenceType;

Cross-
Reference

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 394

395Chapter 12 ✦ Storing and Retrieving Data

None of the data stored in LibPreferenceType is particularly lengthy; it is simply
a mishmash of values that should be maintained between invocations of Librar-
ian for consistency’s sake, but that don’t really fit anywhere in its database. The
currentCategory and showAllCategories fields keeps track of the category
currently displayed by Librarian. The showBookStatus, showPrintStatus,
showFormat, and showReadUnread fields store which columns of the List view
are visible, and saveBackup saves whether the check box in the delete confirma-
tion dialog box is checked or not. Finally, the various FontID fields save the user’s
font preferences for various views in Librarian.

Once you have determined the format required to store application preferences,
your application needs to retrieve these settings when it first opens, usually in its
StartApplication routine. The parts of Librarian’s StartApplication function that
deal with retrieving Librarian’s preferences look like this:

LibPreferenceType prefs;
UInt16 prefsSize;

prefsSize = sizeof(LibPreferenceType);
if (PrefGetAppPreferences(libCreatorID, libPrefID, &prefs,

&prefsSize, true) != noPreferenceFound) {
gCurrentCategory = prefs.currentCategory;
gShowAllCategories = prefs.showAllCategories;
gShowBookStatus = prefs.showBookStatus;
gShowPrintStatus = prefs.showPrintStatus;
gShowFormat = prefs.showFormat;
gShowReadUnread = prefs.showReadUnread;
gSaveBackup = prefs.saveBackup;
gListFont = prefs.listFont;
gRecordFont = prefs.recordFont;
gEditFont = prefs.editFont;
gNoteFont = prefs.noteFont;

}
else {

// No preferences exist yet, so set the defaults for the
// global font variables.
gListFont = stdFont;
gNoteFont = stdFont;

// If Librarian is running on Palm OS 2.0, the
// largeBoldFont is invalid. In that case, substitute
// stdFont.
if (gROMVersion <

sysMakeROMVersion(3,0,0,sysROMStageRelease,0)) {
gRecordFont = stdFont;
gEditFont = stdFont;

}
else {

gRecordFont = largeBoldFont;
gEditFont = largeBoldFont;

}
}

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 395

396 Part IV ✦ Storing Information on the Handheld

Librarian’s StartApplication routine calls PrefGetAppPreferences to retrieve Librar-
ian’s LibPreferenceType structure from the system’s list of application preferences.
The PrefGetAppPreferences function has the following prototype:

Int16 PrefGetAppPreferences (UInt32 creator, UInt16 id,
void* prefs, UInt16* prefsSize, Boolean saved)

The first parameter to PrefGetAppPreferences, creator, is the creator ID of the
application whose preferences should be retrieved.

It is possible for an application to have more than one preference type, which is
where the id parameter comes into play. The id lets you assign an application-
defined UInt16 value to identify each of the application’s preference types.
Librarian has only one preference type, defined by the constant libPrefID in
librarian.h, which has a value of 0.

The void pointer prefs receives the actual preferences structure. To let the system
know how large this structure is you must also pass the size of the structure, in
bytes, via the prefsSize parameter. It is also possible to retrieve variable-length
structures from application preferences. To find out how large the structure stored
in an application’s preferences is, call PrefGetAppPreferences once with a NULL
pointer for the prefs parameter and a prefsSize of 0. The PrefGetAppPreferences
functions sets prefsSize to the actual size of the buffer holding the application’s
preferences. Once you have the actual size of the structure, you can allocate a buffer
large enough to hold the preferences and call PrefGetAppPreferences a second time
to retrieve them.

The PrefGetAppPreferences function’s last parameter, saved, specifies whether to
retrieve saved preferences or unsaved preferences. The system maintains two lists
of preferences, those that should be saved during a HotSync operation and those
that do not need to be backed up. In general, you should set saved to true so that
your application’s preferences are saved by the HotSync manager.

If PrefGetAppPreferences is unable to find the specified application preferences,
it returns the constant noPreferenceFound. If the preferences were retrieved,
Librarian’s StartApplication function sets a series of global variables based on the
contents of the saved preferences. If the preferences do not exist yet, Librarian sets
the same global variables to reasonable defaults.

Once your application is ready to exit, it should save its preferences again using
the PrefSetAppPreferences function, which takes almost the same parameters as
PrefGetAppPreferences, with the addition of an Int16 value to indicate what ver-
sion of the application’s preferences should be saved. Librarian’s StopApplication
function saves application preferences with the following code:

LibPreferenceType prefs;

// Save Librarian’s preferences.

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 396

397Chapter 12 ✦ Storing and Retrieving Data

prefs.currentCategory = gCurrentCategory;
prefs.showAllCategories = gShowAllCategories;
prefs.showBookStatus = gShowBookStatus;
prefs.showPrintStatus = gShowPrintStatus;
prefs.showFormat = gShowFormat;
prefs.showReadUnread = gShowReadUnread;
prefs.saveBackup = gSaveBackup;
prefs.listFont = gListFont;
prefs.recordFont = gRecordFont;
prefs.editFont = gEditFont;
prefs.noteFont = gNoteFont;

PrefSetAppPreferences(libCreatorID, libPrefID,
libPrefVersionNum, &prefs, sizeof(prefs), true);

After filling prefs with the data from several of Librarian’s global variables,
StopApplication calls PrefSetAppPreferences to store these values in the system’s
application preferences database.

You may have noticed that it is possible to create preferences with PrefSetApp
Preferences that do not match your application’s creator ID, simply by passing a
different creator ID to the function. However, when the user deletes an applica-
tion, the system removes only those preferences that match the creator ID of the
deleted application. Any other preferences created by the application remain on
the device, occupying precious storage space and unnecessarily slowing down
HotSync operations, since the system preferences database is updated on the
desktop system at every synchronization.

Some shareware developers have used this quirk of the Palm OS preferences
mechanism to implement programs that disable themselves after they have been
installed for a certain period of time. These applications store a timestamp of
when the application was first run in a preference whose creator ID does not
match that of the application itself. When the shareware trial period is up, deleting
the application and reinstalling it will not reset the timestamp, resulting in an
application that is still disabled.

The issue of whether or not to write Palm OS applications that leave orphaned
preferences behind has been hotly debated in Palm OS programming forums. On
one hand, it is a reasonably effective way to enforce shareware trial periods. On
the other hand, it is rude to a handheld user to leave garbage data behind, data
that slows down every HotSync operation. Weigh the advantages of using
orphaned preferences carefully against their disadvantages before using them.

Reading and Setting System Preferences
The Palm OS also maintains a database of global settings for the system itself. Some
of these settings, such as whether private records are currently hidden or what the
current date and time formats are, may be of interest to your application. The

Caution

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 397

398 Part IV ✦ Storing Information on the Handheld

PrefGetPreferences function allows you to retrieve the system preferences, which
the function returns as a SystemPreferencesType structure:

SystemPreferencesType sysPrefs;

PrefGetPreferences(&sysPrefs);

The SystemPreferencesType structure is large and convoluted, and it has
evolved continuously with each new release of the Palm OS. See Appendix A,
“Palm OS API Quick Reference,” for a complete listing of all the system preference
fields and their meanings.

Because the SystemPreferencesType occupies a fair chunk of memory, if you
need to retrieve only a single value from the system preferences, use the PrefGet
Preference function, instead of PrefGetPreferences. In fact, the documentation
from Palm Computing recommends that you use the newer PrefGetPreference
instead of PrefGetPreferences. The PrefGetPreference function takes a member
of the enum SystemPreferencesChoice, defined in the Palm OS header
Preferences.h, as an argument, which determines the preference the function
retrieves and returns as a UInt32 value. You may have to cast the return value,
because the data stored in the system preferences are not all UInt32 values. As an
example, here is the section of Librarian’s StartApplication function that retrieves
the private records system preference:

if (gROMVersion >=
sysMakeROMVersion(3,5,0,sysROMStageRelease,0))
gPrivateRecordStatus = (privateRecordViewEnum)

PrefGetPreference(prefShowPrivateRecords);
else {

if ((Boolean) PrefGetPreference(prefHidePrivateRecordsV33))
gPrivateRecordStatus = hidePrivateRecords;

else
gPrivateRecordStatus = showPrivateRecords;

}

Prior to Palm OS 3.5, record masking does not exist, so the system preference con-
trolling whether or not private records should be shown is a simple Boolean value,
prefHidePrivateRecordsV33, which the code in the example translates into an
appropriate privateRecordViewEnum value for use in Librarian.

If you are using earlier Palm OS header files than those that ship with the 3.5 SDK,
you should retrieve private record display status by passing the prefHide
PrivateRecords constant to PrefGetPreference. The prefHidePrivate
RecordsV33 constant was introduced with the advent of Palm OS 3.5, because
some restructuring of the SystemPreferencesChoice enum was necessary to
squeeze in the new prefShowPrivateRecords constant.

Note

Cross-
Reference

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 398

399Chapter 12 ✦ Storing and Retrieving Data

Much like the SystemPreferencesType structure, the SystemPreferences
Choice enum has evolved considerably since its introduction in Palm OS version
2.0. See Appendix A, “Palm OS API Quick Reference,” for a complete listing of the
members of the SystemPreferencesChoice enumerated type.

The Palm OS also offers PrefSetPreference for directly setting system-wide prefer-
ences. The PrefSetPreference function has the following prototype:

void PrefSetPreference (SystemPreferencesChoice choice,
UInt32 value)

You must cast any value you wish to set via PrefSetPreference into a UInt32
value before passing it to the function, even though many values in the System
PreferencesType structure are not of type UInt32. For example, the following
code sets the handheld’s default long date format to display dates in the form of
27 Feb 2000:

PrefSetPreference(prefLongDateFormat, (UInt32) dfDMYLong);

You may also use the older PrefSetPreferences function to set system preferences,
but like PrefGetPreferences, it requires making space in memory for the entire
SystemPreferencesType structure. Palm Computing recommends that you not
use PrefSetPreferences in current versions of the Palm OS.

Using Feature Memory
Starting with version 3.1, the Palm OS supports the use of feature memory. Feature
memory stores data in a storage heap rather than in the dynamic heap, allowing
stored values to persist between invocations of an application. However, feature
memory does not survive across a soft reset, so you should not store any data that
requires actual permanence exclusively in feature memory. Also, since feature
memory exists in a storage heap, it is no quicker to write to than it is to write to a
database, so anything stored in feature memory should not require frequent modifi-
cation. Primarily, feature memory is a performance optimization, used in situations
where an application does not have access to its global variables, or where the
32-bit storage available in a regular feature (see Chapter 10, “Programming System
Elements) is not enough to hold the data.

To allocate a chunk of feature memory, call the FtrPtrNew function, which has the
following prototype:

Err FtrPtrNew (UInt32 creator, UInt16 featureNum, UInt32 size,
void **newPtrP)

Cross-
Reference

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 399

400 Part IV ✦ Storing Information on the Handheld

The creator parameter is the creator ID of the application requesting a chunk of
feature memory, and featureNum is the application-defined number identifying the
feature itself. Specify the size of the desired memory chunk, in bytes, in the size
parameter. The FtrPtrNew function returns a pointer to the newly allocated chunk
via the newPtrP parameter.

Once you have allocated feature memory, you write to it using the DmWrite func-
tion, because memory in the storage area does not support direct writing:

DmWrite(myData, 0, &myData, sizeof(myData));

You can retrieve values from feature memory using the FtrGet function:

Err error;

error = FtrGet(myCreator, myFeatureNum, (UInt32 *)&value);

The FtrGet function returns 0 if it successfully retrieves a feature, or an error code
if it could not find the requested feature. Because the values normally stored by
the feature manager are simple UInt32 numeric values, you must cast the return
value in the FtrGet function’s third parameter to a pointer type. Once you have the
pointer, you may read from it like any other pointer; if you want to modify the value
at the pointer, though, be sure to use DmWrite.

An example for proper use of feature memory is a function that needs to access an
application’s preferences in response to a launch code other than sysAppLaunch
CmdNormalLaunch. If this function is called frequently, opening the preferences
database each time could be quite slow. The following example allocates a chunk of
feature memory and caches the application’s preferences within it, so that the func-
tion needs to perform the slow database opening routine only once after a soft
reset instead of every time the function is called:

MyAppPreferencesType prefs,
void *newPrefs;

if (FtrGet(myCreator, myFeatureNum, (UInt32 *)&prefs) != 0) {
// The feature memory does not exist, so allocate it.
FtrPtrNew(myCreator, myFeatureNum, 32, &newPrefs);

// Open the preferences database.
PrefGetAppPreferences(myCreator, myPrefID, &prefs,

sizeof(prefs), true);

// Write the preferences to feature memory.
DmWrite(newPrefs, 0, &prefs, sizeof(prefs));

}

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 400

401Chapter 12 ✦ Storing and Retrieving Data

The Palm OS also offers other functions for manipulating feature memory, such as
FtrPtrResize for resizing a chunk of feature memory and FtrPtrFree for explicitly
releasing the memory allocated to a chunk of feature memory. The FtrPtrFree func-
tion also unregisters the feature that holds the pointer to the feature memory
chunk, which clears the reference to the freed memory from the system feature
table, thereby preventing accidental use of memory that no longer exists.

Summary
In this chapter, you were shown three different persistent storage techniques in the
Palm OS — databases, preferences, and feature memory — and how to use them.
After reading this chapter, you should understand the following:

✦ A Palm OS database consists of some header information and a list of records
or resources, which may reside anywhere on the same card as the database
header.

✦ Databases keep track of the locations of their records using the LocalID of
each record, an offset from the start of the memory card where the record
lives.

✦ Every database may be identified by its unique name, a creator ID, and its
database type.

✦ Databases may be opened via the DmOpenDatabase function in a number of
different modes, including read/write, read only, write only, and either show-
ing or hiding private records.

✦ Most of a database’s header information may be viewed with DmDatabaseInfo
and modified with DmSetDatabaseInfo.

✦ An important part of creating a new database is the creation and initialization
of its application info block, a section of memory that maintains information
about the database as a whole.

✦ Application preferences provide a way to store information that is not appro-
priate for storage in the application’s database but that should still be saved
between invocations of the application.

✦ Use the PrefGetPreference and PrefSetPreference functions to retrieve and
set the values of system preferences.

✦ Feature memory is a performance optimization for storing small amounts of
data that does not need to persist over soft system resets.

✦ ✦ ✦

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 401

4676-7 ch12.f.qc 10/16/00 8:29 AM Page 402

Manipulating
Records

Chapter 12, “Storing and Retrieving Data,” discussed
manipulation of databases on a grand scale, covering

creation, deletion, and modification of entire databases. This
chapter looks at databases on a smaller scale, concentrating
on individual records within a database. Most of the work
a Palm OS application must perform to save, retrieve, and
modify its data happens at the record level.

This chapter also deals with records’ close cousins, resources.
Most resources are user interface elements, which you need
only create in Constructor or PilRC and then access with the
usual Palm OS user interface routines. Some resources, like
bitmaps and app info string lists, require an application to use
different techniques to make use of their data when an applica-
tion is running, and this chapter will show you how.

Once you have an understanding of how to use database
records, you can implement one of the most useful features
of the Palm OS: the global find system. The last section of this
chapter shows you what you need to add to your application
to make it support the global find facility.

Working with Records
Before we dive into the specifics of manipulating records,
an explanation of the Palm OS philosophy behind organizing
records is in order. In the interests of efficiency, the ROM
applications and the Palm OS database routines rely on a
pre-sorted database model. It is not a requirement that your
database be sorted, and the Palm OS can handle unsorted
databases, but storing records in a sorted order allows for
rapid population of tables and lists from database records.

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Comparing records

Creating, deleting,
and modifying
records

Finding and sorting
records

Categorizing records

Implementing private
records

Creating, deleting,
and modifying
resources

Reading resource
data

Implementing the
global find facility

✦ ✦ ✦ ✦

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 403

404 Part IV ✦ Storing Information on the Handheld

Decreasing the time required to display data in this way causes data to appear
more quickly on the screen, thereby not irritating an impatient user. In a database
containing many records, it is much quicker for an application to iterate over
record indices in a sorted database than it is to skip around through the
database, searching for individual records.

So if the Palm OS database model prefers a pre-sorted set of records, does this
mean you are stuck with sorting your database in only one way? Not at all. Instead
of trying to sort records every time you try to display them, you can re-sort the
database only when the user wants to change the sort order. The built-in Address
Book application and Librarian both use this approach. When the user changes the
sort order in either application’s preferences dialog, the application sorts the entire
database when the user closes the dialog. In this way, the lengthy sorting process
happens only infrequently, when the user requests a change in the sort order,
instead of every single time the records must be drawn in a table or list.

Looking at Records in the Librarian Sample Application
Librarian’s record format is designed to use as little space as possible to store each
record. Because a record in Librarian is composed mostly of variable-length strings,
it would be wasteful to devote a fixed amount of space to each record, when only
enough space to store each string is really required.

To achieve this kind of storage efficiency, Librarian uses the same technique
employed by the built-in Address Book application. Librarian effectively has two
database formats: LibPackedDBRecord, a packed format for actual record storage,
and LibDBRecordType, an expanded format that is easier to access once a record
has been retrieved. The LibPackedDBRecord structure, along with a couple
structures it relies on, is defined in librarianDB.h as follows:

typedef struct {
unsigned reserved :1;
unsigned bookStatus :2;
unsigned printStatus :2;
unsigned format :2;
unsigned read :1;

} LibStatusType;

typedef union {
struct {

unsigned reserved :7;
unsigned note :1;
unsigned price :1;
unsigned isbn :1;
unsigned printing :1;
unsigned year :1;
unsigned publisher :1;
unsigned firstName :1;
unsigned lastName :1;
unsigned title :1;

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 404

405Chapter 13 ✦ Manipulating Records

} bits;
UInt16 allBits;

} LibDBRecordFlags;

typedef struct {
LibStatusType status;
LibDBRecordFlags flags;
unsigned char lastNameOffset;
unsigned char firstNameOffset;
unsigned char yearOffset;
unsigned char noteOffset;
char firstField;

} LibPackedDBRecord;

The LibStatusType structure contains fixed-length information that every
Librarian record must keep track of, such as whether the book is in print or in
what format (hardcover or paperback) the book was printed. These pieces of
information are stored in bit fields, which Librarian accesses using the following
enumerated types, also defined in librarianDB.h:

// BookStatusType
// Enum for the general status of a book. Used with the
// bookStatus member of LibStatusType.

typedef enum {
bookStatusHave = 0,
bookStatusWant,
bookStatusOnOrder,
bookStatusLoaned,
bookStatusCount

} BookStatusType;

// PrintStatusType
// Enum for the print status of a book record. Note that the
// status field is actually four bits long, but Librarian only
// makes use of three of those bits. Used with the printStatus
// member of LibStatusType.

typedef enum {
printStatusInPrint = 0,
printStatusOutOfPrint,
printStatusNotPublished,
printStatusCount

} PrintStatusType;

// FormatType
// Enum for the format of the book. Used with the format member
// of LibStatusType.

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 405

406 Part IV ✦ Storing Information on the Handheld

typedef enum {
formatHardcover = 0,
formatPaperback,
formatTradePaperback,
formatOther,
formatCount

} FormatType;

The second field in LibPackedDBRecord is of type LibDBRecordFlags, which is
a union used to keep track of which fields in a record actually contain data. The
lastNameOffset, firstNameOffset, yearOffset, and noteOffset fields store
the offsets of important fields from the start of firstField so they may be quickly
accessed in place elsewhere in the application.

Starting at firstField, which is actually just a placeholder for the first character
of the first string stored in the packed record, Librarian crams each field’s data into
the record, one after another, each one terminated with a trailing null character.
This scheme means that the total size of a Librarian record varies widely, depend-
ing entirely on its contents. Librarian’s LibUnpackedSize function provides an
easy way to determine how big a record is:

static UInt32 LibUnpackedSize (LibDBRecordType *record)
{

UInt32 size;
Int16 i;

// Initial size is the size of a packed record, minus the
// character placeholder that provides the position of the
// first field.
size = sizeof(LibPackedDBRecord) - sizeof(char);

// Add the length of each field that contains data, plus
// one byte for each to accommodate a terminating null
// character.
for (i = 0; i < libFieldsCount; i++) {

if (record->fields[i] != NULL)
size += StrLen(record->fields[i]) + 1;

}
return size;

}

An unpacked record in Librarian, and the enumerated type used to access its fields,
looks like this:

typedef enum {
libFieldTitle = 0,
libFieldLastName,
libFieldFirstName,
libFieldPublisher,
libFieldYear,
libFieldPrinting,
libFieldIsbn,

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 406

407Chapter 13 ✦ Manipulating Records

libFieldPrice,
libFieldNote,
libFieldsCount

} LibFields;

typedef struct {
LibStatusType status;
char *fields[libFieldsCount];

} LibDBRecordType;

The LibDBRecordType structure is much easier to work with than the packed record
structure, since all the text fields are readily available through the fields array.

In order for Librarian to make use of this dual record structure scheme, it needs
to be able to translate records between the two formats. The PackRecord and
UnpackRecord functions serve this purpose. These two functions look like this:

static void PackRecord (LibDBRecordType *record,
MemPtr recordDBEntry)

{
UInt32 offset;
Int16 index;
UInt16 length;
MemPtr p;
LibDBRecordFlags flags;
LibPackedDBRecord *packed = 0;
Char lastNameOffset = 0, firstNameOffset = 0,

yearOffset = 0, noteOffset = 0;

flags.allBits = 0;

// Write book status structure into packed record.
DmWrite(recordDBEntry, (UInt32)&packed->status,

&record->status, sizeof(record->status));
offset = (UInt32)&packed->firstField;

for (index = 0; index < libFieldsCount; index++) {
if (record->fields[index] != NULL) {

p = record->fields[index];
length = StrLen(p) + 1;

// Write text field data to packed record.
DmWrite(recordDBEntry, offset, p, length);
offset += length;
SetBitMacro(flags.allBits, index);

}
}

// Write field flags to packed record.
DmWrite(recordDBEntry, (UInt32)&packed->flags.allBits,

&flags.allBits, sizeof(flags.allBits));

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 407

408 Part IV ✦ Storing Information on the Handheld

// Set or clear field offsets, as necessary.
index = 0;
if (record->fields[libFieldTitle] != NULL)

index += StrLen(record->fields[libFieldTitle]) + 1;
if (record->fields[libFieldLastName] != NULL) {

lastNameOffset = index;
index += StrLen(record->fields[libFieldLastName]) + 1;

}
if (record->fields[libFieldFirstName] != NULL) {

firstNameOffset = index;
index += StrLen(record->fields[libFieldFirstName]) + 1;

}
if (record->fields[libFieldPublisher] != NULL)

index += StrLen(record->fields[libFieldPublisher]) + 1;
if (record->fields[libFieldYear] != NULL) {

yearOffset = index;
index += StrLen(record->fields[libFieldYear]) + 1;

}
if (record->fields[libFieldPrinting] != NULL)

index += StrLen(record->fields[libFieldPrinting]) + 1;
if (record->fields[libFieldIsbn] != NULL)

index += StrLen(record->fields[libFieldIsbn]) + 1;
if (record->fields[libFieldPrice] != NULL)

index += StrLen(record->fields[libFieldPrice]) + 1;
if (record->fields[libFieldNote] != NULL)

noteOffset = index;

DmWrite(recordDBEntry, (UInt32)(&packed->lastNameOffset),
&lastNameOffset, sizeof(lastNameOffset));

DmWrite(recordDBEntry, (UInt32)(&packed->firstNameOffset),
&firstNameOffset, sizeof(firstNameOffset));

DmWrite(recordDBEntry, (UInt32)(&packed->yearOffset),
&yearOffset, sizeof(yearOffset));

DmWrite(recordDBEntry, (UInt32)(&packed->noteOffset),
¬eOffset, sizeof(noteOffset));

}

static void UnpackRecord (LibPackedDBRecord *packed,
LibDBRecordType *record)

{
Int16 index;
UInt16 flags;
char *p;

record->status = packed->status;
flags = packed->flags.allBits;
p = &packed->firstField;

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 408

409Chapter 13 ✦ Manipulating Records

for (index = 0; index < libFieldsCount; index++) {
if (GetBitMacro(flags, index) != 0) {

record->fields[index] = p;
p += StrLen(p) + 1;

}
else {

record->fields[index] = NULL;
}

}
}

The PackRecord function has a much harder job than UnpackRecord, since
PackRecord must calculate the offsets of the last name, first name, year, and note
fields and write these values into the packed record structure. Also, PackRecord
must set and clear the appropriate flags in its flags field to indicate which text
fields contain data and which are empty.

The UnpackRecord function needs only to look through the flags field of a packed
record to determine which fields have data, and then iterate over the pile of strings
starting at the firstField member of the packed record, separating the strings
into the fields array of an unpacked record.

These two packing functions, as well as other functions in other parts of Librarian,
make use of the following macros to easily retrieve, set, and clear flag bits in bit fields:

#define BitAtPosition(pos) ((UInt16)1 << (pos))
#define GetBitMacro(bitfield, index) ((bitfield) & \

BitAtPosition(index))
#define SetBitMacro(bitfield, index) ((bitfield) |= \

BitAtPosition(index))
#define RemoveBitMacro(bitfield, index) ((bitfield) &= \

~BitAtPosition(index))

Comparing Records
Because every application stores different kinds of data, a single Palm OS function
for sorting databases is impractical. Instead, each application provides its own
callback function for comparing records, which the system uses to sort the records
into the proper order. Various Palm OS functions, detailed later in this chapter,
use this callback to sort the database and to find the proper location to insert
new records.

The application-defined callback for comparing two records in a database should
have the following prototype:

typedef Int16 DmComparF (void* rec1, void* rec2, Int16 other,
SortRecordInfoPtr rec1SortInfo,
SortRecordInfoPtr rec2SortInfo, MemHandle appInfoH)

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 409

410 Part IV ✦ Storing Information on the Handheld

The first two parameters, rec1 and rec2, are pointers to the two records that
should be compared. Along with the information contained in each record, the
system also provides other information that may be useful for sorting the records.
The other parameter holds a value that is specific to your application. You may
use other for any extra integer information you want to pass along when using
the other Palm OS functions that require the callback function. For example, if
your application allows for more than one way of sorting records, you can use the
other parameter to specify which sort order should be assumed when comparing
records. The Address Book uses this kind of scheme to allow sorting by last name
or by company.

The next two parameters contain a SortRecordInfoType structure for each of the
two records. Within the Palm OS header file DataMgr.h, SortRecordInfoType is
defined as follows:

typedef struct {
UInt8 attributes;
UInt8 uniqueID[3];

} SortRecordInfoType;

In SortRecordInfoType, the attributes field contains the attributes for a
particular record, which include the category of the record and all its status
flags, such as whether or not the record is marked private. The uniqueID
parameter contains the record’s unique ID within the database.

The information in the rec1SortInfo and rec2SortInfo parameters to
DmComparF may be useful for sorting records that might otherwise be identical
according to your application’s normal sorting criteria. Along with all the other
information provided to DmComparF, the system also supplies a handle to the
database’s application info block in the appInfoH parameter.

For most applications, the rec1SortInfo, rec2SortInfo, and appInfoH
parameters are overkill; just having pointers to the two records and the other
parameter usually supplies more than enough information to compare two
records. Still, the other three parameters might be useful if your application needs
to perform more unusual sorting tasks, such as sorting records by their categories.

To indicate how the two records compare, the DmComparF callback must return
a signed integer value n, where n is one of the following values:

✦ n < 0 if the first record should come before the second record

✦ n > 0 if the first record should come after the second record

✦ 0 if the two records can occupy exactly the same place in the sort order

Notice that these return values are exactly the same as the return values of the
standard C function strcmp and its Palm OS cousin, StrCompare. This fact
should make it easier for you to remember what to return when writing a callback
comparison function.

Note

Tip

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 410

411Chapter 13 ✦ Manipulating Records

As an example, the following implementation of DmComparF makes a simple string
comparison between two records’ name fields. Note that the other, rec1SortInfo,
rec2SortInfo, and appInfoH parameters are completely unused in this function:

Int16 MyCompareFunc (void* rec1, void* rec2, Int16 other,
SortRecordInfoPtr rec1SortInfo,
SortRecordInfoPtr rec2SortInfo, MemHandle appInfoH)

{
return StrCompare(rec1->name, rec2->name);

}

Unlike this basic example, the Librarian sample application’s LibComparePacked
Records function is quite complex. There are multiple sort orders possible in the
Librarian application, and each one changes which of Librarian’s record fields
should be compared, and in what order, to determine the relative sort values of
two records. Also, empty fields are possible in Librarian records, which further
complicates matters. Listing 13-1 shows the LibComparePackedRecords function.

Listing 13-1: Librarian’s LibComparePackedRecords function

static Int16 LibComparePackedRecords (LibPackedDBRecord *r1,
LibPackedDBRecord *r2, Int16 showInList,
SortRecordInfoPtr info1, SortRecordInfoPtr info2,
MemHandle appInfoH)

{
UInt16 whichKey1, whichKey2;
char *key1, *key2;
Int16 result;

// Records that don’t contain data in the primary sort
// field for the current sort order should be sorted before
// records that do contain data. For example, in
// libShowAuthorTitle sort order, any record containing
// author data should come after a record without an
// author.
switch (showInList) {

case libShowAuthorTitle:
// Does r1 have empty author data?
if ((! r1->flags.bits.lastName) &&

(! r1->flags.bits.firstName)) {
// Does r2 have empty author data?
if ((! r2->flags.bits.lastName) &&

(! r2->flags.bits.firstName))
// Neither r1 nor r2 contains author data,
// so LibComparePackedRecords needs to
// compare the records field by field to
// determine sort order.
break;

Continued

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 411

412 Part IV ✦ Storing Information on the Handheld

Listing 13-1 (continued)

// r1 has no author data, r2 does have author
// data. Therefore, r1 < r2.
else {

result = -1;
return result;

}
}
else {

// r1 has author data, r2 does not have author
// data. Therefore, r1 > r2.
if ((! r2->flags.bits.lastName) &&

(! r2->flags.bits.firstName)) {
result = 1;
return result;

}
}
break;

case libShowTitleAuthor:
case libShowTitleOnly:

// Does r1 have empty title data?
if (! r1->flags.bits.title) {

// Does r2 have empty title data?
if (! r2->flags.bits.title)

// Neither r1 nor r2 contains title data,
// so LibComparePackedRecords needs to
// compare the records field by field to
// determine sort order.
break;

// r1 has no title data, r2 does have title
// data. Therefore, r1 < r2.
else {

result = -1;
return result;

}
}
else {

// r1 has title data, r2 does not have title
// data. Therefore, r1 > r2.
if (! r2->flags.bits.title) {

result = 1;
return result;

}
}
break;

default:
break;

}

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 412

413Chapter 13 ✦ Manipulating Records

// Both records contain primary key data, or both records
// have empty primary key data. Either way,
// LibComparePackedRecords must now compare the two records
// field by field to determine sort order.
whichKey1 = 1;
whichKey2 = 1;

do {
LibFindKey(r1, &key1, &whichKey1, showInList);
LibFindKey(r2, &key2, &whichKey2, showInList);

// A key with NULL loses the StrCompare.
if (key1 == NULL) {

// If both are NULL then return them as equal.
if (key2 == NULL) {

result = 0;
return result;

}
else

result = -1;
}
else if (key2 == NULL)

result = 1;
else {

result = StrCaselessCompare(key1, key2);
if (result == 0)

result = StrCompare(key1, key2);
}

} while (! result);

return result;
}

The first thing LibComparePackedRecords tries to determine is whether the pri-
mary key field for each record contains any data. The primary key is the field that
has first priority when LibComparePackedRecords tries to compare two records.
To determine which field is the primary key, LibComparePackedRecords looks at
the value of its showInList parameter.

The LibComparePackedRecords function sorts empty fields before those that
contain data so they will appear at the top of the list. If one of the records has
an empty primary key field and the other record’s primary key contains data,
LibComparePackedRecords will have enough data to compare the records with-
out even looking at the contents of their fields, and it will return the appropriate
value and then exit.

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 413

414 Part IV ✦ Storing Information on the Handheld

If both records have primary key data, or if both records have empty primary keys,
LibComparePackedRecords compares the records field by field to determine which
record should come first. To accomplish this task, LibComparePackedRecords calls
a helper function, LibFindKey, within a do ... while loop to get the offsets of the
appropriate strings within each record. The LibFindKey function is shown in
Listing 13-2.

Listing 13-2: Librarian’s LibFindKey function

static void LibFindKey (LibPackedDBRecord *record, char **key,
UInt16 *whichKey, Int16 showInList)

{
LibDBRecordFlags fieldFlags;

fieldFlags.allBits = record->flags.allBits;

ErrFatalDisplayIf(*whichKey == 0 || *whichKey == 6,
“Bad sort key”);

switch (showInList) {
case libShowAuthorTitle:

if (*whichKey == 1 && fieldFlags.bits.lastName) {
*whichKey = 2;
goto returnLastNameKey;

}
if (*whichKey <= 2 && fieldFlags.bits.firstName) {

*whichKey = 3;
goto returnFirstNameKey;

}
if (*whichKey <= 3 && fieldFlags.bits.title) {

*whichKey = 4;
goto returnTitleKey;

}
if (*whichKey <= 4 && fieldFlags.bits.year) {

*whichKey = 5;
goto returnYearKey;

}
break;

case libShowTitleAuthor:
case libShowTitleOnly:

if (*whichKey == 1 && fieldFlags.bits.title) {
*whichKey = 2;
goto returnTitleKey;

}
if (*whichKey <= 2 && fieldFlags.bits.lastName) {

*whichKey = 3;
goto returnLastNameKey;

}

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 414

415Chapter 13 ✦ Manipulating Records

if (*whichKey <= 3 && fieldFlags.bits.firstName) {
*whichKey = 4;
goto returnFirstNameKey;

}
if (*whichKey <= 4 && fieldFlags.bits.year) {

*whichKey = 5;
goto returnYearKey;

}
break;

default:
break;

}

// All possible fields have been tried.
*whichKey = 7;
*key = NULL;
return;

returnTitleKey:
*key = &record->firstField;
return;

returnLastNameKey:
*key = (char *) &record->firstField +

record->lastNameOffset;
return;

returnFirstNameKey:
*key = (char *) &record->firstField +

record->firstNameOffset;
return;

returnYearKey:
*key = (char *) &record->firstField + record->yearOffset;
return;

}

If Librarian’s current sort order is libShowAuthorTitle, LibFindKey returns
fields from a record in the following order: author’s last name, author’s first name,
title of the book, year of publication. If the sort order is libShowTitleAuthor or
libShowTitleOnly, LibFindKey uses this order instead: title of the book, author’s
last name, author’s first name, year of publication. The LibFindKey function
looks for the first field in this order that contains data and returns a pointer to
that field’s string via the key parameter. If LibFindKey cannot find any key field
that contains data, it returns NULL in the key parameter. The function also
advances the whichKey parameter to an appropriate value so that the next
time LibComparePackedRecords calls LibFindKey, the search for a valid
key field can start after the fields that have already been tried.

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 415

416 Part IV ✦ Storing Information on the Handheld

As an example of how this works, assume that whichKey has a value of 1 and
that showInList is libShowAuthorTitle. With these values, LibFindKey looks
for data in the record’s lastName field. If it finds data there, the function returns
a pointer to the beginning of the lastName string in the key parameter and
advances whichKey to 2; if lastName is empty, LibFindKey looks next in the
record’s firstName field, followed by title, followed by year, returning the
first field in which it finds data, or NULL if they are all empty.

Once LibComparePackedRecords has isolated a key field in each record that
contains data, it calls StrCaselessCompare, passing the strings returned from
LibFindKey. If these two strings are unequal, LibComparePackedRecords returns
the value returned by StrCaselessCompare. Otherwise, LibComparePackedRecords
continues its do ... while loop, comparing the next key field in the first record
to the next key field in the second record until either StrCaselessCompare returns
a non-zero value, or all of the key fields in both records have been exhausted; in
either case, the two records are equal.

Finding Records
Use the DmFindSortPosition function to find where a record belongs in a
sorted database. Given a record that is currently unattached from a database,
DmFindSortPosition performs a binary search to locate the record’s proper
position in the database. The prototype for DmFindSortPosition looks like this:

UInt16 DmFindSortPosition (DmOpenRef dbP, void* newRecord,
SortRecordInfoPtr newRecordInfo, DmComparF *compar,
Int16 other)

The dbP parameter is a reference to an open database, which your application can
retrieve with the DmOpenDatabaseByTypeCreator or DmOpenDatabase functions.

For more information about opening databases, see Chapter 12, “Storing and
Retrieving Data.”

You should pass a pointer to a database record, with all its appropriate key fields
filled in, via the newRecord parameter. The newRecordInfo parameter may be
used to pass in extra information about the record.

You usually will not need to use newRecordInfo. Simply pass the value NULL for
this parameter if you do not wish to specify any extra record information.

The compar parameter is a pointer to your application’s record comparison
callback, and the other parameter allows you to send extra information to
that callback function via its own other parameter.

Tip

Cross-
Reference

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 416

417Chapter 13 ✦ Manipulating Records

Because Librarian must call DmFindSortPosition in a similar fashion from several
locations throughout its code, Librarian has a LibFindSortPosition function that
wraps DmFindSortPosition:

static UInt16 LibFindSortPosition (DmOpenRef db,
LibPackedDBRecord *record)

{
UInt8 showInList;
LibAppInfoType *appInfo;

// Retrieve the current sort order from Librarian’s
// application info block.
appInfo = MemHandleLock(LibGetAppInfo(db));
showInList = appInfo->showInList;
MemPtrUnlock(appInfo);

return DmFindSortPosition(db, (MemPtr) record, NULL,
(DmComparF *) &LibComparePackedRecords,
(UInt16) showInList);

}

The LibFindSortPosition function reduces the number of parameters needed to
find the sort position of a record to two: an open database reference, and a pointer
to the record itself. Since Librarian never needs to pass extra record information
to the DmFindSortPosition function, LibFindSortPosition just passes NULL for
the newRecordInfo parameter. Likewise, the record comparison callback never
changes, so LibFindSortPosition just passes the address of LibComparePacked
Records for the compar parameter. The current sort order of Librarian’s database
does change, so LibFindSortPosition function looks up the current sort order in
Librarian’s application info block and passes it as the special value in the other
parameter of DmFindSortPosition.

More details about using DmFindSortPosition, and Librarian’s LibFindSort
Position wrapper function, may be found later in this chapter’s sections on
creating and modifying records.

If you already know the unique ID of the record you want to find, you can use the
DmFindRecordByID function to return the record’s index in the database:

Err DmFindRecordByID (DmOpenRef dbP, UInt32 uniqueID,
UInt16* indexP)

The DmFindRecordByID function takes three arguments: an open database
reference, the unique ID of the desired record, and a pointer to a variable that
receives the index of the requested record. If for some reason DmFindRecordByID
is unable to locate a record with the given unique ID, the function returns an error
code. A successful search for the unique ID results in a 0 return value.

Cross-
Reference

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 417

418 Part IV ✦ Storing Information on the Handheld

One last function for finding records is DmSearchRecord. This function looks
through all open record databases for a record with a given handle and returns
an open database reference and the index of the record in that database if it finds
the record. The DmSearchRecord function has the following prototype:

UInt16 DmSearchRecord (MemHandle recH, DmOpenRef* dbPP)

The pointer to the database where the record is found is returned in the dbPP
parameter, and the function’s return value contains the index of the found record.
If DmSearchRecord is unable to find a record, it returns -1, and dbPP is NULL.

Creating Records
There are two ways to create a new record in a Palm OS database. The first method
allocates space for a new record with DmNewRecord and then writes data to the
new record. The second method involves creating the record in its own memory
chunk, and then attaching that chunk to the database with DmAttachRecord.
Both methods are perfectly valid; each has its uses.

Creating records with DmNewRecord
Using DmNewRecord to create records works well if your application needs to
view or edit the new record immediately, since DmNewRecord sets the busy bit on
the record it creates. The busy bit is a flag that indicates to the data manager that a
record is currently open and should be left alone. A busy record may not be opened
by another application until its busy bit is cleared with the DmReleaseRecord
function.

The DmNewRecord function takes three parameters: an open database reference,
a pointer to the desired index for the new record, and the size of the record in
bytes. If DmNewRecord successfully creates a new record, it returns a handle
to the new record. The prototype for DmNewRecord looks like this:

MemHandle DmNewRecord (DmOpenRef dbP, UInt16* atP, UInt32 size)

When you call DmNewRecord, the atP parameter should point to a variable con-
taining the index where you would like to insert the record; when DmNewRecord
returns, it replaces the contents of what atP points to with the actual index of the
newly created record. Record indices range from 0 to the total number of records
minus one. If you specify 0 as the index for the new record, DmNewRecord adds
the record at the beginning of the database:

MemHandle newRecordH;
UInt16 index = 0;

newRecordH = DmNewRecord(gDB, &index, size);

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 418

419Chapter 13 ✦ Manipulating Records

If the index number is greater than the number of records in the database,
DmNewRecord adds the record to the end of the database. You can ensure
that a record is appended to the end of the database by using the constant
dmMaxRecordIndex:

UInt16 index = dmMaxRecordIndex;

newRecordH = DmNewRecord(gDB, &index, size);

After the call above, index contains the actual index of the new record.

Usually, you should not add records to the end of the database, because that is
where the data manager keeps deleted and archived records. Adding records to the
end of the database can confuse record-sorting functions like DmFindSortPosition,
which assumes that deleted records always have a higher index than undeleted
records.

Most of the time, you will want to add a new record at its proper sort position in
the database. Use the DmFindSortPosition function to find where the new record
belongs, and then create the new record using DmNewRecord:

UInt16 index;
MyRecordType newRecord;
MemHandle newRecordH;
MyRecordType *newRecordP;

// Initialize the fields of the newRecord structure.

index = DmFindSortPosition(gDB, &newRecord, NULL,
(DmComparF *) MyCompareFunc, NULL);

newRecordH = DmNewRecord(gDB, &index, sizeof(newRecord));
newRecordP = MemHandleLock(newRecordH);
DmWrite(newRecordP, 0, &newRecord, sizeof(newRecord));
MemHandleUnlock(newRecordH);
DmReleaseRecord(gDB, index, true);

This example goes one step further than previous examples and actually writes
the new record’s data into the database with DmWrite. The DmWrite function has
four parameters: a pointer to a locked chunk of storage memory, the offset from
the beginning of that memory where DmWrite should start writing data, a pointer
to the data to write, and the size of the data in bytes. In the foregoing example,
the DmWrite function writes the entire newRecord structure to memory.

After you are finished reading from and writing to a record created with
DmNewRecord, call DmReleaseRecord to clear the busy bit on the new
record. The DmReleaseRecord function has three parameters: an open database
reference, the index of the record to release, and a Boolean value to indicate
whether the record should be marked dirty or not. Passing a true value for the
DmReleaseRecord function’s last parameter sets the record’s dirty bit, and a
false value leaves the dirty bit alone.

Caution

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 419

420 Part IV ✦ Storing Information on the Handheld

A record’s dirty bit is important during a HotSync operation. The HotSync Manager
uses the dirty bit to determine whether a record has changed or not. Be sure your
application sets the dirty bit if it changes a record; not setting the dirty bit
can cause an application’s conduit to improperly synchronize a record, since the
conduit then has no indication that the record has changed.

Creating records with DmAttachRecord
The second method for creating a new database record first creates the record
in its own independent storage memory chunk and then attaches that chunk to
a database using the DmAttachRecord function. This method works well if your
application does not view or edit the new record immediately, since DmAttach
Record does not set the busy bit on the new record. Likewise, it is not necessary
to remember to call DmReleaseRecord after creating a new record using the
DmAttachRecord function.

To start creating a new record with DmAttachRecord, you must first allocate a chunk
of storage memory and fill it with the new record’s data. Use the DmNewHandle
function to accomplish this task:

MyRecordType newRecord;
MemHandle newRecordH;
MyRecordType *newRecordP;
UInt16 index;
Err error;

// Initialize the fields of the newRecord structure.

newRecordH = DmNewHandle(gDB, sizeof(newRecord));
newRecordP = MemHandleLock(recordH);
DmWrite(newRecordP, 0, &newRecord, sizeof(newRecord));

After the code above executes, you have a free-floating chunk of memory containing
the new record. To attach this chunk to the database, first find where the record
belongs using DmFindSortPosition, and then attach the record at that position
using DmAttachRecord:

index = DmFindSortPosition(gDB, &newRecord, NULL,
(DmComparF *) MyCompareFunc, NULL);

MemHandleUnlock(recordH);
error = DmAttachRecord(gDB, &index, newRecordH, NULL);

// If all went well, index now contains the actual index where
// the record was inserted into the database.

if (error)
MemHandleFree(newRecordH);

Note

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 420

421Chapter 13 ✦ Manipulating Records

The DmAttachRecord function has four parameters: an open database reference,
a pointer to a variable containing the desired index for the new record, the handle
of the new record, and a pointer to another record handle. The last parameter of
DmAttachRecord may be used to replace an existing record in the database. If you
pass a pointer to a handle for the last parameter, DmAttachRecord replaces the
record at the requested index with the new record and returns a handle to the old
record via this pointer; see the “Modifying Records” section later in this chapter
for an example. A NULL value for the fourth parameter tells DmAttachRecord to
insert the record instead of replacing an existing one, in much the same way that
DmNewRecord works. Also similar to DmNewRecord is the way DmAttachRecord
deals with its index parameter; DmAttachRecord returns the actual index of the
new record via its index parameter.

The Librarian sample application uses the DmAttachRecord method to add new
records to its database, and it wraps the whole new record creation process in the
function LibNewRecord:

Err LibNewRecord (DmOpenRef db, LibDBRecordType *record,
UInt16 *index)

{
MemHandle recordH;
Err error;
LibPackedDBRecord *packed;
UInt16 newIndex;

// Allocate a chunk large enough to hold the new packed
// record.
recordH = DmNewHandle(db, LibUnpackedSize(record));
if (recordH == NULL)

return dmErrMemError;

// Copy the data from the unpacked record to the packed
// one.
packed = MemHandleLock(recordH);
PackRecord(record, packed);

// Get the index of the new record.
newIndex = LibFindSortPosition(db, packed);
MemPtrUnlock(packed);

// Attach new record in place and return the index of the
// new record in the index parameter.
error = DmAttachRecord(db, &newIndex, recordH, 0);
if (error)

MemHandleFree(recordH);
else

*index = newIndex;

return error;
}

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 421

422 Part IV ✦ Storing Information on the Handheld

Deleting Records
Deleting records from a Palm OS database requires a bit of finesse, because the data
manager expects to find deleted and archived records at the end of the database. In
an application with a conduit, deleted records need to stick around on the handheld
until the next HotSync operation, at which point the application’s conduit can delete
the corresponding records from the desktop version of the application’s database.
Likewise, archived records need to remain on the handheld until a HotSync opera-
tion can allow the conduit to properly archive a record on the desktop before
entirely removing it from the handheld.

Because of these deletion and archival requirements, the Palm OS provides three
functions for deleting records from a database, appropriate for different circum-
stances: DmRemoveRecord, DmDeleteRecord, and DmArchiveRecord.

The first record deletion function, DmRemoveRecord, actually deletes a record
outright, without giving the application’s conduit a chance to look at the deleted
record. This function is appropriate when the user creates a record on the hand-
held but then immediately deletes it. In this case, there is no corresponding record
on the desktop, so there is no need to keep the record at the end of the database
until the next HotSync operation. The DmRemoveRecord function needs only an
open database reference and the index of the record to remove:

Err error = DmRemoveRecord(gDB, index);

The DmDeleteRecord function frees the memory chunk associated with a record’s
data but marks the record as deleted in the database header. A similar function,
DmArchiveRecord, frees a record’s data chunk and sets the record’s archive bit in
the database header. Just as with DmRemoveRecord, these two functions require
an open database reference and the index of the record to delete or archive.

You must be sure your application moves deleted and archived records to the end
of the database itself using the DmMoveRecord function; the system does not do
this important step for you. The following code takes care of deleting or archiving
a record and moving it to the end of the database:

if (gArchive)
DmArchiveRecord(gDB, index);

else
DmDeleteRecord(gDB, index);

DmMoveRecord(gDB, index, DmNumRecords(gDB));

The last parameter of the DmMoveRecord indicates the index where a record
should be moved to, which causes the indices of all the records following this
insertion point to increase by one. You may pass a value one greater than the
index of the last record to move a record to the end of the database. The example
above uses the function DmNumRecords to determine the number of records in
the database and uses that function’s return value as the index to which a deleted
or archived record should be moved (recall that record indices are zero-based).

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 422

423Chapter 13 ✦ Manipulating Records

An accompanying function, DmDetachRecord, allows you to deliberately orphan a
database record by removing its entry in the database header but leaving its data
chunk intact. The prototype for DmDetachRecord looks like this:

Err DmDetachRecord (DmOpenRef dbP, UInt16 index,
MemHandle* oldHP)

The first two parameters to DmDetachRecord take an open database reference
and the index of the record you would like to detach. If you supply a pointer to a
memory handle in the third parameter, DmDetachRecord returns the handle of the
detached record in this pointer. The DmDetachRecord function is a good way to
start moving a record from one database to another. Use DmDetachRecord to cut
the record from the first database, and then attach it to the second database using
DmAttachRecord.

Librarian encapsulates the code it needs to delete records in its DeleteRecord
function, shown below:

static void DeleteRecord (Boolean archive)
{

// Show the prior record. This provides context for the
// user, as it shows where the record was, and it allows a
// return to the same location in the database if the user
// is working through the records sequentially. If there
// isn’t a prior record, show the following record. If
// there isn’t a following record, don’t show a record at
// all.
gListFormSelectThisRecord = gCurrentRecord;
if (! SeekRecord(&gListFormSelectThisRecord, 1,

dmSeekBackward))
if (! SeekRecord(&gListFormSelectThisRecord, 1,

dmSeekForward))
gListFormSelectThisRecord = noRecord;

// Delete or archive the record.
if (archive)

DmArchiveRecord(gLibDB, gCurrentRecord);
else

DmDeleteRecord(gLibDB, gCurrentRecord);

// Deleted records are stored at the end of the database.
DmMoveRecord(gLibDB, gCurrentRecord, DmNumRecords(gLibDB));

// Since we just moved the gCurrentRecord to the end, the
// gListFormSelectThisRecord may need to be moved up one
// position.
if (gListFormSelectThisRecord >= gCurrentRecord &&

gListFormSelectThisRecord != noRecord)
gListFormSelectThisRecord--;

// Use whatever record we found to select.
gCurrentRecord = gListFormSelectThisRecord;

}

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 423

424 Part IV ✦ Storing Information on the Handheld

Librarian keeps track of the current record via a global variable, gCurrentRecord.
When the user deletes the current record, DeleteRecord ensures that gCurrent
Record is set to an appropriate value, because deleting a record makes it invalid
for display purposes. Likewise, Librarian also keeps track of which record in its
List view should be highlighted using the global gListFormSelectThisRecord;
DeleteRecord also ensures that this global variable is updated properly. The
SeekRecord function used in DeleteRecord is described later in this chapter,
in the section “Categorizing Records.”

Reading Records
If your application needs to read values from a record without writing to it, the data
manager allows the application to lock a handle to the record without marking it busy
by using the DmQueryRecord function. Calling DmQueryRecord looks like this:

MemHandle recordH = DmQueryRecord(gDB, index);
MyRecordType *recordP = MemHandleLock(recordH);
// Read values from recordP here.
MemHandleUnlock(recordH);

Modifying Records
Just as there is more than one way to create records, there is more than one
way to open a record so that your application may write to it. The first requires
DmGetRecord to retrieve a handle to the record, marking the record busy in the
process. The second method allocates a completely new memory chunk for the
changed record with DmNewHandle, copies the old values from the record to
the new chunk with DmQueryRecord, modifies the new chunk’s values, and then
replaces the original record with the new one using DmAttachRecord. A third
method, useful for text data displayed in fields in a table, relies on the field
manager’s FldSetText function to allow the user to edit the data in place.

Modifying records with DmGetRecord
The DmGetRecord function marks a record as busy so that no other applications
can mess with the record while your application is modifying it. Just as when
you’re creating a new record with DmNewRecord, you must call DmReleaseRecord
to clear the record’s busy bit after you are done making changes, and to set the
record’s dirty bit if necessary. Also, because all memory in the storage area is
protected, you may write to it using the DmWrite function only, or DmSet to
set a memory range to a particular value.

Changing a record with DmGetRecord requires the following steps:

1. Create a temporary record structure and copy the original record into it.

2. Change the temporary record structure’s fields to their new values.

3. Open the record with DmGetRecord.

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 424

425Chapter 13 ✦ Manipulating Records

4. Copy the changes from the temporary record to the actual record using
DmWrite.

5. Check to see if changes to the record have altered its sort position within the
database. If so, release the record and mark it dirty with DmReleaseRecord,
and then move the record to its proper index with DmMoveRecord.

6. If the record did not change position, release it and mark it dirty with
DmReleaseRecord.

The following function takes an open database reference and a pointer to the
index of a record and changes the record according to the steps outlined above:

Err ChangeRecord (DmOpenRef db, UInt16 *index)
{

MemHandle recordH;
MyRecordType tempRecord;
MyRecordType *record;
MyRecordType *cmp;
UInt16 attributes;
Boolean move = true;
Int16 i;

recordH = DmGetRecord(db, *index);
if (recordH == NULL)

return DmGetLastErr();
record = MemHandleLock(recordH);

// Copy the values from the actual record to a temporary
// record.
tempRecord = *record;

// Modify the temporary record here.
tempRecord.field = newValue;

// Copy the modified temporary record into the actual
// storage space of the real record.
DmWrite(record, 0, &tempRecord, sizeof(tempRecord));

// Determine if the record is in the proper sort order.
if (*index > 0) {

// Compare this record to the record before it.
cmp = MemHandleLock(DmQueryRecord(db, *index - 1));
move = (MyCompareFunc(cmp, record, 0, NULL, NULL,

NULL) > 0);
MemPtrUnlock(cmp);

} else {
move = false;

}

if (*index + 1 < DmNumRecords(db)) {
// Be sure not to move the record beyond the deleted
// records at the end of the database.

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 425

426 Part IV ✦ Storing Information on the Handheld

DmRecordInfo(db, *index + 1, &attributes, NULL, NULL);
if (! (attributes & dmRecAttrDelete)) {

// Compare this record to the record after it.
cmp = MemHandleLock(DmQueryRecord(db, *index + 1));
move = (! move) && (MyCompareFunc(record,

cmp, 0, NULL, NULL, NULL) > 0);
MemPtrUnlock(cmp);

}
}

if (move) {
// The record isn’t in the right position, so move it.
i = DmFindSortPosition(db, record, NULL,

&MyCompareFunc, 0);

// Unlock and release the record before moving it.
MemHandleUnlock(recordH);
DmReleaseRecord(db, index, true);

DmMoveRecord(db, *index, i);
if (i > *index)

i--;
*index = i; // Return new record database position.

} else {
MemHandleUnlock(recordH);
DmReleaseRecord(db, index, true);

}

return 0;
}

If you have changed any key fields that your application uses to sort records,
use DmMoveRecord to put the changed record into its proper sort order within
the database. By calling the application-defined MyCompareFunc callback
function directly, the ChangeRecord function determines whether the modified
record should be moved. First, the example compares the changed record with the
record before it, which is the record located at *index - 1. Then, ChangeRecord
compares the modified record with the record following it, at *index + 1. If
the record is out of place, ChangeRecord finds the record’s proper sort position
using DmFindSortPosition, and then moves the record to the new location with
DmMoveRecord. Afterward, ChangeRecord modifies its index parameter to
reflect the altered record’s new index.

You can also set individual fields in a record without having to copy the entire
record structure by using the standard C offsetof macro, which returns the offset
of a field within a structure. This approach is a bit more efficient when you need to
modify only a single value in a record:

DmWrite(recordP, offsetof(MyRecordType, field),
&newValue, sizeof(newValue));

Tip

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 426

427Chapter 13 ✦ Manipulating Records

In fact, this method may be required for writing large records. Because stack space
is very limited in the Palm OS (less than 4KB on some hardware), copying an
entire large record into a temporary structure may not be an option. In this case,
you can use the offset to write the record’s data a small piece at a time.

Modifying records with DmAttachRecord
A slightly different approach to modifying records involves the DmAttachRecord
function. Instead of modifying an existing record, this method allocates a brand
new chunk of storage memory to contain the changed record. Here are the steps
to follow when modifying a record using DmAttachRecord:

1. Create a temporary record structure and copy the original record into it.

2. Change the temporary record structure’s fields to their new values.

3. Allocate a chunk of memory with DmNewHandle to hold the changed record.

4. Copy the temporary record into the new chunk of memory. You now have an
orphaned record, floating freely in storage RAM.

5. Check to see if changes to the record have altered its sort position within
the database. If so, move the original record to the correct index with
DmMoveRecord.

6. Replace the original record with the new memory chunk using
DmAttachRecord.

7. Dispose of the original record, which has now become an orphaned chunk
of memory.

The ChangeRecord2 function below performs exactly the same function as the
ChangeRecord function from the previous section, but using the DmAttachRecord
method outlined above instead of DmGetRecord:

Err ChangeRecord2 (DmOpenRef db, UInt16 *index)
{

Err result;
MemHandle recordH, changedRecordH, oldH;
MyRecordType tempRecord;
MyRecordType *record;
MyRecordType *changedRecord;
MyRecordType *cmp;
UInt16 attributes;
Boolean move = true;
Int16 i;

recordH = DmQueryRecord(db, *index);
record = MemHandleLock(recordH);

// Copy the values from the actual record to a temporary
// record.
tempRecord = *record;

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 427

428 Part IV ✦ Storing Information on the Handheld

// The original record has been copied and is no longer
// needed.
MemHandleUnlock(recordH);

// Modify the temporary record here.
tempRecord.field = newValue;

// Allocate a chunk for the changed record.
changedRecordH = DmNewHandle(db, sizeof(tempRecord));
if (changedRecordH == NULL) {

MemHandleUnlock(recordH);
return dmErrMemError;

}
changedRecord = MemHandleLock(changedRecordH);

// Copy the modified temporary record into the new
// memory chunk.
DmWrite(changedRecord, 0, &tempRecord, sizeof(tempRecord));

// Make sure the record is in the proper sort order.
if (*index > 0) {

// Compare this record to the record before it.
cmp = MemHandleLock(DmQueryRecord(db, *index - 1));
move = (MyCompareFunc(cmp, changedRecord, 0, NULL,

NULL, NULL) > 0);
MemPtrUnlock(cmp);

} else {
move = false;

}

if (*index + 1 < DmNumRecords(db)) {
// Be sure not to move the record beyond the deleted
// records at the end of the database.
DmRecordInfo(db, *index + 1, &attributes, NULL, NULL);
if (! (attributes & dmRecAttrDelete)) {

// Compare this record to the record after it.
cmp = MemHandleLock(DmQueryRecord(db, *index + 1));
move = (! move) && (MyCompareFunc(changedRecord,

cmp, 0, NULL, NULL, NULL) > 0);
MemPtrUnlock(cmp);

}
}

if (move) {
// The record isn’t in the right position, so move it.
i = DmFindSortPosition(db, changedRecord);
DmMoveRecord(db, *index, i);
if (i > *index)

i--;
*index = i; // Return new record database position.

}

4676-7 ch13.f.qc 10/16/00 8:30 AM Page 428

429Chapter 13 ✦ Manipulating Records

// Replace the original record, now located in its proper
// sort order, with the memory chunk containing the changed
// record.
result = DmAttachRecord(db, index, changedRecordH, &oldH);
MemHandleUnlock(changedRecordH);
if (result) return result;

// The original record is now a detached orphan, so its
// memory may be freed.
MemHandleFree(oldH);
return 0;

}

Since the method above never marks the record to change as busy with
DmGetRecord, and the DmAttachRecord function sets the dirty bit on a newly
attached record, there is no need to call DmReleaseRecord when done to clear
the busy bit or set the dirty bit. The DmReleaseRecord call in ChangeRecord2
also returns a handle, oldH, to the original record; this example does not need to do
anything with the original record once it has been replaced, and so ChangeRecord2
disposes of the handle with MemHandleFree.

The DmAttachRecord function is very handy for cutting and pasting between
two databases.

The Librarian sample application uses the DmAttachRecord method for committing
changes to a record in its database. Librarian’s LibChangeRecord function, shown
below, takes care of all the necessary work:

Err LibChangeRecord (DmOpenRef db, UInt16 *index,
LibDBRecordType *record, LibDBRecordFlags changedFields)

{
LibDBRecordType src;
MemHandle srcH;
Err result;
MemHandle recordH = 0;
MemHandle oldH;
Int16 i;
UInt32 changes = changedFields.allBits;
Int16 showInList;
LibAppInfoType *appInfo;
Boolean move = true;
UInt16 attributes;
LibPackedDBRecord* cmp;
LibPackedDBRecord* packed;

// LibChangeRecord does not assume that record is
// completely valid, so it retrieves a valid pointer to the
// record.
if ((result = LibGetRecord(db, *index, &src, &srcH)) != 0)

return result;

Tip

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 429

430 Part IV ✦ Storing Information on the Handheld

// Apply the changes to the valid record.
src.status = record->status;
for (i = 0; i < libFieldsCount; i++) {

// If the flag is set, point to the string, otherwise
// point to NULL.
if (GetBitMacro(changes, i) != 0) {

src.fields[i] = record->fields[i];
RemoveBitMacro(changes, i);

}
if (changes == 0)

break; // no more changes
}

// Make a new chunk with the correct size.
recordH = DmNewHandle(db, LibUnpackedSize(&src));
if (recordH == NULL) {

MemHandleUnlock(srcH);
return dmErrMemError;

}
packed = MemHandleLock(recordH);

// Copy the data from the unpacked record to the packed
// record.
PackRecord(&src, packed);

// The original record is copied and no longer needed.
MemHandleUnlock(srcH);

// Check if any of the key fields have changed. If they
// have not changed, this record is already in its proper
// place in the database, and LibChangeRecord can skip
// re-sorting the record.
if ((changedFields.allBits & sortKeyFieldBits) == 0)

move = false;

// Make sure *index - 1 < *index < *index + 1; if so, the
// record is already in sorted order. Deleted records are
// stored at the end of the database, so LibChangeRecord
// must also make sure not to sort this record past the end
// of any deleted records.
if (move) {

appInfo = MemHandleLock(LibGetAppInfo(db));
showInList = appInfo->showInList;
MemPtrUnlock(appInfo);

if (*index > 0) {
// Compare this record to the record before it.
cmp = MemHandleLock(DmQueryRecord(db, *index - 1));
move = (LibComparePackedRecords(cmp, packed,

showInList, NULL, NULL, NULL) > 0);
MemPtrUnlock(cmp);

} else {
move = false;

}

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 430

431Chapter 13 ✦ Manipulating Records

if (*index + 1 < DmNumRecords(db)) {
// Be sure not to move the record beyond the
// deleted records at the end of the database.
DmRecordInfo(db, *index + 1, &attributes, NULL,

NULL);
if (! (attributes & dmRecAttrDelete)) {

// Compare this record to the record after it.
cmp = MemHandleLock(DmQueryRecord(db,

*index + 1));
move = (! move) &&

(LibComparePackedRecords(packed, cmp,
showInList, NULL, NULL, NULL) > 0);

MemPtrUnlock(cmp);
}

}
}

if (move) {
// The record isn’t in the right position, so move it.
i = LibFindSortPosition(db, packed);
DmMoveRecord(db, *index, i);
if (i > *index)

i--;
*index = i; // Return new record database position.

}

// Attach the new record to the old index, which preserves
// the category and record ID.
result = DmAttachRecord(db, index, recordH, &oldH);
MemPtrUnlock(packed);
if (result) return result;

MemHandleFree(oldH);
return 0;

}

Note that because LibChangeRecord receives a LibDBRecordFlags structure
(changedFields) that indicates what fields in the record have changed,
LibChangeRecord saves itself a lot of work by looking in changedFields for
changed key fields before checking whether the record is in the right position
or not. If none of the key fields that Librarian uses to sort its data have been
changed, then the record is still in its proper sort order and does not need to
be moved. The sortKeyFieldBits macro that LibChangeRecord uses to make
this decision is defined as follows in librarianDB.c:

#define BitAtPosition(pos) ((UInt16)1 << (pos))
#define sortKeyFieldBits (BitAtPosition(libFieldTitle) | \

BitAtPosition(libFieldLastName) | \
BitAtPosition(libFieldFirstName) | \
BitAtPosition(libFieldYear))

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 431

432 Part IV ✦ Storing Information on the Handheld

Editing records in place
A field object can be used to edit a string in place within a record. In-place editing is
particularly useful in large text fields that may contain a lot of data, such as the Note
view in the various ROM applications. Less dynamic memory is required to edit a
large field in place than to copy all the data from the field to a database record.

With a little bit of setup, the field manager takes care of resizing the handle containing
the string as the user edits the text in the field. This method even works for string val-
ues that are stored within a larger structure in an application’s records; you simply
need to pass an offset from the start of the record where the string data begins.

To illustrate editing in place, consider the following record structure:

typedef struct {
Int16 data1;
Int32 data2;
Char stringData[20];

} MyRecordType;

The text string stored in stringData is a null-terminated string and may be of any
length, not just 20 characters. The following code sets up a text field for in-place
editing of the stringData field:

FormType *form;
FieldType *field;
MemHandle recordH;
MemHandle oldTextH;
MyRecordType *record;

form = FrmGetActiveForm();
field = FrmGetObjectPtr(form, FrmGetObjectIndex(form,

MyField));
oldTextH = FldGetTextHandle(field);

// Dispose of the old handle to prevent a memory leak.
if (oldTextH)

MemHandleFree(oldTextH);

recordH = DmGetRecord(gDB, index);
record = MemHandleLock(recordH);
FldSetText(field, recordH, offsetof(MyRecordType, stringData),

StrLen(record.stringData) + 1);

MemHandleUnlock(recordH);

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 432

433Chapter 13 ✦ Manipulating Records

Now the MyField text field is set up for in-place editing of a record’s stringData
field. You can actually dispense with calling MemHandleFree to free up the memory
occupied by the field’s old text handle if you are setting up in-place editing on a form
that has just been opened, because a text field that has just been initialized does not
have a text handle allocated for it yet; just in case, though, it’s never a bad idea to
dispose of the old handle, as this will prevent a memory leak if the field did, indeed,
have a text handle before your application called FldGetTextHandle.

Once editing is finished, you must perform a few cleanup tasks. Normally, you
would call something similar to the following code when closing the form that
contains the text field you are working with:

Boolean dirty = FldDirty(field);

if (dirty)
FldCompactText(field);

FldSetTextHandle(field, NULL);
DmReleaseRecord(gDB, index, dirty);

The first thing you should do is to compact the handle containing the text if the
field has been modified. Since the field manager resizes the text handle several
bytes at a time instead of one byte at a time, there might be more space allocated
for the string than is actually required. Call FldCompactText to trim the handle
down to the proper size so you are not wasting storage space with unnecessary
empty bytes.

Once you have compacted the text handle, disconnect the handle from the field by
calling FldSetTextHandle with NULL as its second parameter. The system frees the
memory allocated for a field’s text handle when disposing of the field. Since the text
handle in this case is actually the data stored in the application’s database, freeing
this memory would erase the data from this particular record. Disconnecting the
text handle from the field with FldSetTextHandle prevents this data loss.

Finally, you must release the record so the system can clear its busy bit. The
DmReleaseRecord function serves this purpose here, also setting the dirty bit
for the record, if necessary.

The in-place editing technique cannot connect more than one text field to multiple
strings in a database record. If two or more fields were hooked up to the same
record, they might both try to resize the handle, and the field manager is not set
up to deal with that situation.

Caution

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 433

434 Part IV ✦ Storing Information on the Handheld

Librarian uses the in-place editing technique in its Note view to allow in-place
editing of a large field. The NoteViewLoadRecord function takes care of setting
up in-place editing in the Note view:

static void NoteViewLoadRecord (void)
{

FieldType *field;
LibPackedDBRecord *packed;
MemHandle packedH;
Char *ptr;
UInt16 offset;

// Get a pointer to the memo field.
field = GetObjectPtr(NoteField);

// Set the font used in the memo field.
FldSetFont(field, gNoteFont);

// Retrieve the note field from the current database
// record. Librarian calls CreateNote before getting to
// NoteViewLoadRecord, which guarantees that the note field
// already exists.
packedH = DmQueryRecord(gLibDB, gCurrentRecord);
ErrFatalDisplayIf((! packedH), “Bad record”);
packed = MemHandleLock(packedH);

// Set a pointer to the location of the note field, using
// the note field offset stored in the packed database
// record.
ptr = &packed->firstField;
ptr += packed->noteOffset;

// Calculate the offset of the note field from the front of
// the packed database record, not from the beginning of
// the first field, since FldSetText wants the offset from
// the start of the record’s memory chunk.
offset = ptr - (char *)packed;

// Set the note field text to the contents of the note
// field.
FldSetText(field, packedH, offset, StrLen(ptr) + 1);

MemHandleUnlock(packedH);
}

Notice that NoteViewLoadRecord does not use the offsetof macro to determine the
offset of the record’s note field. Since Librarian uses variable-length records, and
there are a number of strings of different lengths that may or may not exist before
the note field in a record, a simple offsetof call will not return the correct location
of the note field. Instead, NoteViewLoadRecord uses the record structure’s
noteOffset field to determine where the note field begins.

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 434

435Chapter 13 ✦ Manipulating Records

The NoteViewSave function takes care of in-place editing cleanup in Librarian:

static void NoteViewSave (void)
{

FieldType *field;
UInt16 length;

field = GetObjectPtr(NoteField);

// If the field wasn’t modified then don’t do anything.
if (FldDirty(field)) {

// Release any free space in the note field.
FldCompactText(field);
DirtyRecord(gCurrentRecord);

}

length = FldGetTextLength(field);

// Clear the handle value in the field, otherwise the
// handle will be free when the form is disposed of.
// This call also unlocks the handle that contains the
// note string.
FldSetTextHandle(field, 0);

// Empty fields are not allowed because they cause
// problems.
if (length == 0)

DeleteNote();
}

Because of Librarian’s record structure, an empty string does not work well in one
of its fields, since it would still contain a single terminating null character. Other
routines in Librarian expect that an empty field will take up zero space in a record,
and leaving the trailing null of an empty string in the record would cause problems
later, so NoteViewSave deletes the note entirely with the DeleteNote function if the
note’s text field is empty.

Sorting Records
The Palm OS provides two functions for sorting all the records in a database:
DmInsertionSort and DmQuickSort. As its name implies, DmInsertionSort per-
forms an insertion sort of a database’s records, which works its way through the
database one record at a time, comparing each record with the preceding record
and inserting it into its proper sorted position if it is less than the preceding record.
The DmInsertionSort algorithm is very fast on a database that is already mostly
sorted, or on a small database containing about 20 or fewer records. In a situation
where your application has moved a single record out of place, DmInsertionSort
would be ideal to place the database back in order. To call DmInsertionSort, pass

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 435

436 Part IV ✦ Storing Information on the Handheld

an open database reference, a pointer to a DmComparF callback comparison
function, and any special value the callback might need to perform its job:

Err error = DmInsertionSort(gDB, &MyCompareFunc, other);

The DmQuickSort function sorts records using a quicksort algorithm, which sorts
the database by partitioning the records repeatedly. Use DmQuickSort when you
don’t know how sorted the database is. For example, changing the sort order of a
database from sorting by name to sorting by date (a different field in the database
record) is a good time to use DmQuickSort. Call DmQuickSort the same way you
call DmInsertionSort:

Err error = DmQuickSort(gDB, &MyCompareFunc, other);

Keep in mind that the sort performed by DmInsertionSort is stable, whereas
DmQuickSort performs an unstable sort. In a stable sort, two records that compare
as the same value maintain their relative positions in the database; an unstable sort
may cause equal records to change positions. Also, DmQuickSort can work with a
maximum of 16K records, whereas DmInsertionSort can handle up to 32K records.

Retrieving and Modifying Record Information
Each record in a database has a number of properties related to it that are stored in
the record list in the database’s header. You can retrieve this information using the
DmRecordInfo function:

UInt16 attributes;
UInt16 uniqueID;
LocalID chunkID;
Err error;

error = DmRecordInfo(db, index, &attributes, &uniqueID,
&chunkID);

The DmRecordInfo function returns the record’s unique ID, as well as the LocalID
of the chunk where the record’s data resides. Usually, the best way to modify a
record is to retrieve a handle to it using DmGetRecord or DmQueryRecord, but the
unique ID and LocalID are available through DmRecordInfo should you need them.

You can pass NULL for the attributes, uniqueID, or chunkID parameters of
DmRecordInfo if you want to ignore any of these values.

The attributes for a record include flags for the record’s deleted, dirty, busy,
and secret bits, along with half a byte containing the record’s category. The Palm
OS header file DataMgr.h provides the following handy constants for accessing
the flags and masking the category in this bit field:

#define dmRecAttrCategoryMask 0x0F
#define dmUnfiledCategory 0

Tip

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 436

437Chapter 13 ✦ Manipulating Records

#define dmRecAttrDelete 0x80
#define dmRecAttrDirty 0x40
#define dmRecAttrBusy 0x20
#define dmRecAttrSecret 0x10

Even though the DmRecordInfo function returns a pointer to an unsigned 16-bit
integer containing a record’s attributes, current implementations of the Palm
OS use only half of this space (one byte) to store the attributes. As with any
implementation-specific details of the Palm OS, you should not rely on the size of
specific structures used by the system. Code defensively; always use the Palm OS
API functions and the appropriate constants in the Palm OS headers when dealing
with record attributes.

For example, the following code retrieves the current deletion status of a record:

UInt16 attributes;

DmRecordInfo(db, index, &attributes, NULL, NULL);
Boolean deleted = attributes & dmRecAttrDelete;

You can set record information with the DmSetRecordInfo function. Everything
available through DmRecordInfo may be set, except for the LocalID of the record’s
data chunk:

Err error = DmSetRecordInfo(db, index, &attributes, &uniqueID);

Passing NULL for the attributes or uniqueID parameters leaves that particular
piece of record information alone.

As a general rule, leave the unique ID of a record alone. The data manager
automatically creates a unique ID when you create a record with DmNewRecord,
so applications usually do not have to change a record’s unique ID.

The following example sets a record’s secret bit, which controls whether or not a
record is considered private:

UInt16 attributes;

DmRecordInfo(db, index, &attributes, NULL, NULL);
attributes |= dmRecAttrSecret;
DmSetRecordInfo(db, index, &attributes, NULL);

See the sections “Setting a record’s category,” “Selecting and modifying
categories,” and “Implementing Private Records” later in this chapter for more
examples of how to use DmRecordInfo and DmSetRecordInfo.

Cross-
Reference

Note

Note

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 437

438 Part IV ✦ Storing Information on the Handheld

Categorizing Records
Every record in a Palm OS database has an attributes field, which contains half
a byte of category information about the record. This mechanism allows you to
provide user-customizable categories for classifying records, in the same way that
the Address Book, To Do List, and Memo Pad built-in applications do. The Palm OS
provides a category manager to make managing categories easier.

Initializing categories
In order to provide some default categories in your application, such as the
“Business,” “Personal,” and “Unfiled” categories that are common in the built-in
applications, you will need to initialize those categories in the application info
block. The best place to store these default category names is in an app info string
resource, which you create with either Constructor or PilRC, depending on your
development environment.

Librarian has the default categories “Fiction,” “Nonfiction,” and “Unfiled.” Figure
13-1 shows Librarian’s category app info string, as defined in Constructor. Notice
that “Unfiled” is listed first. Any categories that you do not want the user to edit
or remove must appear first in the app info string.

Figure 13-1: Librarian’s category app info string
in Constructor

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 438

439Chapter 13 ✦ Manipulating Records

The PilRC definition for Librarian’s categories looks like this:

CATEGORIES ID CategoryAppInfoStr
“Unfiled”
“Fiction”
“Nonfiction”
“”
“”
“”
“”
“”
“”
“”
“”
“”
“”
“”
“”
“”

Once you have default categories defined in your application’s resources, you
can initialize the application info block with these default names using the
CategoryInitialize function, which has the following prototype:

void CategoryInitialize (AppInfoPtr appInfoP,
UInt16 localizedAppInfoStrID)

The CategoryInitialize function needs a pointer to an application info block and the
resource ID of an app info string containing the default category names. Librarian
calls CategoryIntialize from its LibAppInfoInit function when it first creates a new
application info block for the program, like this:

LibAppInfoType *appInfo;

// Code to retrieve appInfo omitted.

CategoryInitialize((AppInfoPtr) appInfo, CategoryAppInfoStr);

For the complete story on initializing a new application info block for a database,
see Chapter 12, “Storing and Retrieving Data.”

Finding applications within a category
The function DmSeekRecordInCategory allows an application to search for records
in a database, restricting the records returned to those that match a particular cate-
gory. This function is particularly useful when an application displays records in a
table or list, in conjunction with a pop-up list for selecting categories. Figure 13-2
shows the Librarian’s category pop-up list in action. Selecting a category from the
list changes which category is displayed in Librarian’s List view.

Cross-
Reference

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 439

440 Part IV ✦ Storing Information on the Handheld

Figure 13-2: Left: Librarian’s
category pop-up trigger, in the
upper-right corner of the screen,
shows which category is currently
displayed in the table. Right: The
category pop-up list in Librarian
allows subsets of Librarian’s
records to be displayed.

To restrict record retrieval to a specific category, call the DmSeekRecordInCategory
function when filling a table or list, passing the desired category to DmSeekRecord
InCategory, which has the following prototype:

Err DmSeekRecordInCategory (DmOpenRef dbP, UInt16* indexP,
Int16 offset, Int16 direction, UInt16 category)

The first parameter to DmSeekRecordInCategory is an open database reference.
Specify a category to restrict the search to using the category parameter, or pass
the constant dmAllCategories to specify all records.

The offset parameter allows you to skip a number of records that match the
requested category before returning a record. Starting at index, DmSeekRecord
InCategory looks through the records in the direction specified by direction
(either of the constants dmSeekForward or dmSeekBackward). When DmSeek
RecordInCategory finds a record in the appropriate category, it decrements
offset and continues searching for the next matching record until offset
equals 0 and another match is found, at which point the function returns the
index of the found record in the index parameter.

If DmSeekRecordInCategory successfully finds an appropriate record, it returns 0;
otherwise, it will return dmErrIndexOutOfRange or dmErrSeekFailed to indicate
why it was unable to find a matching record.

Depending on whether or not the starting record at indexP is in the current
category, you need to specify different values for offset to get the next matching
record. If the record at indexP is in the specified category, an offset of 0 will
return the current record. To find the next record in the category, you must call
DmSeekRecordInCategory with an offset of 1 to skip over the current record.

As an example, the following code iterates over all the records in a database
belonging to a specific category:

UInt16 i;
UInt16 recordNum;

recordNum = 0;

// Find the first record in the category.

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 440

441Chapter 13 ✦ Manipulating Records

if (DmSeekRecordInCategory(db, &recordNum, 0, dmSeekForward,
category)) {

// Do something with the first record at index recordNum.

for (i = 1; i < DmNumRecordsInCategory(db, category);
i++) {
// Use offset == 1 to skip over current record.
if (! DmSeekRecordInCategory(db, &recordNum, 1,

dmSeekForward, category))
break;

// Do something with the record at index recordNum.

recordNum++;
}

}

The example above first calls DmSeekRecordInCategory with an offset of 0 to
ensure that if the record at index 0 in the database is in the correct category, the
record is returned properly. Then, the code iterates over the rest of the records
matching category, using DmNumRecordsInCategory to return the number of
records in the category. Subsequent calls to DmSeekRecordInCategory in the
body of the for loop use an offset of 1 to skip over the current record, since
the current record in this loop will always match the desired category.

The DmNumRecordsInCategory function must examine all the records in the
database; in a large database, this can take some time. Use DmNumRecordsIn
Category only on small databases or in situations where speed is not critical.

Librarian uses the DmSeekRecordInCategory function extensively, as will any
application that implements scrolling tables filled with records from a database.
To make calling this function easier, Librarian wraps it in the SeekRecord function:

static Boolean SeekRecord (UInt16 *index, Int16 offset,
Int16 direction)

{
DmSeekRecordInCategory(gLibDB, index, offset, direction,

gCurrentCategory);
if (DmGetLastErr()) return (false);

return (true);
}

The SeekRecord function cuts the number of parameters required for a
DmSeekRecordInCategory call down to three, since it always looks in the
global gLibDB variable for the database reference and it relies on the global
gCurrentCategory to supply the proper category to search through. Also,
SeekRecord returns a simple Boolean value to indicate whether or not a
matching record was found.

Note

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 441

442 Part IV ✦ Storing Information on the Handheld

See Chapter 11, “Programming Tables,” for some examples of the SeekRecord
function in action.

You can also use DmQueryNextInCategory to find functions in a specific category.
The DmQueryNextInCategory function returns a handle to the next record in the
database in the specified category:

recordH = DmQueryNextInCategory(db, &index, category);

Since DmQueryNextInCategory does not have an offset parameter like
DmSeekRecordInCategory, you must increment the index parameter to skip over
a known record in the correct category to get the next record in the category. Also,
DmQueryNextInCategory does not allow you to specify a direction; it searches
only forward through the database. The handle returned by this function is read-
only; DmQueryNextInCategory does not set the busy bit in the record it finds.

Another useful function is DmPositionInCategory, which returns the position of a
record within its own category, using a zero-based indexing system:

UInt16 position = DmPositionInCategory(db, index, category);

For example, if a record is the fourth record in the category passed to DmPosition
InCategory, the function returns the value 3.

Setting a record’s category
To set the category for a particular record, use the following code:

DmRecordInfo(db, index, &attributes, NULL, NULL);
attributes &= ~dmRecAttrCategoryMask;
attributes |= category;
attributes |= dmRecAttrDirty;
DmSetRecordInfo(gLibDB, gCurrentRecord, &attr, NULL);

The example above sets the category of the record at index to the category
specified by the category variable. Setting the dirty bit ensures that the HotSync
Manager will deal properly with the record at synchronization time.

Selecting and modifying categories
When the user taps a category pop-up trigger, your application should display a
list of available categories from which the user may select a new category. To
match the behavior of category triggers in the built-in applications, the pop-up list
should have an “Edit Categories...” item at the bottom of the list that launches the
system category editing dialog box, pictured in Figure 13-3. From the editing dialog
box the user may add, remove, and rename categories in the current application.

Cross-
Reference

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 442

443Chapter 13 ✦ Manipulating Records

Figure 13-3: The system category editing dialog box

The CategorySelect function makes displaying a category list with appro-
priate behavior a fairly painless process. Call CategorySelect in response to a
ctlSelectEvent triggered by the category pop-up trigger; it has the following
prototype:

Boolean CategorySelect (DmOpenRef db, const FormType *frm,
UInt16 ctlID, UInt16 lstID, Boolean title,
UInt16 *categoryP, char *categoryName,
UInt8 numUneditableCategories, UInt32 editingStrID)

You must supply an open database reference in the first parameter to
CategorySelect so the function can retrieve category names from the database’s
application info block. The frm, ctlID, and lstID are pointers to the form, pop-up
trigger, and list objects that CategorySelect should use when displaying the cate-
gory list.

Pass true for the value of the title parameter if the category trigger is located
on the title line of a form; if title is true, CategorySelect adds an “All” choice to
the top of the pop-up list. Pass a title value of false if the trigger is intended to
select the category for a single record, instead of for a list of records, where an “All”
list item is not appropriate. A good example of this second kind of category trigger
is in Librarian’s Details dialog box, pictured in Figure 13-4. The category trigger in
this dialog box changes the category of the current record instead of changing the
current display category.

Figure 13-4: The category trigger
in Librarian’s Details dialog box,
both closed (left) and open (right)

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 443

444 Part IV ✦ Storing Information on the Handheld

In the categoryP parameter, supply a pointer to a variable containing the category
that should be selected in the pop-up list. When CategorySelect returns, it modifies
the contents of the categoryP pointer to match the new category selected by
the user, if any. Likewise, the categoryName parameter should point to a string
containing the name of the selected category, and CategorySelect changes this
string to the name of the new selected category.

You can retrieve the name of a category with the CategoryGetName function, which
requires an open database reference, the category’s index, and a pointer to a string
to fill with the category name:

char categoryName[dmCategoryLength];

CategoryGetName(db, category, categoryName);

The CategorySelect function’s numUneditableCategories allows you to specify
how many uneditable categories the application’s category list contains. Usually,
there is only one, the “Unfiled” category, but you can make applications with more
uneditable categories if you want certain categories to always appear in the list.

Finally, the editingStrID parameter allows you to specify the resource ID of a
string that appears at the bottom of the category list and in the title of the category
editing dialog box. By default, this string is “Edit Categories...”; you can specify
this default string by passing 0, or the constant categoryDefaultEditCategory
String, defined in the Palm OS header file Category.h. You may also use the
constant categoryHideEditCategory to prevent the user from editing categories
entirely; this constant removes the editing item from the bottom of the category
pop-up list. If you want to customize the string that appears here, pass in the ID
of your own string resource, and it will appear in the pop-up list and as the title
of the editing dialog box.

Be sure not to make your custom string resource longer than dmCategoryLength
(15 characters, plus a terminating null).

When the user selects the “Edit Categories...” list item (or its customized equivalent),
CategorySelect calls the CategoryEdit function to launch the system category editing
dialog box, shown earlier in Figure 13-3. You can call the CategoryEdit function
directly from your application’s code to launch the editing dialog box:

Boolean result = CategoryEdit(db, category, titleStrID,
numUneditableCategories);

Both CategorySelect and CategoryEdit return a Boolean value to indicate that the
user made some major change to the categories while it was running. The return
value is true if any of the following occurred:

✦ The user renamed a category.

✦ The user deleted a category.

Caution

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 444

445Chapter 13 ✦ Manipulating Records

✦ The user renamed a category with the name of another category, merging
those two categories.

If your application checks the return value from CategorySelect or CategoryEdit,
it can react appropriately to the changes in the categories, reloading records into
a table or list if the current form displays a list of records, or re-categorizing the
current record as appropriate in a details dialog box.

The category selection and editing process has evolved as new versions of the Palm
OS have been released. In Palm OS version 2.0, the numUneditableCategories
parameter to CategoryEdit is unavailable, and Palm OS 1.0 does not allow
customization of the category editing dialog box because CategoryEdit on version
1.0 does not have a titleStrID parameter. Palm OS 3.0 and later contain
CategoryEditV20 and CategoryEditV10 functions to provide backward compati-
bility for applications written to support earlier versions of the operating system.

Likewise, CategorySelect is different between versions 1.0 and 2.0 of the Palm OS,
with both the numUneditableCategories and titleStrID parameters in
version 2.0. Even though numUneditableCategories is not available in the 2.0
version of CategoryEdit, the 2.0 CategorySelect does support this option. Starting
with Palm OS 2.0, a backward-compatible CategorySelectV10 function is available
to support applications that must maintain compatibility with Palm OS 1.0.

You can also programmatically set a category’s name with the CategorySetName
function, which may be called as follows:

CategorySetName(db, category, newNameString);

Pass a null-terminated string in the newNameString parameter to change the
specified category’s name. Your application may also use the CategorySetName
function to delete a category; pass NULL for the new name instead of a string, and
CategorySetName deletes the category instead of renaming it.

One more function, DmMoveCategory, allows your application to move all the
records from one of its categories to another category:

Boolean dirty = true;

Err error = DmMoveCategory(db, toCategory, fromCategory,
dirty);

The last parameter to DmMoveCategory controls whether records re-categorized
by this function should be marked dirty or not; a true value marks them dirty,
while a false value leaves the records’ dirty bits alone.

Note

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 445

446 Part IV ✦ Storing Information on the Handheld

Cycling through categories
The built-in applications that support categories, as well as the Librarian sample
application, allow the user to cycle through the categories in the application by
repeatedly pressing the hardware key assigned to launch the application. For
example, if you press the Memo Pad hardware button while the Memo Pad applica-
tion is already open and displaying its List view, Memo Pad changes its display to
the next available category. When it gets to the end of the list of categories, Memo
Pad displays all the categories, then goes on to the first category in the list again.

To implement this behavior in your application, you need to handle the keyDown
Event and look for hard key presses and, in response, call the CategoryGetNext
function to retrieve the next available category. The following bit of code from
Librarian’s ListFormHandleEvent function handles a hard key press while the
application is already running:

case keyDownEvent:
if (TxtCharIsHardKey(event->data.keyDown.modifiers,

event->data.keyDown.chr)) {
if (! (event->data.keyDown.modifiers &

poweredOnKeyMask)) {
ListFormNextCategory();
handled = true;

}
}

The ListFormNextCategory function called above looks like this:

static void ListFormNextCategory (void)
{

UInt16 category;
TableType *table;
ControlType *ctl;

category = CategoryGetNext(gLibDB, gCurrentCategory);

if (category != gCurrentCategory) {
if (category == dmAllCategories)

gShowAllCategories = true;
else

gShowAllCategories = false;

ChangeCategory(category);

// Set the label of the category trigger.
ctl = GetObjectPtr(ListCategoryPopTrigger);
CategoryGetName(gLibDB, gCurrentCategory,

gCategoryName);
CategorySetTriggerLabel(ctl, gCategoryName);

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 446

447Chapter 13 ✦ Manipulating Records

// Display the new category.
ListFormLoadTable();
table = GetObjectPtr(ListTable);
TblEraseTable(table);
TblDrawTable(table);

// By changing the category the current record is
// lost.
gCurrentRecord = noRecord;

}
}

The first thing ListFormNextCategory does is to call CategoryGetNext, passing the
Librarian open database reference and the current category, which Librarian keeps
track of through the global gCurrentCategory variable.

The CategoryGetNext function’s behavior is dependent on what version of the
Palm OS is running. In Palm OS 1.0, CategoryGetNext cycles through the special
“All” category, all of the named categories in alphabetical order, and the “Unfiled”
category, then starts again with the “All” category. Starting with Palm OS 2.0,
CategoryGetNext skips over categories that do not contain any records and the
“Unfiled” category.

After retrieving the new category, ListFormNextCategory calls a small utility function,
ChangeCategory, to update some Librarian global variables in response to a category
change:

static void ChangeCategory (UInt16 category)
{

gCurrentCategory = category;
gTopVisibleRecord = 0;

}

Then ListFormNextCategory sets the label of the List view’s category pop-up
trigger, using the Palm OS function CategorySetTriggerLabel, which is far more
convenient than having to deal with the CtlSetLabel function, since CategorySet
TriggerLabel takes care of all the details normally required for setting a control
label.

Finally, ListFormNextCategory reloads the List form’s table to reflect the change
of category.

Deleting all records in a category
The DmDeleteCategory function deletes all the records in a given category.
Use the function as follows:

Err error = DmDeleteCategory(db, category);

If no error occurs while deleting the records, DmDeleteCategory returns 0.

Note

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 447

448 Part IV ✦ Storing Information on the Handheld

Despite its name, DmDeleteCategory does nothing to modify the name of the
category given to it; DmDeleteCategory merely deletes the records within a cate-
gory, leaving its name intact. If you want to delete a category’s name, call the
CategorySetName function and pass it a NULL for the string you would like to
use to rename the category:

CategorySetName(db, category, NULL);

Implementing Private Records
The Palm OS provides a facility to enable the user to mark records in applications
across the handheld as private, so that they may be shown only when the user
enters the correct password in the device’s Security application. To implement
private records in your application, you must pay attention to the system-wide pri-
vate records preference and program your application to respond appropriately,
depending on what the current private record status is on the handheld.

Private records are marked with a secret bit only in the record’s entry in the
database header; the Palm OS does not take any steps to encrypt private records,
and private information may easily be read by someone synchronizing the device
and opening a database’s backed up PDB file on the desktop in a text editor. If you
need real security in a Palm OS application, you will have to program your own
encryption.

You can retrieve the current private records status of the device by querying the
system preferences with the PrefGetPreference function. Most applications should
retrieve the system’s current private record status in their StartApplication functions
and assign the privacy status to a global variable for later use throughout the applica-
tion. For example, Librarian stores the system private records status in the global
variable gPrivateRecordStatus. Then the application should open the database in
the appropriate mode; if private records are not hidden, use the dmModeShowSecret
mode, which allows the various database functions to display hidden records. Without
the dmModeShowSecret mode turned on, the DmOpenDatabaseByTypeCreator and
DmOpenDatabase functions prevent access to records marked private.

For more information about retrieving the private record status, see the “Reading
and Setting System Preferences” section in Chapter 12, “Storing and Retrieving
Data.” See the “Opening Databases” section in the same chapter to learn how to
set the mode when opening a database.

Once you have the database opened in the appropriate mode, functions like
DmSeekRecordInCategory, DmQueryNextInCategory, and DmNumRecords
InCategory skip over private records when the database has not been opened
in dmModeShowSecret mode.

Cross-
Reference

Note

Note

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 448

449Chapter 13 ✦ Manipulating Records

To change a record’s privacy status, use the DmRecordInfo and DmSetRecordInfo
to retrieve and set the record’s secret bit. The following code sets or clears the
secret bit as appropriate:

DmRecordInfo(db, index, &attributes, NULL, NULL);
if (secret)

attributes |= dmRecAttrSecret;
else

attributes &= ~dmRecAttrSecret;
DmSetRecordInfo(db, index, &attributes, NULL);

Deleting all private records
If for some reason you should wish to delete all the private records in a database, call
the DmRemoveSecretRecords function and pass it an open database reference. This
function exists primarily for system use; if a user forgets the password assigned to
show private records in the Security application and taps that application’s Forgotten
Password... button to reset the password, the Security application deletes all the
private records on the device, using this function on every database.

Because the user may delete private records in this manner, it is a bad idea to
use the secret bit for any purpose other than to mark a record as private, such
as using the secret bit to flag a record as read-only. If the user resets the system
password, all the “read-only” records in your application would suddenly disappear.

Be careful how you use DmRemoveSecretRecords if you use it at all. It can cause
a lot of damage very quickly.

Resizing Records
The DmResizeRecord function allows you to change the size of a record’s data
chunk. This function comes in handy if your application’s records are of variable
length. To resize a record, call DmResizeRecord as follows:

MemHandle newHandle = DmResizeRecord(db, index, newSize);

The newSize parameter should contain the new size of the record, in bytes. If
the heap that currently contains the record is not large enough to resize the record,
DmResizeRecord reallocates the record in a different head on the same card. If
this happens, the handle to the record’s data chunk changes, so be sure to use the
handle returned by the DmResizeRecord function after resizing a record, since
the original handle may be invalid. If for some reason DmResizeRecord is unable
to allocate enough space for the record, it returns NULL; in this case, call
DmGetLastErr to retrieve an error code that indicates what went wrong.

Caution

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 449

450 Part IV ✦ Storing Information on the Handheld

Working with Resources
Resource databases have a slightly different structure from record databases’, but
many of the techniques and functions for handling resources are very similar to
those used to work with records. The primary difference to keep in mind is that,
unlike a record, each resource has a type assigned to it. Resource types are four-
byte identifiers, similar in appearance to creator IDs or database types. Table 13-1
lists the common resource types available in the Palm OS.

Table 13-1
Palm OS Resource Types

Identifier Description

cnty Country-dependent information, such as date format and measurement
system used in a particular country

FONT Custom font

MBAR Menu bar

MENU Individual menu within a menu bar

silk Information about the silk-screened area at the bottom of the screen, such
as the locations of the buttons and the key codes they send when tapped

tAIB Application icon, either the small icon or the large icon displayed in the
system launcher application

taif Application icon family; may contain multiple icons

tAIN Application icon name (the name that appears in the system
launcher application)

tAIS App info string

Talt Alert

Tbmp Bitmap image, with support for up to 256 colors

tbmf Bitmap family; may contain multiple bitmap images

tBTN Command button

tCBX Check box

tFBM Form bitmap

tFLD Text field

tFRM Form

tgbn Graphic button

tGDT Gadget

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 450

451Chapter 13 ✦ Manipulating Records

Identifier Description

tgpb Graphic push button

tgrb Graphic repeating button

tGSI Graffiti shift indicator

tint Integer constant

tLBL Label

tLST List

tPBN Push button

tPUL Pop-up list

tPUT Pop-up trigger

tREP Repeating button

tSCL Scroll bar

tSLT Selector trigger

tSTL String list

tSTR String

tTBL Table

tver Application version string (appears in the launcher’s Info dialog box)

The Palm OS header file UIResources.h defines several useful constants for
specifying resource types:

#define ainRsc ‘tAIN’
#define alertRscType ‘Talt’
#define appInfoStringsRsc ‘tAIS’
#define bitmapRsc ‘Tbmp’
#define constantRscType ‘tint’
#define formRscType ‘tFRM’
#define iconType ‘tAIB’
#define MenuRscType ‘MBAR’
#define silkscreenRscType ‘silk’
#define strListRscType ‘tSTL’
#define strRsc ‘tSTR’
#define verRsc ‘tver’

Also, unlike records, each individual resource has its own resource ID, which
should be unique in the database for all resources of a particular type. For example,
having a tFRM resource and a tAIB resource in a single database that both have a
resource ID of 1000 is perfectly acceptable; two tBTN resources sharing a resource
ID of 1000 in the same database is not permitted.

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 451

452 Part IV ✦ Storing Information on the Handheld

Finding Resources
Given the combination of resource type and resource ID, which uniquely identifies
a resource within a database, searching for a particular resource is a more direct
process than searching for a record. Finding the index of an individual resource in
a database may be accomplished with the DmFindResource function, which has
the following prototype:

UInt16 DmFindResource (DmOpenRef dbP, DmResType resType,
DmResID resID, MemHandle resH)

There are two ways to use DmFindResource:

✦ Pass DmFindResource the type and resource ID of the desired resource.

✦ Pass DmFindResource a locked pointer to the resource.

If you have the type and resource ID of the resource you want to find, call
DmFindResource like this:

index = DmFindResource(db, resourceType, resourceID, NULL);

If you already have a locked pointer to the resource, call DmFindResource like this:

index = DmFindResource(db, 0, 0, resourceH);

Passing a non-NULL handle to DmFindResource for its resH parameter causes the
function to ignore the values passed in its resType and resID parameters.

If you need to iterate over all the resources in a database that match a particular
type, use the DmFindResourceType function:

UInt16 DmFindResourceType (DmOpenRef dbP, DmResType resType,
UInt16 typeIndex)

The DmFindResourceType function starts at the index you give it via the
typeIndex parameter and returns the index of the first resource it finds that
matches the given resType. If DmFindResourceType encounters an error, it
returns -1; otherwise, the function returns the index of the resource that it found.

As an example, the following code iterates through a database and counts the
total number of bitmap resources (Tbmp):

UInt16 count = 0;
UInt16 i = 0;
UInt16 index;

while ((index = DmFindResourceType(db, bitmapRsc, i) != -1) {

// Do something with the resource at index here.

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 452

453Chapter 13 ✦ Manipulating Records

count++;
i = index + 1;

}

If you need a broader search than DmFindResource or DmFindResourceType can
provide, note that the DmSearchResource allows you to look through all the open
resources databases on the handheld for a resource of a given type and resource
ID — or if you do not have that information, you can provide DmSearchResource
with a pointer to a locked resource instead. Not only does DmSearchResource
return the index of the found record, it also returns a reference to the database
containing the resource.

The DmSearchResource function operates in much the same way as DmFind
Resource, but it is not restricted to a single database. To find a resource with
a given type and resource ID, use the following code:

DmOpenRef db;

index = DmSearchResource(resourceType, resourceID, NULL, &db)

If you already have a pointer to a locked database resource, pass it to DmSearch
Resource, and the function will ignore its type and resource ID parameters:

index = DmSearchResource(0, 0, resourceH, &db);

Along with finding specific resources, the Palm OS also provides the DmNum
Resources function to count the total number of resources in a given resource
database:

UInt16 numResources = DmNumResources(db);

Creating Resources
Most of the time, you create resources using Constructor or PilRC, and the
CodeWarrior or GNU build tools to assemble these resources into a resource
database (your application) for you. However, if you need to create a resource
at run time, or if you want to define your own type of resource, the Palm OS
offers DmNewResource for creation of resources.

Note that creating new resources is different from dynamically creating user inter-
face elements at run time. For information about how to implement dynamic user
interface, see Chapter 20, “Odds and Ends.”

The DmNewResource function has the following prototype:

MemHandle DmNewResource (DmOpenRef dbP, DmResType resType,
DmResID resID, UInt32 size)

Cross-
Reference

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 453

454 Part IV ✦ Storing Information on the Handheld

You need to supply DmNewResource with an open database reference where you
want to create the resource, a type, a resource ID, and the size of the new resource
in bytes. Once you have allocated space for the new resource, you may write infor-
mation to it using the DmWrite function much as you would write to a record; see
the “Creating Records” section earlier in this chapter.

Once you are done writing data to the new resource, you need to call DmRelease
Resource to signal to the system that the resource is no longer in use. Resources
do not have a busy bit like records, but the system still keeps track of which
resources are currently needed by an application, and it is important to program
your application to release a resource once it is done modifying it or reading
data from it. The DmReleaseResource function has the following prototype:

Err DmReleaseResource (MemHandle resourceH)

A different strategy for adding resources to a database involves allocating a new
chunk of memory for the resource, and then attaching that chunk to the database
using the DmAttachResource function, which has the following prototype:

Err DmAttachResource (DmOpenRef dbP, MemHandle newH,
DmResType resType, DmResID resID)

Attaching a resource to a database with DmAttachResource is almost identical
to attaching a record to a database using DmAttachRecord. The biggest difference
is that resources do not have a particular sort order within a database but rather
a unique type and resource ID combination, and that therefore the index where
DmAttachResource attaches a new resource is completely irrelevant. This means
that DmAttachResource cannot be used to replace an existing resource in a
database, only to insert a new one.

If you do want to swap out a resource for a new copy, detach the original with
DmDetachResource (see below) and then use DmAttachResource to connect
the new resource to the database.

Deleting Resources
The DmRemoveResource function serves to remove a resource from a database and
dispose of its memory chunk. DmRemoveResource has the following prototype:

Err DmRemoveResource (DmOpenRef dbP, UInt16 index)

Unlike with records, an application’s conduit does not need to bother with
deleting or archiving a desktop copy of a resource, so there are no corresponding
“DmDeleteResource” or “DmArchiveResource” functions. Likewise, you do not
need to worry about moving a deleted resource to the end of its database; once
you call DmRemoveResource, the resource is gone.

Tip

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 454

455Chapter 13 ✦ Manipulating Records

You can also use the DmDetachResource function to orphan a resource from its
database, usually in preparation for pasting the resource into a different database.
The DmDetachResource function has the following prototype:

Err DmDetachResource (DmOpenRef dbP, UInt16 index,
MemHandle* oldHP)

The DmDetachResource function returns the handle of the resource’s data chunk
in its oldHP parameter. You should either use this handle to attach the resource to
another database, or dispose of the chunk with the MemHandleFree function:

MemHandle lonelyUnwantedResourceH;

DmDetachResource(db, index, &lonelyUnwantedResourceH);
MemHandleFree(lonelyUnwantedResourceH);

Reading Resources
While most resources represent user interface elements with their own sets of func-
tions for interaction with a program, you must read from some resources directly in
order to use them in your application. In particular, strings (tSTR), app info strings
(tAIS), and bitmaps (Tbmp) require some special handling if they are to be used in
an application.

Before reading data from a resource, you need to obtain a handle to the resource.
The DmGetResource function searches through all open databases for a resource
of a given type and resource ID, returning a handle to the resource if it finds a
match. If DmGetResource cannot find an appropriate resource, it returns NULL;
in this case, call DmGetLastErr to get an error code explaining the failure.

Once you have retrieved a handle to the resource, lock the handle with
MemHandleLock to obtain a pointer to the data in the resource. Using this
pointer, you can read data from the resource. Once you are done with the
resource, unlock its handle with MemHandleUnlock and then release the
resource with DmReleaseResource. Releasing the resource is an important step;
if you fail to release the resource, it will be unavailable to later DmGetResource
calls, because the system will think the resource is still in use.

The following example retrieves a handle to a string resource with a resource ID
of 1000, reads it into a string variable, and then releases the resource:

MemHandle resourceH;
Char *resource;
Char *string[30];

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 455

456 Part IV ✦ Storing Information on the Handheld

resourceH = DmGetResource(strRsc, 1000);
resource = MemHandleLock(resourceH);
StrCopy(string, resource);
MemHandleUnlock(resourceH);
DmReleaseResource(resourceH);

If you already have the index of a resource, you can retrieve a handle to the
resource with the DmGetResourceIndex function:

resourceH = DmGetResource(db, index);

You may also restrict the search for a matching type and resource ID to the most
recently opened database by using the DmGet1Resource function instead of
DmGetResource:

resourceH = DmGet1Resource(strRsc, 1000);

Remember to release the resource with DmReleaseResource after retrieving a
resource handle with either DmGetResourceIndex or DmGet1Resource.

The Librarian sample application uses DmGetResource to retrieve strings for its
Record view, pictured in Figure 13-5. Librarian displays status for a book using
specific strings, such as “Got this book” or “Unread.” These strings were created
in Constructor or PilRC, and they are stored in app info string (type tAIS)
resources in the application.

Figure 13-5: Librarian’s Record view contains status strings
(lower half of the screen, after the ISBN) that begin their
lives as app info string resources.

For the sake of expediency, Librarian retrieves these strings from their resources
only once, when it initializes its application info block, storing the strings in the
application info block itself. It takes fewer steps to recall the strings from the appli-
cation info block than to read them from the application’s resources every time
they are needed, since resources must be retrieved, locked, unlocked, and
released in order for an application to access their contents.

Librarian’s LibGetAppInfoStr function does all the dirty work of retrieving the
app info strings and storing them in Librarian’s application info block:

static void LibGetAppInfoStr (LibAppInfoType *appInfo,
Int16 resourceID, Int16 stringCount, UInt32 arrayAddress)

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 456

457Chapter 13 ✦ Manipulating Records

{
MemHandle rscH, stringArrayH;
char *rsc;
char **stringArray;
Int16 i;
UInt32 offset;

// Retrieve the strings from a string list in Librarian’s
// resources.
rscH = DmGetResource(appInfoStringsRsc, resourceID);
rsc = MemHandleLock(rscH);
stringArrayH = SysFormPointerArrayToStrings(rsc,

stringCount);
stringArray = MemHandleLock(stringArrayH);

// Set the initial offset at the beginning of the array in
// the application info block.
offset = arrayAddress - (UInt32) appInfo;

// Copy each string into the application info block.
for (i = 0; i < stringCount; i++) {

if (stringArray[i][0] != ‘\0’)
DmStrCopy(appInfo, offset, stringArray[i]);

// Increment the offset to the next array member.
offset += sizeof(libLabel);

}

MemPtrFree(stringArray);
MemPtrUnlock(rsc);
DmReleaseResource(rscH);

}

The SysFormPointerArrayToStrings function is a handy utility that converts a
packed block of strings, such as the format used in an app info string resource, into
an array of pointers to strings, suitable for use in a list, or in this case, for inclusion
in an array in Librarian’s application info block.

Retrieving and Modifying Resource Information
You can retrieve and set certain pieces of information about a resource with the
DmResourceInfo and DmSetResourceInfo functions, which behave similarly to the
DmRecordInfo and DmSetRecordInfo functions for records. The prototypes for
these two resource information functions look like this:

DmResourceInfo
Err DmResourceInfo (DmOpenRef dbP, UInt16 index,

DmResType* resTypeP, DmResID* resIDP,
LocalID* chunkLocalIDP)

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 457

458 Part IV ✦ Storing Information on the Handheld

DmSetResourceInfo
Err DmSetResourceInfo (DmOpenRef dbP, UInt16 index,

DmResType* resTypeP, DmResID* resIDP)

If you pass NULL for the resTypeP, resIDP, or chunkLocalIDP pointers, these
functions will avoid retrieving or setting the piece of information represented
by the NULL pointer. Note that you cannot change the LocalID of the resource’s
data chunk.

Resizing Resources
If you should need to resize a resource, use the DmResizeResource function to
reallocate space for the resource:

MemHandle newResourceH = DmResizeResource(resourceH, newSize);

Just like DmResizeRecord, DmResizeResource may need to move the resource’s
data to a different memory heap, invalidating the original resource handle. After
resizing a resource, be sure to use the handle returned by DmResizeRecord for
continued access to that resource’s data.

Implementing the Global Find Facility
Any application that stores text data can benefit from the Palm OS global find
feature. Activated by means of the silk-screened Find button, the Find dialog box,
pictured in Figure 13-6, allows the user to search through any applications that
support global find for a particular text string.

Figure 13-6: The global Find dialog box (left)
and the Find results dialog box (right)

To implement the global find feature, an application should handle three launch codes:
sysAppLaunchCmdSaveData, sysAppLaunchCmdFind, and sysAppLaunchCmdGoto.

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 458

459Chapter 13 ✦ Manipulating Records

The following list outlines the sequence of events that occur when the user enters
text in the Find dialog box and taps the dialog box’s OK button:

1. The system sends a sysAppLaunchCmdSaveData launch code to each applica-
tion on the device. This launch code allows an application that supports find
to save its own unsaved data if the application happens to be open when the
find operation begins.

2. The system sends a sysAppLaunchCmdFind launch code to each application.
Any program that supports the global find responds to this launch code by
querying its database for the search text supplied by the user, returning a list
of records that contain the appropriate text. The find dialog box displays a
list of matching records in all applications that support the find feature.

3. If the user selects a matching record from the list, the system sends a
sysAppLaunchCmdGoto launch code to the application that owns the
selected record. The owning application can then respond to the launch
code by displaying the appropriate record from its database.

Keep in mind that in a multi-segment application, any function referenced from
PilotMain, including any functions used to implement the global find facility, must
be located in the same code segment as PilotMain. For more information about
multi-segment applications, turn to Chapter 20, “Odds and Ends.”

Handling sysAppLaunchCmdSaveData
If a find-aware application is currently open when the user performs a global find, it
needs to save any unsaved data, because the find operation can display a different
record from the record that is currently displayed, or even open a different applica-
tion. This sudden switch to a new record can cause data loss if the application has
a record open for editing.

Fortunately, the sysAppLaunchCmdSaveData launch code that the system sends
before a sysAppLaunchCmdFind code provides an easy way to make sure that
everything is saved in the application. The simplest thing to do in response to
sysAppLaunchCmdSaveData is to call the FrmSaveAllForms function, which
sends a frmSaveEvent to all the open forms in an application. Then, in the event
handler for any form that might have unsaved data when a global find occurs,
respond to the frmSaveEvent by saving unsaved data.

As an example, here is the portion of the Librarian application’s PilotMain routine
that takes care of an incoming sysAppLaunchCmdSaveData launch code:

switch (cmd) {
case sysAppLaunchCmdSaveData:

FrmSaveAllForms();
break;

// Other launch codes omitted
}

Note

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 459

460 Part IV ✦ Storing Information on the Handheld

The only form in Librarian that might contain unsaved data when a global find
occurs is the Edit form, which might have one unsaved text field within its table.
Librarian’s EditFormHandleEvent function takes care of the frmSaveEvent by
releasing the focus from whichever field in the Edit form is currently being edited:

switch (event->eType) {
case frmSaveEvent:

table = GetObjectPtr(EditTable);
TblReleaseFocus(table);
break;

// Other events omitted
}

For more details about how Librarian handles text editing in its Edit form, see
Chapter 11, “Programming Tables.”

Handling sysAppLaunchCmdFind
When handling a sysAppLaunchCmdFind launch code, an application should
perform the following actions:

1. Open the application’s database.

2. Draw an appropriate header string, using the FindDrawHeader function, in
the Find results dialog box to differentiate matching records in the current
application from those found in other applications.

3. Search through the application’s records for matching text using the
FindStrInStr function.

4. For each successful match, call FindSaveMatch to let the system know that a
match has been found so the system can update its own internal data about
the progress of the global find operation. Also, retrieve the screen location of
the next line in the Find results dialog box with FindGetLineBounds and draw
an appropriate string in the dialog box to identify the record that was found.

5. Close the application’s database.

The Librarian sample application’s PilotMain function passes handling of the
sysAppLaunchCmdFind launch code to another function called Search. The
PilotMain function also casts the parameter block received with the launch code
to a FindParamsType for use by the various find functions in the Search routine:

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{

switch (cmd) {
case sysAppLaunchCmdFind:

Search((FindParamsType *) cmdPBP);
break;

// Other launch codes omitted

Cross-
Reference

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 460

461Chapter 13 ✦ Manipulating Records

}

return 0;
}

Listing 13-3 shows Librarian’s Search function. The listing includes the numbered
steps listed above for reference.

Listing 13-3: Librarian’s Search function

static void Search (FindParamsPtr params)
{

LibAppInfoType *appInfo;
LibDBRecordType record;
MemHandle recordH;
Boolean done, match;
DmOpenRef db;
DmSearchStateType searchState;
Err error;
Char *header;
MemHandle headerStringH;
RectangleType r;
LocalID dbID;
UInt16 cardNo = 0;
UInt16 recordNum;
UInt16 i;
UInt16 pos;
Char *noAuthor = NULL;
Char *noTitle = NULL;

// Find the Librarian database.
error = DmGetNextDatabaseByTypeCreator(true, &searchState,

libDBType, libCreatorID, true, &cardNo, &dbID);
if (error) {

params->more = false;
return;

}

Step 1
// Open the Librarian database.
db = DmOpenDatabase(cardNo, dbID, params->dbAccesMode);
if (! db) {

params->more = false;
return;

}

Continued

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 461

462 Part IV ✦ Storing Information on the Handheld

Listing 13-3 (continued)

Step 2
// Display the heading line.
headerStringH = DmGetResource(strRsc, FindHeaderString);
header = MemHandleLock(headerStringH);
done = FindDrawHeader(params, header);
MemHandleUnlock(headerStringH);
DmReleaseResource(headerStringH);
if (done)

goto Exit;

// Search the description and note fields for the “find”
// string.
recordNum = params->recordNum;
while (true) {

// Applications may take a long time to finish a find,
// so it is a good idea to allow the user to interrupt
// the find at any time. This allows the user to
// immediately go to a displayed record by tapping on
// it, even before the global find finishes filling
// the screen, or to cancel the find entirely by
// tapping the Stop button. To accomplish this, check
// to see if an event is pending, and stop the find if
// there is an event. This call slows down the
// search, so it should only be performed every
// sixteen records instead of at each and every
// record. If that 16th record is marked secret, and
// the system is currently set to hide private
// records, the check does not occur, because
// DmQueryNextInCategory respects the database access
// mode used earlier to open the database.
if ((recordNum & 0x000f) == 0 && // every 16th record

EvtSysEventAvail(true)) {
// Stop the search process.
params->more = true;
break;

}

recordH = DmQueryNextInCategory(db, &recordNum,
dmAllCategories);

// Stop searching if there are no more records.
if (! recordH) {

params->more = false;
break;

}

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 462

463Chapter 13 ✦ Manipulating Records

Step 3
// Search all the fields of the Librarian record.
LibGetRecord(db, recordNum, &record, &recordH);
match = false;
for (i = 0; i < libFieldsCount; i++) {

if (record.fields[i]) {
match = FindStrInStr(record.fields[i],

params->strToFind, &pos);
if (match)

break;
}

}

Step 4
if (match) {

done = FindSaveMatch(params, recordNum, pos, i, 0,
cardNo, dbID);

if (done) {
MemHandleUnlock(recordH);
break;

}

// Get the bounds of the region where we will draw
// the results.
FindGetLineBounds(params, &r);

appInfo = MemHandleLock(LibGetAppInfo(db));

// Display the title of the description.
FntSetFont(stdFont);
DrawRecordName(&record, &r, appInfo->showInList,

&noAuthor, &noTitle);

MemPtrUnlock(appInfo);

params->lineNumber++;
}

MemHandleUnlock(recordH);
recordNum++;

}

// Unlock handles to unnamed items.
if (noAuthor != NULL)

MemPtrUnlock(noAuthor);
if (noTitle != NULL)

MemPtrUnlock(noTitle);

Continued

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 463

464 Part IV ✦ Storing Information on the Handheld

Listing 13-3 (continued)

Step 5
Exit:

DmCloseDatabase(db);
}

The search performed by the FindStrInStr function is case-insensitive. Another
thing to keep in mind is that FindStrInStr matches only the beginnings of words.
For example, a search for “bar” will match the word “bark” but not the word
“embarrassed.”

Handling sysAppLaunchCmdGoto
An application supporting global find that receives a sysAppLaunchCmdGoto
launch code should display the record requested by the system. This can be a
bit tricky, since the application that is handling the sysAppLaunchCmdGoto
launch code may or may not already be running.

The sysAppLaunchCmdGoto launch code is also integral to the process of beam-
ing records from one handheld to another. See the “Displaying Beamed Records”
section of Chapter 14, “Beaming Data by Infrared,” for more details.

An application can tell if it was launched by the sysAppLaunchCmdGoto launch
code, or if it is already running, by checking its PilotMain function’s launchFlags
parameter for the sysAppLaunchFlagNewGlobals flag, which indicates that the
launch code comes with its own brand new set of global variables. A new set of
global variables means that the application was not already running.

If the application is already running, you must take care to close any open dialog
boxes in the application before switching to whatever view displays the requested
record. If the application is not already running, you need to take care of some of
the same responsibilities that the sysAppLaunchCmdNormalLaunch launch code
takes care of, namely running the application’s StartApplication function before
displaying the found record, and then calling the application’s EventLoop and
StopApplication functions. A sysAppLaunchCmdGoto launch is essentially a
second entry point into the application.

As an example of how to handle sysAppLaunchCmdGoto, here are the appropriate
parts of Librarian’s PilotMain function:

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{

Err error;
Boolean launched;

Cross-
Reference

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 464

465Chapter 13 ✦ Manipulating Records

switch (cmd) {
case sysAppLaunchCmdGoTo:

launched = launchFlags &
sysAppLaunchFlagNewGlobals;

if (launched) {
error = StartApplication();
if (error)

return (error);
}

GoToItem((GoToParamsType *) cmdPBP, launched);

if (launched) {
EventLoop();
StopApplication();

}
break;

// Other launch codes omitted
}

return 0;
}

Librarian’s PilotMain function defers most of the processing of the sysAppLaunch
CmdGoto launch code to another function, GoToItem, by first casting the launch
code’s parameter block to a GoToParamsType and then passing the parameter
block to GoToItem. The GoToItem function looks like this:

static void GoToItem (GoToParamsPtr goToParams,
Boolean launchingApp)

{
UInt16 formID;
UInt16 recordNum;
UInt16 attr;
UInt32 uniqueID;
EventType event;
UInt32 romVersion;

recordNum = goToParams->recordNum;
DmRecordInfo(gLibDB, recordNum, &attr, &uniqueID, NULL);

// Change the current category if necessary.
if (gCurrentCategory != dmAllCategories) {

gCurrentCategory = attr & dmRecAttrCategoryMask;
}

// If the application is already running, close all the
// open forms. If the record currently displayed is
// blank, it will be deleted, which knocks all the record
// indices off by one. Use the found record’s unique ID

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 465

466 Part IV ✦ Storing Information on the Handheld

// to find the record index again once all the forms are
// closed.
if (! launchingApp) {

FrmCloseAllForms();
DmFindRecordByID(gLibDB, uniqueID, &recordNum);

}

// Set global variable to keep track of the current record.
gCurrentRecord = recordNum;

// Set gPriorFormID so the Note view returns to the List
// view.
gPriorFormID = ListForm;

if (goToParams->matchFieldNum == libFieldNote) {
// If running on Palm OS 3.5 or above, use the
// NewNoteView form; otherwise, stick with the
// original NoteView.
FtrGet(sysFtrCreator, sysFtrNumROMVersion,

&romVersion);
if (romVersion >=

sysMakeROMVersion(3,5,0,sysROMStageRelease,0))
formID = NewNoteView;

else
formID = NoteView;

}
else {

formID = RecordForm;
}

MemSet(&event, sizeof(EventType), 0);

// Send an event to load the form.
event.eType = frmLoadEvent;
event.data.frmLoad.formID = formID;
EvtAddEventToQueue(&event);

// Send an event to go to a form and select the matching
// text.
event.eType = frmGotoEvent;
event.data.frmGoto.formID = formID;
event.data.frmGoto.recordNum = recordNum;
event.data.frmGoto.matchPos = goToParams->matchPos;
event.data.frmGoto.matchLen = goToParams->searchStrLen;
event.data.frmGoto.matchFieldNum =

goToParams->matchFieldNum;
EvtAddEventToQueue(&event);

}

The GoToItem function first retrieves the record information for the found record
by calling DmRecordInfo. Both the record’s attributes and unique ID are interesting
to GoToItem. The attributes allow GoToItem to change the current category if the

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 466

467Chapter 13 ✦ Manipulating Records

category the record belongs to is not the category currently displayed in
Librarian, and the unique ID allows GoToItem to find the record again after
calling FrmCloseAllForms. If Librarian is already running, and it is currently
displaying an empty record in its Edit view, that record is deleted as soon as
FrmCloseAllForms closes the Edit form; deleting the record bumps all the
record indices in the database by one, invalidating the index provided by the
GoToItem function’s goToParams parameter. Passing the unique ID of the record
to DmFindRecordByID allows GoToItem to recover the correct record index.

If the found text is part of the note field, GoToItem launches Librarian’s Note view;
otherwise, GoToItem launches the Record view. To launch the appropriate form,
GoToItem must queue a frmLoadEvent for the form, and then a frmGotoEvent to
actually go to that form. The frmGotoEvent also contains data about the position
and length of the found text so the form can highlight the text in its display.

The last part of implementing sysAppLaunchCmdGoto involves handling the frm
GotoEvent in the forms that might pop up in response to a sysAppLaunchCmdGoto
launch code. In Librarian, both the Record and Note views handle frmGotoEvent.
Here is the appropriate section of the NoteViewHandleEvent function, to demon-
strate how Librarian highlights the found text in the Note view:

case frmGotoEvent:
form = FrmGetActiveForm();
gCurrentRecord = event->data.frmGoto.recordNum;
NoteViewInit(form);
field = GetObjectPtr(NoteField);
FldSetScrollPosition(field, event->data.frmGoto.matchPos);
FldSetSelection(field, event->data.frmGoto.matchPos,

event->data.frmGoto.matchPos +
event->data.frmGoto.matchLen);

NoteViewDrawTitle(form);
NoteViewUpdateScrollBar();
FrmSetFocus(form, FrmGetObjectIndex(form, NoteField));
handled = true;
break;

Summary
This chapter showed you how to read and write records and resources, as well as
how to implement the Palm OS global find facility. After reading this chapter, you
should understand the following:

✦ Most Palm OS record databases keep their records in sorted order to permit
rapid population of lists and tables from record data.

✦ You should implement a callback comparison function for your record
database for the system to call when you use the DmFindSortPosition,
DmInsertionSort, or DmQuickSort functions.

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 467

468 Part IV ✦ Storing Information on the Handheld

✦ You can find a record, or the position it should occupy, using the DmFind
SortPosition, DmFindRecordByID, and DmSearchRecord functions.

✦ An application may create records with the DmNewRecord function, or
by allocating a new memory chunk and attaching it to the database with
DmAttachRecord.

✦ Deleted and archived records remain at the end of a database’s record list,
so that an application’s conduit can update the desktop version of the
application’s database.

✦ The DmRecordInfo and DmSetRecordInfo functions allow you to retrieve
and set attributes and other properties of database records.

✦ After initializing default category names with CategoryIntialize, you
can implement the standard Palm OS category selection list by calling
CategorySelect and CategoryEdit.

✦ All implementation of private records is up to your application; the system
takes care only of keeping track of the global security setting and a secret
bit on each record.

✦ Resources differ from records, in that each resource has a type and a
resource ID, making it unnecessary to keep resources in a sorted order
within a database.

✦ To implement the system global find facility, you must handle three applica-
tion launch codes: sysAppLaunchCmdSaveData, sysAppLaunchCmdFind, and
sysAppLaunchCmdGoto.

✦ ✦ ✦

4676-7 ch13.f.qc 10/16/00 8:31 AM Page 468

Beaming Data
by Infrared

First introduced in Palm OS 3.0 on the Palm III, infrared (IR)
beaming allows data exchange between two Palm OS hand-

helds, or between a Palm OS handheld and another IR-capable
device, without one’s having to attach cables to either device.
All of the infrared transfer capabilities of the Palm OS are based
on industry-standard protocols set by the Infrared Data
Association (IrDA), which allows a Palm OS handheld to “talk”
to many other devices, not just those running the Palm OS.

The Palm OS offers two general levels of IR beaming support:

✦ The Exchange Manager, which is a simple high-level
interface for exchanging data with a variety of other
devices and protocols

✦ The IR Library, which gives an application a direct inter-
face with the underlying hardware and software proto-
cols that run IR communications on a Palm OS handheld

The Exchange Manager can easily handle most of the data
exchange required to pass data back and forth between two
devices, and this chapter will concentrate on using the
Exchange Manager. At the end of this chapter, you can find an
introduction to using the IR Library for those situations where
some hard-core low-level communications hacking is the only
way get complex data transfer to work. However, the Palm OS
Exchange Manager is much easier to use, and it should suffice
for almost any infrared transfer application.

Using the Exchange Manager
The Exchange Manager provides a simple interface between a
Palm OS application and the Put operation of the IrDA Data
standard’s Object Exchange (OBEX) layer. OBEX is designed

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
Exchange Manager

Registering a
data type

Beaming records
and categories

Receiving records
and categories

Beaming applications

Customizing the
beam acceptance
dialog box

Understanding the
IR Library

✦ ✦ ✦ ✦

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 471

472 Part V ✦ Communicating Outside the Handheld

to allow quick and easy transfer of an arbitrary “thing” from one device to another.
This “thing” can be any arbitrary data object, and the Put operation in OBEX can
transmit such a data object, either as a quick, all-at-once transfer, or as an extended
transfer that takes place over a longer period of time.

Complete specifications for the IrDA OBEX layer are available on the Web at
http://www.irda.org.

Central to using the Exchange Manager is the ExgSocketType structure. Defined in
the Palm OS header ExgMgr.h, ExgSocketType holds information about the con-
nection and the type of data being transferred. When sending data, an application
needs to fill in the appropriate fields in this structure. Likewise, when receiving
data, an application can retrieve information about an incoming data stream and
its contents from the socket structure.

The term “socket,” as used by the Exchange Manager, has nothing to do with
socket communications programming.

The ExgSocketType structure looks like this:

typedef struct ExgSocketType {
UInt16 libraryRef;
UInt32 socketRef;
UInt32 target;
UInt32 count;
UInt32 length;
UInt32 time;
UInt32 appData;
UInt32 goToCreator;
ExgGoToType goToParams;
UInt16 localMode:1;
UInt16 packetMode:1;
UInt16 noGoTo:1;
UInt16 noStatus:1;
UInt16 reserved:12;
Char *description;
Char *type;
Char *name;

}

Table 14-1 describes the fields in the ExgSocketType structure.

Note

Note

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 472

473Chapter 14 ✦ Beaming Data by Infrared

Table 14-1
The ExgSocketType Structure

Field Description

libraryRef Internal field used by the Exchange Manager to identify the exchange
library that is in use. You should leave this field alone.

socketRef Identifier for the connection itself, used internally by the Exchange
Manager. You should also leave this field alone.

target Creator ID of the application that the data is being sent to.

count Number of data objects in this connection. This value is usually 1, even
if the application is sending multiple records

length Total length in bytes of all the objects being transferred. This field is
optional.

time Time when the object was last modified. This field is optional.

appData Application-specific data.

goToCreator Creator ID of the application to launch after the transfer is complete.

goToParams Structure containing information about where to go if goToCreator is
specified.

localMode If set to 1, transfer takes place only with the local machine; if set to 0,
transfer is enabled with a remote device.

packetMode If set to 1, use connectionless packet mode (OBEX Ultra mode) for the
transfer. This field defaults to 1, and you should usually leave this value
alone.

noGoTo If set to 1, the Exchange Manager does not launch the application
specified in goToCreator after completion of the transfer. This field
only works when localMode is 1.

noStatus If set to 1, the Exchange Manager does not display any transfer status
dialog boxes.

reserved Reserved for future use.

description Pointer to a string containing a text description of the data object that
is being transferred. This description is displayed to the user on both
the sending and receiving ends of the transfer.

type Pointer to a string describing the MIME type of the data object. This
field is optional.

name Pointer to a string holding the name of the data object, usually a file
name. This field is optional.

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 473

474 Part V ✦ Communicating Outside the Handheld

The ExgGoToType structure in the ExgSocketType structure’s goToParams field is
also defined in ExgMgr.h, and it contains information about the record to display
once the transfer has been completed. Here is what the ExgGoToType structure
looks like:

typedef struct {
UInt16 dbCardNo;
LocalID dbID;
UInt16 recordNum;
UInt32 uniqueID;
UInt32 matchCustom;

} ExgGoToType;

Table 14-2 briefly describes the fields in the ExgGoToType structure.

Table 14-2
The ExgGoToType Structure

Field Description

dbCardNo Card number containing the database that holds the record.

dbID LocalID of the database that holds the record.

recordNum Index of the record to display.

uniqueID Position within the record of the data that should be displayed. Note
that this is not the same as a record’s unique ID.

matchCustom Custom information for use by the application.

The rest of this chapter gives more detail about how to use the ExgSocketType and
ExgGoToType structures.

Every application that is to receive beamed data must register the type (or types)
of data it can handle with the Exchange Manager, using the ExgRegisterData func-
tion. When the Exchange Manager detects incoming data that can be handled by
one of the programs on the handheld, the manager sends three launch codes to
the registered application so it can receive the data:

✦ sysAppLaunchCmdAskUser, to present a customized dialog box to the user
for accepting or rejecting incoming data

✦ sysAppLaunchCmdReceiveData, to actually receive the incoming data

✦ sysAppLaunchCmdGoTo, to display the newly received record

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 474

475Chapter 14 ✦ Beaming Data by Infrared

Registering a Data Type
If you wish to write an application that communicates only with another copy of
itself on another Palm OS handheld, you can simply specify the application’s creator
ID in the target field of the ExgSocketType structure, and the Exchange Manager
will send the appropriate launch codes to that application on the receiving hand-
held. However, this scenario is somewhat limited; the Exchange Manager was built
with enough flexibility to allow transfer between the Palm OS and completely differ-
ent applications, operating systems, and devices. In order to allow a Palm OS appli-
cation to receive data from so many different sources, the application must register
with the Exchange Manager the types of data it can handle.

At least one of three pieces of identifying information about a data object is
required to allow an application to receive it:

✦ The creator ID of the specific Palm OS application that will receive the data

✦ A file name identifying the data, usually with some kind of file extension (for
example, .txt for text files)

✦ A Multipurpose Internet Mail Extensions (MIME) data type (for example,
text/html for HTML documents)

An application should call ExgRegisterData immediately after it has been installed
on the handheld to let the Exchange Manager know what kinds of data the program
would like to receive. The prototype for ExgRegisterData looks like this:

Err ExgRegisterData(const UInt32 creatorID, const UInt16 id,
const Char * const dataTypesP)

The creatorID parameter specifies the application to register to handle a data
type. Use the id parameter to define exactly what kind of data type to register. The
two possible values for id are the constants exgRegExtensionID for specifying a
file extension, or exgRegTypeID for specifying a MIME data type.

Pass a pointer to a null-terminated string containing the file extensions or MIME
types to register in the dataTypesP parameter. You can specify multiple file exten-
sions or MIME types in the same string by delimiting types with tab characters.

For example, the following ExgRegisterData call registers an application to handle
files with a .txt file extension:

Err error = ExgRegisterData(myCreatorID, exgRegExtensionID,
“txt”);

This example registers an application to handle HTML documents, which have a
MIME type of text/html:

Err error = ExgRegisterData(myCreatorID, exgRegTypeID,
“text/html”);

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 475

476 Part V ✦ Communicating Outside the Handheld

The Internet Assigned Numbers Authority (IANA) maintains the central registry of
MIME types. A complete list of MIME types is available on the Web at http://
www.isi.edu/in-notes/iana/assignments/media-types/media-types.

The best time to register an application for handling beamed data is right after the
application has been installed to the handheld. If an application were to call Exg
RegisterData only in its StartApplication routine, the program would be able to
respond to incoming data transmissions only after it has been run once. Instead,
you can call ExgRegisterData in response to the sysAppLaunchCmdSyncNotify
launch code. The system sends this launch code to an application whose databases
have been changed during the most recent HotSync operation. Installing the appli-
cation itself counts as a change in the application’s database, so an application can
catch the sysAppLaunchCmdSyncNotify launch code and use it to register itself
with the Exchange Manager.

As an example, the following relevant parts of the Librarian application’s PilotMain
function call another Librarian function, LibRegisterData, to register Librarian to
handle incoming data with a .lib file extension:

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{

switch (cmd) {
case sysAppLaunchCmdSyncNotify:

LibRegisterData();
break;

}

return 0;
}

The LibRegisterData function and the libFileExtension constant it uses look
like this:

#define libFileExtension “lib”

void LibRegisterData(void)
{

UInt32 romVersion;

// Beaming is only available on Palm OS 3.0 and later.
FtrGet(sysFtrCreator, sysFtrNumROMVersion, &romVersion);
if (romVersion >=

sysMakeROMVersion(3,0,0,sysROMStageRelease,0))
ExgRegisterData(libCreatorID, exgRegExtensionID,

libFileExtension);
}

Note

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 476

477Chapter 14 ✦ Beaming Data by Infrared

Because beaming and the Exchange Manager are available only on Palm OS 3.0 and
later, Librarian registers itself only if it is installed on an appropriate version of the
operating system. Also, Librarian uses two different sets of menus, one with beam-
ing commands, for 3.0 and later, and one without, for running Librarian on Palm OS
2.0, so that beaming functions appear in Librarian’s interface only if the program is
running on a device that supports beaming.

Take a look at the “Programming Menus” section of Chapter 9, “Programming User
Interface Elements,” for details about removing items from menus.

Sending Data
Sending data through the Exchange Manager is a four-step process:

1. Initialize an ExgSocketType structure.

2. Call ExgPut to begin the transfer.

3. Call ExgSend from within a loop to send the data.

4. Call ExgDisconnect to end the transfer.

Initializing an ExgSocketType structure
Every beam operation requires an ExgSocketType structure to define how the
transfer should take place. Before using the socket structure, it is important to
set it to zero with the MemSet function; random bits left over from declaring the
ExgSocketType structure can cause unpredictable (and undesirable) results
when it comes time to actually beam data. The following lines of code declare an
exchange socket structure and wipe it clean:

ExgSocketType exgSocket;

MemSet(&exgSocket, sizeof(exgSocket), 0);

Once the socket structure is zeroed, you should set appropriate fields in the
structure to control how the beaming operation should proceed. The first field
you should initialize is the description field, which is a pointer to a string that
describes the data that is about to be sent. This description string appears in the
beaming dialog boxes on both the sending and receiving devices. Figure 14-1
shows beaming dialog boxes as used by the Librarian sample application when
beaming the “Nonfiction” category.

When beaming an individual record, it is customary to use part of the record’s data
for the description field:

exgSocket.description = myRecord->name

Cross-
Reference

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 477

478 Part V ✦ Communicating Outside the Handheld

Figure 14-1: Beaming dialog boxes display a description string that describes
the data to be transferred. Pictured here are the preparation dialog box (left),
a dialog box to prompt the user to accept the data (middle), and the accepting
dialog box (right), all of which display the description “Nonfiction.”

Librarian’s LibBeamRecord function, shown in Listing 14-1, goes to considerable
lengths to assemble an appropriate string for the description, because not all of the
fields in a Librarian record may contain data. Librarian uses a book record’s title by
default; records that lack a title have a description beginning with “a book by” and
ending with the author’s name; records with neither title nor author simply use the
string “a book.” Assembling a good description string may be as simple or complex
a process as you want. Ideally, the description should give the user enough informa-
tion to decide whether to accept or reject the incoming record.

Listing 14-1: Librarian’s LibBeamRecord function

void LibBeamRecord (DmOpenRef db, Int16 recordNum)
{

LibDBRecordType record;
MemHandle recordH;
LibPackedDBRecord *packed;
MemHandle packedH;
MemHandle descH;
UInt16 descSize = 0;
Coord descWidth, ignoreHeight;
Boolean descFit;
UInt16 newDescSize;
MemHandle prefixH;
Char *prefix;
MemHandle nameH;
Err error;
ExgSocketType exgSocket;

// Initialize the exchange socket structure to zero.
MemSet(&exgSocket, sizeof(exgSocket), 0);

// Assemble a description of the record to send. This
// description is displayed by the system send and receive

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 478

479Chapter 14 ✦ Beaming Data by Infrared

// dialog boxes on both the sending and receiving devices.
error = LibGetRecord(db, recordNum, &record, &recordH);
ErrNonFatalDisplayIf(error, “Can’t get record”);

if (RecordContainsData(&record)) {
// Use the title of the book, if it exists. If the
// book record is untitled, use the author’s name.
// Failing that, fall back to a generic string stored
// in Librarian’s resources.
descH = NULL;
exgSocket.description = NULL;
if (record.fields[libFieldTitle]) {

// Use title of book for the description.
descSize = StrLen(record.fields[libFieldTitle]) +

sizeOf7BitChar(‘\0’);
descH = MemHandleNew(descSize);
if (descH) {

exgSocket.description = MemHandleLock(descH);
StrCopy(exgSocket.description,

record.fields[libFieldTitle]);
}

} else if (record.fields[libFieldFirstName] ||
record.fields[libFieldLastName]) {

// Use “a book by <author>” for the description.
prefixH = DmGetResource(strRsc,

UntitledBeamString);
prefix = (Char *) MemHandleLock(prefixH);
descSize = StrLen(prefix);

if (record.fields[libFieldFirstName] &&
record.fields[libFieldLastName])
descSize += sizeOf7BitChar(‘ ‘) +

sizeOf7BitChar(‘\0’);
else

descSize += sizeOf7BitChar(‘\0’);

if (record.fields[libFieldFirstName])
descSize +=

StrLen(record.fields[libFieldFirstName]);

if (record.fields[libFieldLastName])
descSize +=

StrLen(record.fields[libFieldLastName]);

descH = MemHandleNew(descSize);
exgSocket.description = MemHandleLock(descH);
StrCopy(exgSocket.description, prefix);
MemHandleUnlock(prefixH);
DmReleaseResource(prefixH);

Continued

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 479

480 Part V ✦ Communicating Outside the Handheld

Listing 14-1 (continued)

if (record.fields[libFieldFirstName]) {
StrCat(exgSocket.description,

record.fields[libFieldFirstName]);
if (record.fields[libFieldLastName])

StrCat(exgSocket.description, “ “);
}

if (record.fields[libFieldLastName])
StrCat(exgSocket.description,

record.fields[libFieldLastName]);

} else {
// Use “a book” for the description.
prefixH = DmGetResource(strRsc,

NoAuthorBeamString);
prefix = (Char *) MemHandleLock(prefixH);
descSize = StrLen(prefix) + sizeOf7BitChar(‘\0’);

descH = MemHandleNew(descSize);
exgSocket.description = MemHandleLock(descH);
StrCopy(exgSocket.description, prefix);
MemHandleUnlock(prefixH);
DmReleaseResource(prefixH);

}

// Truncate the description if it’s too long.
if (descSize > 0) {

newDescSize = descSize;
WinGetDisplayExtent(&descWidth, &ignoreHeight);
FntCharsInWidth(exgSocket.description, &descWidth,

(Int16 *) &newDescSize, &descFit);

if (newDescSize > 0) {
if (newDescSize != descSize) {

exgSocket.description[newDescSize] =
nullChr;

MemHandleUnlock(descH);
MemHandleResize(descH, newDescSize +

sizeOf7BitChar(‘\0’));
exgSocket.description =

MemHandleLock(descH);
}

} else {
MemHandleFree(descH);

}
descSize = newDescSize;

}

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 480

481Chapter 14 ✦ Beaming Data by Infrared

// Create a filename from the description.
nameH = MemHandleNew(descSize + sizeOf7BitChar(‘.’) +

libFileExtensionLength +
sizeOf7BitChar(‘\0’));

exgSocket.name = MemHandleLock(nameH);
StrCopy(exgSocket.name, exgSocket.description);
StrCat(exgSocket.name, “.”);
StrCat(exgSocket.name, libFileExtension);

exgSocket.target = libCreatorID;

// Beam the record.
error = ExgPut(&exgSocket);
if (! error) {

packedH = DmQueryRecord(db, recordNum);
packed = MemHandleLock(packedH);
error = BeamData(&exgSocket, packed,

MemHandleSize(packedH));
MemHandleUnlock(packedH);

}

ExgDisconnect(&exgSocket, error);

if (nameH) {
MemHandleUnlock(nameH);
MemHandleFree(nameH);

}

if (descH) {
MemHandleUnlock(descH);
MemHandleFree(descH);

}

} else {
FrmAlert(NoDataToBeamAlert);

}

MemHandleUnlock(recordH);
}

After setting the description, the sending application needs to set at least one of the
following three fields in the socket structure:

✦ target

✦ name

✦ type

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 481

482 Part V ✦ Communicating Outside the Handheld

Setting target to the creator ID of a specific application (usually the same as the
sending application’s creator ID) tells the Exchange Manager to send the appropri-
ate launch codes to that application so it can receive the data. This is perfectly suf-
ficient for an application that needs to send data only to another copy of the same
application that is already installed on another Palm OS handheld. However, setting
target does prevent any other application from receiving the data on the other
end of the transfer, so if your application needs to be able to send data to other
programs, you are better off setting the name or type fields instead.

If you want to describe the outgoing data using a particular file extension, set the
name field in the socket structure to point to a string containing an appropriate file
name. For example, the following code sets the name field to send a file with a .txt
extension:

exgSocket.name = “myRecord.txt”;

Librarian uses the description of a record for its file name, tacking a .lib file
extension onto the end of the string to form the name:

nameH = MemHandleNew(descSize + sizeOf7BitChar(‘.’) +
libFileExtensionLength +
sizeOf7BitChar(‘\0’));

exgSocket.name = MemHandleLock(nameH);
StrCopy(exgSocket.name, exgSocket.description);
StrCat(exgSocket.name, “.”);
StrCat(exgSocket.name, libFileExtension);

The sizeOf7BitChar macro that appears throughout LibBeamRecord is
defined in the Palm OS header file CharAttr.h as follows:

#define sizeOf7BitChar(c) 1

At first glance, this macro may seem a waste of typing time. However, it helps a
great deal when one is trying to write self-documenting code. Many uses of
sizeof result in a size of 2 bytes (sizeof(‘\0’), for example), because sizeof
treats many character constants as int values instead of char values. The
sizeOf7BitChar macro is safer to use than sizeof when assembling string val-
ues, and provides a clearer picture of what is going on in the code than something
like the following:

nameH = MemHandleNew(descSize + 1 +
libFileExtensionLength + 1);

Instead of specifying a file name, you may also specify a MIME type by pointing the
socket’s type parameter at a string describing the appropriate MIME type. The fol-
lowing example sets a socket’s type to an HTML text document:

exgSocket.type = “text/html”;

Note

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 482

483Chapter 14 ✦ Beaming Data by Infrared

Once you have a description for the data to be transferred, and a target, name,
or type, you may proceed to initiate the data transfer. However, there are some
optional fields in the socket structure you may wish to consider setting:

✦ length. If you have calculated the length of the data to transfer in advance,
setting length to equal the total length of the data in bytes can preempt the
transfer if the receiving device does not have enough memory to receive the
data object. Instead of having to transfer a significant part of a large piece of
data before failing because of memory constraints, the receiving device can
look at the length before transfer even begins and determine whether there
is enough space for the object. By using the length field, you can prevent the
user from having to wait a long time for an unsuccessful data transfer.

✦ localMode. Setting localMode to 1 prevents the application from sending the
data out via the handheld’s infrared port, and instead loops the data back to
the local device. This is primarily useful when you are debugging the beaming
features of an application, because it means you can debug most of the beam-
ing process using only one handheld, or just the Palm OS Emulator.

✦ noGoTo. Setting noGoTo to 1 prevents the receiving application from displaying
the record that was just transferred. This setting works only when localMode
is also set to 1. You can use noGoTo to export data to another application on
the local handheld, without actually launching the other program.

The built-in Memo Pad application is registered to handle data with a file exten-
sion of .txt. If you want to export text data to the Memo Pad, set the socket’s
name to a file name with a .txt extension, and then set localMode to 1. If you
want to export the data and remain in the current application, you should also set
noGoTo to 1 instead of jumping straight to the Memo Pad.

Beginning a transfer with ExgPut
The ExgPut function initiates a data transfer. Pass a pointer to the exchange socket
structure as an argument to ExgPut:

Err error = ExgPut(&exgSocket);

If ExgPut does not return an error, the connection was successful, and you must
follow up with a call to either ExgSend or ExgDisconnect. The ExgPut function dis-
plays a dialog box, pictured in Figure 14-2, to let the user know that the application
is busy assembling data to export.

Figure 14-2: The ExgPut function displays this dialog box
while the application is busy putting together data for a
beaming operation.

Tip

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 483

484 Part V ✦ Communicating Outside the Handheld

Sending data with ExgSend
The ExgSend function does the actual work necessary to send data across the con-
nection formed by ExgPut. Here is the prototype for ExgSend:

UInt32 ExgSend(ExgSocketPtr socketP, const void * const bufP,
const UInt32 bufLen, Err *err)

The socketP parameter is a pointer to the exchange socket structure to use for the
transfer. The bufP parameter should point to the start of the data to transmit, and
bufLen should contain the length of the data in that buffer, in bytes. You can check
for errors in the transfer process by passing a pointer to an Err type variable in the
err parameter.

The ExgSend function returns the number of bytes of data that it successfully sent.
You must call ExgSend in a loop, changing the bufP and bufLen parameters to
reflect the remaining data in the buffer at each call. The ExgSend function may not
send all the data that you instruct it to send because of connection problems
between the two devices, instead requiring multiple attempts to send the data.

Wrapping ExgSend in its own routine is the easiest way to use it. As an example
of one approach to looping over ExgSend, here is the BeamData function from
Librarian:

static Err BeamData (ExgSocketType *exgSocket, void *buffer,
UInt32 bytes)

{
Err error = 0;

while ((! error) && (bytes > 0)) {
UInt32 bytesSent = ExgSend(exgSocket, buffer, bytes,

&error);
bytes -= bytesSent;
buffer = ((Char *) buffer) + bytesSent;

}

return error;
}

To make your data transfers more efficient, try to call ExgSend as few times as pos-
sible. If possible, allocate a large buffer and send all of the buffer’s data at once.

Ending a transfer with ExgDisconnect
After you have finished sending data with ExgSend, call ExgDisconnect to sever the
connection:

ExgDisconnect(&exgSocket, error);

Tip

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 484

485Chapter 14 ✦ Beaming Data by Infrared

The first argument to ExgDisconnect is a pointer to the exchange socket used for
the transfer. For the second argument, you should pass whatever error value has
been returned by calls to ExgPut and ExgSend, which lets the Exchange Manager
know what kind of cleanup it needs to perform and which dialog boxes it should
display to the user to indicate either a completed transfer or one that failed
because of some sort of interruption.

Beaming multiple records
It might be useful to allow an application to send many records all at once. For exam-
ple, the built-in applications that support categories, and Librarian, all present the
option to beam an entire category of records. There are a number of ways to beam
multiple records, but the primary thing to remember when designing data transfer
for multiple records is that the application must be able to tell multiple records from
single records and receive them properly. Librarian uses a very simple system to dif-
ferentiate single-record beaming from category beaming. Single records have a file
extension of .lib, and beamed categories have an extension of .lbc.

Librarian’s LibBeamCategory function is responsible for beaming a whole category
full of records. Other than the data that LibBeamCategory sends, the function dif-
fers very little from LibBeamRecord. The LibBeamCategory function sends the fol-
lowing information:

✦ A UInt16 value containing the total number of records in the transfer

✦ For each record in the category:

• A UInt16 value containing the length of the record in bytes

• The record’s actual data

Listing 14-2 presents the LibBeamCategory function in its entirety.

Listing 14-2: Librarian’s LibBeamCategory function

void LibBeamCategory (DmOpenRef db, UInt16 category)
{

Err error;
Char desc[dmCategoryLength];
UInt16 index;
Boolean foundAtLeastOneRecord;
ExgSocketType exgSocket;
UInt16 mode;
LocalID dbID;
UInt16 cardNo;
Boolean databaseReopened;
UInt16 numRecords;

Continued

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 485

486 Part V ✦ Communicating Outside the Handheld

Listing 14-2 (continued)

LibPackedDBRecord *packed;
MemHandle packedH;

// If the database is currently opened to show private
// records, reopen it with private records hidden to
// prevent private records from being accidentally sent
// along with a large batch of normal records. Private
// records should only be sent one at a time.
DmOpenDatabaseInfo(db, &dbID, NULL, &mode, &cardNo, NULL);
if (mode & dmModeShowSecret) {

db = DmOpenDatabase(cardNo, dbID, dmModeReadOnly);
databaseReopened = true;

}
else

databaseReopened = false;

// Verify that there is at least one record in the
// category. It’s possible to just use
// DmNumRecordsInCategory for this purpose, but that
// function has to look over the entire database, which
// can be slow if there are many records. This technique
// is quicker, since it stops searching at the first
// successful match.
index = 0;
foundAtLeastOneRecord = false;
while (true) {

if (DmSeekRecordInCategory(db, &index, 0,
dmSeekForward,
category) != 0)

break;

foundAtLeastOneRecord =
(DmQueryRecord(db, index) != 0);

if (foundAtLeastOneRecord)
break;

index++;
}

// If at least one record exists in the category, beam the
// category.
if (foundAtLeastOneRecord) {

// Initialize the exchange socket structure to zero.
MemSet(&exgSocket, sizeof(exgSocket), 0);

// Assemble a description of the record to send. This

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 486

487Chapter 14 ✦ Beaming Data by Infrared

// description is displayed by the system send and
// receive dialog boxes on both the sending and
// receiving devices.
CategoryGetName(db, category, desc);
exgSocket.description = desc;

// Create a filename from the description.
exgSocket.name = MemPtrNew(StrLen(desc) +

sizeOf7BitChar(‘.’) +
sizeof(libCategoryExtension) +
sizeOf7BitChar(‘\0’));

if (exgSocket.name) {
StrCopy(exgSocket.name, desc);
StrCat(exgSocket.name, “.”);
StrCat(exgSocket.name, libCategoryExtension);

}

exgSocket.target = libCreatorID;

// Initiate transfer.
error = ExgPut(&exgSocket);
if (! error) {

// Now use DmNumRecordsInCategory to get the
// number of records to beam, since it’s certain
// at this point that the category will be beamed.
numRecords = DmNumRecordsInCategory(db, category);

// Send the number of records across first.
error = BeamData(&exgSocket, &numRecords,

sizeof(numRecords));

index = dmMaxRecordIndex;
while ((! error) && (numRecords-- > 0)) {

UInt16 seekOffset = 1;
UInt16 recordSize;

// Be sure to check the last record instead of
// skipping over it.
if (index == dmMaxRecordIndex)

seekOffset = 0;

error = DmSeekRecordInCategory(db, &index,
seekOffset, dmSeekBackward, category);

if (! error) {
packedH = DmQueryRecord(db, index);
ErrNonFatalDisplayIf(! packedH,

“Couldn’t query record.”);

Continued

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 487

488 Part V ✦ Communicating Outside the Handheld

Listing 14-2 (continued)

// Send the size of the record.
recordSize = MemHandleSize(packedH);
error = BeamData(&exgSocket, &recordSize,

sizeof(recordSize));

// Send the record itself.
if (! error) {

packed = MemHandleLock(packedH);
error = BeamData(&exgSocket, packed,

recordSize);
MemHandleUnlock(packedH);

}
}

}
}

ExgDisconnect(&exgSocket, error);

// Free the filename string to prevent a memory leak.
MemPtrFree(exgSocket.name);

} else {
FrmAlert(NoDataToBeamAlert);

}

if (databaseReopened)
DmCloseDatabase(db);

}

Customizing the Beam Acceptance Dialog Box
The first launch code that an application registered to receive beamed data receives
is sysAppLaunchCmdAskUser. If the application simply ignores this launch code, no
harm is done; the Exchange Manager will present a default dialog box prompting the
user to either accept or reject the incoming data. This dialog box is pictured in
Figure 14-3.

Figure 14-3: This default dialog box prompts the
user to accept or reject incoming beamed data.

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 488

489Chapter 14 ✦ Beaming Data by Infrared

Quite often, the default dialog box is perfectly fine; most applications do not require
any more than a simple “yes” or “no” when they ask whether or not beamed data
should be accepted. However, if you would like to do something more interesting
with the incoming data, such as assign it to a specific category, the application
needs to handle sysAppLaunchCmdAskUser and present a custom dialog box to the
user. Librarian, when running on Palm OS 3.5 or later, displays such a custom dialog
box, pictured in Figure 14-4, which allows the user to move incoming data to a spe-
cific category.

Figure 14-4: Librarian, along with the built-in applications
in Palm OS 3.5, uses a custom dialog box to allow the user
to assign a category to incoming records.

A sysAppLaunchCmdAskUser launch code comes with a parameter block that is a
pointer to an ExgAskParamType structure. This structure is defined as follows in
ExgMgr.h:

typedef struct {
ExgSocketPtr socketP;
ExgAskResultType result;
UInt8 reserved;

} ExgAskParamType;

The ExgAskParamType structure contains a pointer to the exchange structure used
to transfer the data. You should set the result field of the ExgAskParamType
structure to one of the following values, depending on how you want the Exchange
Manager to proceed:

✦ exgAskDialog presents the default dialog box to the user

✦ exgAskOk pretends that the user tapped on the OK button in the default
dialog box

✦ exgAskCancel pretends that the user tapped on the Cancel button in the
default dialog box

You do not need to provide your own replacement for the default beam accep-
tance dialog box at all, and instead simply use the sysAppLaunchCmdAskUser
as an opportunity to accept or reject incoming data based on criteria other than
user input. This kind of scenario could work for constant, low-bandwidth infrared
traffic between two copies of a game that is played via IR, although for efficiency’s
sake, you are probably better off using the IR Library to provide this kind of “always
on” connection between two handhelds.

Tip

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 489

490 Part V ✦ Communicating Outside the Handheld

Setting the result takes care of the basic function of the default dialog box, but
what about adding other return values, such as category selection? For this, you
have the appData field of the socket structure contained within the launch code’s
parameter block. The appData field is a UInt32 value that may contain any data
you wish. When the application handles the sysAppLaunchCmdReceiveData
launch code (see below), it may then take action based on the value of the
appData field.

Setting the category of incoming records
Starting with Palm OS 3.5, the Exchange Manager provides the ExgDoDialog func-
tion, which makes it easy to display a default beam acceptance dialog box contain-
ing a category selector. The 3.5 versions of the built-in applications use this dialog
box, and so does Librarian. Here is the relevant section of Librarian’s PilotMain
function as an example of how to prompt the user for a category:

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{

Err error;
DmOpenRef db;

switch (cmd) {
case sysAppLaunchCmdExgAskUser:

// If Librarian is not already running, open its
// database.
if (! (launchFlags & sysAppLaunchFlagSubCall)) {

error = LibGetDatabase(&db, dmModeReadWrite);
} else {

db = gLibDB;
}

if (db != NULL) {
CustomBeamDialog(db,

(ExgAskParamType *) cmdPBP);
if (! (launchFlags & sysAppLaunchFlagSubCall))

error = DmCloseDatabase(db);
}
break;

// Other launch codes omitted
}

return 0;
}

If Librarian is not already running, which PilotMain determines by looking at
the launch code’s flags for a sysAppLaunchFlagSubCall flag, PilotMain opens
Librarian’s database. Access to the database is required, because the database’s
application info block contains all the strings for Librarian’s category names.

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 490

491Chapter 14 ✦ Beaming Data by Infrared

Whether the database is open or closed, PilotMain then throws the ball to
CustomBeamDialog, listed below, to handle most of the details:

Err CustomBeamDialog (DmOpenRef db, ExgAskParamPtr askInfo)
{

ExgDialogInfoType exgInfo;
Err error;
Boolean result;
UInt32 romVersion;

// The custom category-enabled dialog box is available only
// on Palm OS 3.5 or later.
FtrGet(sysFtrCreator, sysFtrNumROMVersion, &romVersion);
if (romVersion <

sysMakeROMVersion(3,5,0,sysROMStageRelease,0))
return 1;

// Set the default category to Unfiled.
exgInfo.categoryIndex = dmUnfiledCategory;

// Store the database reference for use by the event
// handler.
exgInfo.db = db;

// Display the custom dialog box.
result = ExgDoDialog(askInfo->socketP, &exgInfo, &error);

if (! error && result) {
// Accept the data; pretend that the user tapped OK.
askInfo->result = exgAskOk;

// Stuff the category index into the appData field.
askInfo->socketP->appData = exgInfo.categoryIndex;

} else {
// Reject the data; pretend that the user tapped
// Cancel.
askInfo->result = exgAskCancel;

}

return error;
}

The CustomBeamDialog function first checks the version of the operating system.
Because ExgDoDialog and the custom dialog box resource it uses do not exist
before Palm OS 3.5, CustomBeamDialog returns immediately on earlier versions,
allowing the Exchange Manager to display the default dialog box without any cate-
gory selection capability.

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 491

492 Part V ✦ Communicating Outside the Handheld

After checking the Palm OS version, CustomBeamDialog declares and initializes
exgInfo, an ExgDialogInfoType structure, with the default category that should
appear in the custom dialog box and an open reference to Librarian’s database
so the dialog box can display the names of the categories in its pop-up list. The
ExgDialogInfoType structure, declared in ExgMgr.h, looks like this:

typedef struct {
UInt16 version;
DmOpenRef db;
UInt16 categoryIndex;

} ExgDialogInfoType;

The version field of ExgDialogInfoType represents the version of the structure
itself. This value is for possible future changes to the structure; for now, just use a
value of 0 for version.

Once exgInfo is initialized, CustomBeamDialog calls the ExgDoDialog function,
passing in a pointer to the exchange socket structure for the transfer, a pointer to
exgInfo, and a pointer to an Err value to receive any errors encountered while dis-
playing the dialog box. The ExgDoDialog function returns a Boolean result: true if
the user tapped on the dialog box’s OK button, false if the user tapped on Cancel.
If the return result was true, and no errors occurred, CustomBeamDialog sets the
result field of the launch code’s parameters to mimic a tap on OK in the default
beam dialog box. Also, CustomBeamDialog fills the socket structure’s appData
field with the category selected in the custom dialog box, which is stored in the
categoryIndex field of exgInfo. A false return value from ExgDoDialog causes
CustomBeamDialog to act as if the user tapped on Cancel in the default dialog box.

Receiving Data
When the Exchange Manager receives data that is targeted to a particular applica-
tion’s creator ID, or that has a file extension or MIME type registered by an appli-
cation, the manager sends a sysAppLaunchCmdRecieveData launch code to the
appropriate application. Handling this launch code allows an application to receive
beamed data.

The application handling sysAppLaunchCmdReceiveData may or may not be
running when it receives the launch code, so it must open its database if it is not
already the active application. Librarian takes care of this step in its PilotMain
routine, and then hands off processing of the incoming data to another function:

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{

case sysAppLaunchCmdExgReceiveData:
// If Librarian is not already running, open its
// database.
if (! (launchFlags & sysAppLaunchFlagSubCall)) {

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 492

493Chapter 14 ✦ Beaming Data by Infrared

error = LibGetDatabase(&db, dmModeReadWrite);
} else {

db = gLibDB;
FrmSaveAllForms();

}

if (db != NULL) {
error = LibReceiveData(db,

(ExgSocketType *) cmdPBP);
if (! (launchFlags & sysAppLaunchFlagSubCall))

error = DmCloseDatabase(db);
}
break;

}

return 0;
}

The function that takes care of receiving data in Librarian is LibReceiveData, which
is shown in Listing 14-3.

Listing 14-3: Librarian’s LibReceiveData function

Err LibReceiveData (DmOpenRef db, ExgSocketType *exgSocketP)
{

Err error;
UInt16 index = 0;
Char *startOfExtension;
Boolean singleRecord = false;
UInt16 numRecords;
UInt16 recordSize;

// Determine whether the input stream contains a single
// record or an entire category by looking at the file
// extension.
if (exgSocketP->name) {

startOfExtension = exgSocketP->name +
StrLen(exgSocketP->name) - libFileExtensionLength;

if (StrCaselessCompare(startOfExtension,
libFileExtension) == 0)

singleRecord = true;
}

// Accept connection from remote device.
error = ExgAccept(exgSocketP);

// Import records from data stream.
if (! error) {

Continued

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 493

494 Part V ✦ Communicating Outside the Handheld

Listing 14-3 (continued)

if (singleRecord) {
// Import a single record.
error = LibImportRecord(db, exgSocketP,

libEntireStream, &index);
} else {

// Import a whole category, starting with the
// number of records in the transfer.
ExgReceive(exgSocketP, &numRecords,

sizeof(numRecords), &error);
while ((! error) && (numRecords-- > 0)) {

// Retrieve the size of the next record.
ExgReceive(exgSocketP, &recordSize,

sizeof(recordSize), &error);

// Import the record.
if (! error)

error = LibImportRecord(db, exgSocketP,
recordSize, &index);

}
}

// Disconnect the transfer.
ExgDisconnect(exgSocketP, error);

}

// Set the socket structure’s goTo information so the
// system can fire off a sysAppLaunchCmdGoTo launch code
// to open the newly transmitted record in Librarian.
if (! error) {

DmRecordInfo(db, index, NULL,
&exgSocketP->goToParams.uniqueID, NULL);

DmOpenDatabaseInfo(db, &exgSocketP->goToParams.dbID,
NULL, NULL, &exgSocketP->goToParams.dbCardNo,
NULL);

exgSocketP->goToParams.recordNum = index;
exgSocketP->goToCreator = libCreatorID;

}

return error;
}

Receiving records is a four-step process:

1. Call ExgAccept to accept the connection.

2. Call ExgReceive within a loop to retrieve the data.

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 494

495Chapter 14 ✦ Beaming Data by Infrared

3. Call ExgDisconnect to end the transfer.

4. Set up goTo parameters to display the transferred record.

Accepting a connection with ExgAccept
The ExgAccept function is very similar to ExgPut: it merely opens a connection,
and you must call ExgReceive or ExgDisconnect next to either retrieve data or
close the connection. Pass a pointer to the exchange socket structure to
ExgAccept:

Err error = ExgAccept(&exgSocket);

Receiving data with ExgReceive
If ExgAccept did not return an error, your application may now start receiving data
using the ExgReceive function. Just as with ExgSend, you must call ExgReceive
repeatedly from within a loop to retrieve all the incoming data. The prototype for
ExgReceive is nearly identical to that for ExgSend:

UInt32 ExgReceive(ExgSocketPtr socketP, void *bufP,
const UInt32 bufLen, Err *err)

The ExgReceive function returns the number of bytes actually read from the incom-
ing data stream. The easiest way to use ExgReceive is from within another function
that contains the loop necessary to make ExgReceive work. Librarian uses the
LibImportRecord function for this purpose:

Err LibImportRecord (DmOpenRef db, ExgSocketType *exgSocketP,
UInt32 bytes, UInt16 *indexP)

{
Char buffer[libImportBufferSize];
Err error;
UInt16 index = 0;
UInt16 insertIndex;
UInt32 bytesReceived;
MemHandle recordH = NULL;
Char *record;
UInt32 recordSize = 0;
MemHandle packedH;
LibPackedDBRecord *packed;
Boolean allocated = false;
UInt16 category;

do {
UInt32 bytesToRead = min(bytes, sizeof(buffer));

bytesReceived = ExgReceive(exgSocketP, buffer,

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 495

496 Part V ✦ Communicating Outside the Handheld

bytesToRead, &error);
bytes -= bytesReceived;
if (! error) {

if (! recordH)
recordH = DmNewRecord(db, &index,

bytesReceived);
else

recordH = DmResizeRecord(db, index,
recordSize + bytesReceived);

if (! recordH) {
error = DmGetLastErr();
break;

}

allocated = true;
record = MemHandleLock(recordH);
error = DmWrite(record, recordSize, buffer,

bytesReceived);
MemHandleUnlock(recordH);

recordSize += bytesReceived;
}

} while ((! error) && (bytesReceived > 0) &&
(bytes > 0));

if (recordH) {
DmReleaseRecord(db, index, true);

// Grab the category for the new record from the
// socket’s appData field.
category = exgSocketP->appData;

// Put the record in the proper category.
if (category) {

UInt16 attr;

// Get the record’s attributes.
error = DmRecordInfo(db, index, &attr, NULL,

NULL);

// Set the category and mark the record dirty.
if ((attr & dmRecAttrCategoryMask) != category) {

attr &= ~dmRecAttrCategoryMask;
attr |= category | dmRecAttrDirty;
error = DmSetRecordInfo(db, index, &attr,

NULL);
}

}

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 496

497Chapter 14 ✦ Beaming Data by Infrared

// Move the record to its proper sort position.
packedH = DmQueryRecord(db, index);
packed = MemHandleLock(packedH);
insertIndex = LibFindSortPosition(db, packed);
error = DmMoveRecord(db, index, insertIndex);
if (! error)

index = insertIndex - 1;
MemHandleUnlock(packedH);

}

if (error && allocated)
DmRemoveRecord(db, index);

*indexP = index;
return error;

}

The LibImportRecord function begins by creating a new record with DmNew
Record; then it progressively calls ExgReceive to fill the new record, resizing the
record as necessary with DmResizeRecord. Once the record has been successfully
retrieved, LibImportRecord checks the appData field of the exchange socket struc-
ture to see if the user assigned a new category to the record using the custom beam
acceptance dialog box. Because the Unfiled category has a value of 0, LibImport
Record will take no action when the appData field equals 0, resulting in the record
landing in the Unfiled category. Otherwise, LibImportRecord assigns the record to
the category specified in appData.

Making many calls to ExgReceive using small buffers is better than allocating a
really large buffer to receive incoming data, because the application receiving the
data is not necessarily the currently running application. The active application is
already occupying a great deal of dynamic memory with its own variables, so there
might not be a lot of space available for ExgReceive to do its work. If you have
verified that your application is indeed the active application, you can get away
with allocating a large buffer, but in general, you should stick with smaller buffers
when receiving data than you use when sending data.

One more step remains. As it currently stands, the newly created record is the first
record in the database (index equal to 0), which is not necessarily where the record
belongs. The LibImportRecord function retrieves a handle to the new record with
DmQueryRecord, and then finds its proper sort position by calling Librarian’s
LibFindSortPosition function, which is just a wrapper for the Palm OS function
DmFindSortPosition. Once the record’s real location is determined, LibImport
Record moves the record to the correct location with DmMoveRecord.

See Chapter 13, “Manipulating Records,” for more information about creating,
resizing, sorting, and moving records.

Cross-
Reference

Tip

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 497

498 Part V ✦ Communicating Outside the Handheld

Ending a transfer with ExgDisconnect
After receiving all the incoming data, your application should end the transfer by
calling ExgDisconnect, passing it a pointer to the exchange socket structure and
the error value, if any, received from any ExgAccept or ExgReceive calls:

ExgDisconnect(&exgSocket, error);

Setting up goTo parameters
After receiving a record, your application should modify the socket structure’s
goToParams and goToCreator fields so the Exchange Manager knows which record
to display, and in what application it should display it. Librarian’s LibReceiveData
routine takes care of this task with the following lines of code:

DmRecordInfo(db, index, NULL,
&exgSocketP->goToParams.uniqueID, NULL);

DmOpenDatabaseInfo(db, &exgSocketP->goToParams.dbID,
NULL, NULL, &exgSocketP->goToParams.dbCardNo, NULL);

exgSocketP->goToParams.recordNum = index;
exgSocketP->goToCreator = libCreatorID;

Receiving multiple records
Librarian can tell whether it is receiving a single record or a category by the file
extension of the incoming data object (see “Beaming multiple records” earlier in
this chapter). If a single record is on its way in, the LibReceiveData function just
calls LibImportRecord to loop over the data stream and extract a record from it.

If LibReceiveData determines that a whole category is inbound, it calls ExgReceive
to pull the two-byte number of records included in the transfer into the
numRecords variable:

ExgReceive(exgSocketP, &numRecords, sizeof(numRecords),
&error);

Retrieving the number of incoming records allows LibReceiveData to set up a loop
for retrieving individual records from the data stream. In each iteration of the loop,
LibReceiveData calls ExgReceive to grab the two-byte record size number that pre-
cedes each record’s actual data, and then passes that size to LibImportRecord to
retrieve the record itself:

ExgReceive(exgSocketP, &numRecords,
sizeof(numRecords), &error);

while ((! error) && (numRecords-- > 0)) {
// Retrieve the size of the next record.
ExgReceive(exgSocketP, &recordSize, sizeof(recordSize),

&error);

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 498

499Chapter 14 ✦ Beaming Data by Infrared

// Import the record.
if (! error)

error = LibImportRecord(db, exgSocketP, recordSize,
&index);

}

Displaying Beamed Records
The final step in receiving a beamed record is displaying that record to the user. In
order to accomplish this task, the Exchange Manager sends a sysAppLaunchCmdGoTo
launch code to the application, based on the goToParams and goToCreator fields in
the transfer’s socket structure, which specifies the record to display. The sysApp
LaunchCmdGoTo launch code is actually shared between the Exchange Manager and
the global find facility, which both use it to display specific data within an application.

See the “Implementing the Global Find Facility” section of Chapter 13, “Manipulating
Records,” for more information about how to handle the sysAppLaunchCmdGoTo
launch code.

Unlike the find facility, the Exchange Manager generally does not need to highlight
specific information within a record that it displays, and so the matchPos and
matchFieldNum fields in the sysAppLaunchCmdGoTo launch code’s parameter
block are not set. However, you may pass an application-defined value to the launch
code parameter block’s matchCustom field by setting the matchCustom field in the
socket’s goToParams when you are handling the sysAppLaunchCmdReceiveData
launch code:

UInt32 myCustomValue;

// Set myCustomValue here.

exgSocketP->goToParams.matchCustom = myCustomValue;

Debugging Beaming
Other than setting the exchange socket’s localMode field to 1, there are a couple
of other tricks that can make debugging beaming operations much easier. Both of
these methods are special developer Graffiti shortcuts that you can make by writ-
ing the Graffiti shortcut stroke in the Graffiti area of a Palm OS handheld or the
Palm OS Emulator, followed by a period (two dots) and a letter. The shortcuts are
pictured in Figure 14-5.

Figure 14-5: Helpful beam debugging shortcuts: toggle beam
loopback (left), and serial port IR (right)

Cross-
Reference

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 499

500 Part V ✦ Communicating Outside the Handheld

A Graffiti shortcut character, followed by a period and the letter t, toggles
localMode on and off.

In an application that supports beaming records, you can use the t shortcut as a
quick and dirty record copier. Turn on local beaming, and then beam to yourself
the record you wish to copy. Just accept the record back into the application, and
you now have a duplicate record. Just be sure to make the t shortcut a second
time when you’re done to enable beaming to other devices again.

A Graffiti shortcut character, followed by a period and the letter s, sends infrared
data to the handheld’s serial port. This is primarily useful when you are debugging
using POSE, which does not actually have an IR port but can emulate a serial con-
nection using the desktop machine’s own serial ports.

Beaming Applications and Databases
The system application launcher allows you to beam applications between Palm OS
handhelds. You can also implement application beaming from within your own
application, as well as perform a few tricks that the launcher cannot do, such as
beaming any arbitrary database on the handheld, regardless of whether it is an
application or not.

Beaming databases is similar to beaming any other type of data with the Exchange
Manager. Two extra functions are required to make the whole process work:
ExgDBWrite, and a callback function that ExgDBWrite uses to actually send the
database’s bytes across the connection.

The ExgDBWrite function converts a database from its internal format on the hand-
held to its equivalent .prc or .pdb file format on the desktop, and then uses a call-
back function to perform some kind of write operation with the converted database
information. Most commonly, this write operation will be used to send the database
through the Exchange Manager, but this function might also be used for other pur-
poses, such as to make a backup copy of a database on the handheld. The
ExgDBWrite function has the following prototype:

Err ExgDBWrite (ExgDBWriteProcPtr writeProcP, void* userDataP,
const char* nameP, LocalID dbID, UInt16 cardNo)

The first parameter to ExgDBWrite is a pointer to the callback function that will
be responsible for sending the actual data. This callback must have the following
prototype:

Err ExgDBWriteProc (const void *dataP, UInt32 *sizeP,
void *userDataP)

Tip

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 500

501Chapter 14 ✦ Beaming Data by Infrared

Next, the ExgDBWrite function has a userDataP parameter, where you may pass
application-defined data to ExgDBWrite. This data is also passed along to the call-
back function’s userDataP parameter. When using ExgDBWrite to beam a database,
you should pass a pointer to the exchange socket structure in the userDataP
parameter.

If nameP is not NULL, ExgDBWrite looks for a database that has a name matching the
string that nameP points to. You may alternatively specify a value for dbID if you
know the LocalID of the database to send. In either case, you need to use the cardNo
parameter to specify the card number where the database resides.

The following simple function takes the name of a database as an argument and
sends the corresponding database to another handheld using the Exchange
Manager:

Err SendDatabase (Char *dbName)
{

ExgSocketType exgSocket;
Err error;
Char name[36]; // max length for a database name (32),

// plus a period and three-letter file
// extension

// Initialize the socket structure.
MemSet(&exgSocket, sizeof(exgSocket), 0);
StrCopy(name, dbName);
StrCat(name, “.prc”);

exgSocket.description = dbName;
exgSocket.name = name;

// Make a connection to send the database.
error = ExgPut(&exgSocket);
if (! error) {

error = ExgDBWrite(WriteDatabase, &exgSocket, dbName,
NULL, 0);

error = ExgDisconnect(&exgSocket, error);
}
return error;

}

The operating system is registered to handle the file extensions .prc (application
database), .pdb (record database), and .pqa (Palm Query Application). If you spec-
ify any of these file extensions for the socket’s file name, the system on a receiving
Palm OS handheld will automatically try to receive the database that you have sent.

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 501

502 Part V ✦ Communicating Outside the Handheld

The WriteDatabase callback passed to ExgDBWrite in the SendDatabase function
is very similar to Librarian’s BeamData function but does not need to call ExgSend
in a loop, because ExgDBWrite already calls the callback function multiple times
until it sends the entire database or times out. Here is what the WriteDatabase
function should look like:

Err WriteDatabase (const void *buffer, UInt32 *bytes,
void *exgSocket)

{
Err error;

ExgSend((ExgSocketType *) exgSocket, buffer, bytes,
&error);

return error;
}

Receiving beamed databases
Normally, you do not have to do anything to receive an incoming database if it was
sent with the .prc, .pdb, or .pqa file extensions; the system automatically takes
care of receiving databases with these extensions. However, if you want an appli-
cation to receive a database and subject it to special processing, you can use
ExgDBRead to receive a database with a different file extension. The ExgDBRead
function has the following prototype:

Err ExgDBRead (ExgDBReadProcPtr readProcP,
ExgDBDeleteProcPtr deleteProcP, void* userDataP,
LocalID* dbIDP, UInt16 cardNo, Boolean* needResetP,
Boolean keepDates)

The first two parameters to ExgDBRead are pointers to callback functions. The first
callback, specified by readProcP, is the receiving equivalent of the send callback
function used by ExgDBWrite. The ExgDBRead callback calls this callback repeat-
edly until the entire database has been received or ExgDBRead times out. The read-
ing callback function must have the following prototype:

Err ReadProc (void* dataP, UInt32* sizeP, void* userDataP)

After the read callback function is a delete callback. The ExgDBRead function calls
the function specified by deleteProcP if a database already exists with the same
name as the incoming database. The delete callback function is responsible for
deleting, renaming, moving, or otherwise dealing with the name conflict. If the delete
callback successfully deals with the situation, it returns true; otherwise, the call-
back returns false. The delete callback function must have the following prototype:

Boolean DeleteProc (const char* nameP, UInt16 version,
UInt16 cardNo, LocalID dbID, void* userDataP)

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 502

503Chapter 14 ✦ Beaming Data by Infrared

Understanding the IR Library
The Exchange Manager is a very flexible and easy-to-use interface to the Palm OS
infrared transfer facility. However, if you have an application that requires very fine
control of the Palm OS infrared system, you will need to use the IR Library, which
provides you with access to the protocols underlying the Exchange Manager.

The IR Library is a shared library of functions. In order to access the library, you
must first get a reference to it using the SysLibFind function:

UInt16 refNum;

Err error = SysLibFind(irLibName, &refNum);

Many of the functions in the IR Library require the library reference as an argument.
For example, the IrOpen function (which opens the IR Library, allocates global mem-
ory for the IR stack, and reserves system resources for use by the library) may be
called as follows to open the library at the maximum negotiated connection speed:

UInt32 options = 0;

options |= irOpenOptSpeed115200;
Err error = IrOpen(refNum, options);

IR Library functions implement all the required IrDA Data protocols as outlined by
the Infrared Data Association, as well as the optional Object Exchange (OBEX) layer.
Figure 14-6 shows the hardware and protocol layers of the IrDA stack. Protocol lay-
ers toward the top of the diagram are built on top of layers at the bottom of the
diagram.

Figure 14-6: The IrDA hardware and
protocol stack

The SIR and FIR layer is the hardware portion of the IrDA stack. The SIR (Serial
Infrared) layer supports speeds up to 115,200 kbps, and the FIR (Fast Infrared) layer
supports speeds up to 4 Mbps. The IrLAP (Infrared Link Access Protocol) layer
provides a data pipe between different IrDA devices; the IrLMP (Infrared Link
Management Protocol) layer manages multiple IrLAP sessions; and the TinyTP
(Tiny Transport Protocol) layer provides a lightweight transfer protocol for
higher-level IrDA layers.

OBEX

Tiny TP

IrLMP

IrLAP

FIRSIR

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 503

504 Part V ✦ Communicating Outside the Handheld

OBEX is an optional layer that provides object exchange facilities for beaming typed
pieces of data between devices. Much of OBEX is very similar to the Hypertext
Transport Protocol (HTTP), only scaled down to provide a bridge between resource-
heavy HTTP servers and smaller devices using IrDA. OBEX is intended to make the
final hop between the Web and a small device with limited resources. The Exchange
Manager is the Palm OS implementation of OBEX, and as such, there are no separate
API functions to access the OBEX layer.

The details of programming IrDA are complex enough to warrant their own very
large manual; lest this book become IrDA Programming Bible instead of Palm OS
Programming Bible, this is as much IrDA programming information as you will see
in this book.

Take a look at the Palm OS SDK Reference and Palm OS Programmer’s Companion,
both part of the Palm OS 3.5 SDK included on the CD-ROM attached to this book,
for more information about using the IR Library.

The IrDA Web site, located at http://www.irda.org, contains full specifications
for all the IrDA protocols, as well as extensive implementation guides and testing
guidelines. If you want to hack the IrDA layer on a Palm OS handheld, this Web site
should be your first stop.

Summary
This chapter showed you how to use the Exchange Manager to send data and appli-
cations between Palm OS handhelds, or from a Palm OS handheld to another type
of device. After reading this chapter, you should understand the following:

✦ To enable transfer of data between the Palm OS and other platforms, you can
register Palm OS applications to handle data with either a specific file exten-
sion or a particular MIME data type.

✦ The ExgSocketType structure contains all the information about an Exchange
Manager data transfer, and you set and read its fields throughout the process
of beaming data.

✦ Beaming data requires four steps: initializing an ExgSocketType structure,
calling ExgPut to begin the transfer, calling ExgSend within a loop to send the
actual data, and calling ExgDisconnect to end the transfer.

✦ If an application is to receive data, it should handle the sysAppLaunchCmdAsk
User, sysAppLaunchCmdReceiveData, and sysAppLaunchCmdGoTo launch
codes.

Note

On the
CD-ROM

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 504

505Chapter 14 ✦ Beaming Data by Infrared

✦ The ExgDoDialog function, available starting with Palm OS version 3.5, makes
it easy to prompt the user for a category in which to place a beamed record.

✦ Receiving beamed data requires four steps: accepting the connection with
ExgAccept, calling ExgReceive within a loop to receive the actual data, calling
ExgDisconnect to end the transfer, and setting up the exchange socket struc-
ture’s goTo parameters to allow the Exchange Manager to display the newly
beamed record.

✦ The Exchange Manager is built on top of OBEX, which is in turn a layer on
top of several IrDA protocols, most of which are available for direct access
through the Palm OS IR Library.

✦ ✦ ✦

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 505

4676-7 ch14.f.qc 9/29/00 12:55 PM Page 506

Using the
Serial Port

Part of the Palm Computing platform’s success can be
attributed to its ability to connect to and share data with

other devices using standard methods of communication. The
serial port on a Palm OS device is a perfect example of this
kind of easy connectivity. Because a Palm OS handheld uses
standard RS-232 serial signals, the only obstacle to direct
communication between the handheld and another device
is finding a cable with the correct wiring for both ends of the
connection. You can hook up a wide variety of electronics to
a Palm OS handheld, including modems, Global Positioning
System (GPS) receivers, and desktop computers, just to name
a few. In fact, HotSync technology, the primary method for syn-
chronizing data between the Palm OS and the desktop com-
puter, relies on a serial connection through a cradle to take
care of shoving bits back and forth between the two systems.

This chapter shows you how to use the Palm OS serial man-
ager to send and receive data using the handheld’s serial port,
including an introduction to the hardware and software layers
that make up the Palm OS serial communications system.

Understanding Palm OS Serial
Communications

The serial port on current Palm OS devices is a slightly
stripped-down version of what you might be used to in a desk-
top computer’s serial port. The UART (Universal Asynchronous
Receiver and Transmitter) chip in a Palm OS handheld uses the
following five external signals:

✦ SG (signal ground)

✦ TD (transmit data)

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
Palm OS serial
communications

Using the new
serial manager

Using the old
serial manager

Opening and closing
the serial port

Reading and writing
data on the serial port

Retrieving and setting
serial port values

✦ ✦ ✦ ✦

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 507

508 Part V ✦ Communicating Outside the Handheld

✦ RD (receive data)

✦ CTS (clear to send)

✦ RTS (request to send)

Some signals used by desktop serial ports, such as RI (ring indicator), are not pre-
sent in the Palm Computing platform’s UART. The hardware UART send and receive
buffers also hold only 8 bytes apiece, compared with the 16-byte UART buffers com-
monly found on desktop computers.

The Palm OS serial port supports serial communications at speeds between 300
and 115,200 bps. Another thing to keep in mind when designing Palm OS programs
that communicate with other devices through the serial port is that all data enter-
ing or leaving the device is arranged in Motorola’s big-endian byte order. In other
words, multi-byte data types like UInt16 and UInt32 are arranged with their most
significant bytes at the lowest address. This is an important distinction when con-
necting to an Intel-based machine, all of which use little-endian byte ordering. If
your program needs to send multi-byte data to an Intel system, you will need to
reverse the byte order, either in the handheld application or, preferably, in what-
ever program serves as the handheld application’s counterpart on the desktop.

On the software side, the Palm OS has several layers that make up its serial commu-
nications system. Each layer adds to and relies upon the capabilities of the layer
beneath it. The following layers compose the Palm OS serial communications stack:

✦ Serial manager. At the lowest level, the serial manager provides direct con-
trol of RS-232 signals and the hardware serial port. This layer allows for byte-
level serial input and output, which makes this layer the most flexible for use
in custom applications.

✦ Modem manager. Built directly on top of the serial manager, the modem man-
ager provides a small API for modem dialing and control, which is capable of
handling a modem attached either directly to the handheld’s serial port or
through a Palm modem cable.

✦ Serial Link Protocol (SLP). Also built on the serial manager, this protocol pro-
vides an efficient send-and-receive system for data packets, including CRC-16
error checking. Both the HotSync desktop program and the Palm Debugger use
this protocol for communicating with a Palm OS handheld resting in its cradle.
The Palm OS also offers an API for your own applications to use SLP called the
Serial Link Manager (SLM), which offers a sockets-like implementation of SLP
and provides support for remote debugging and Remote Procedure Calls (RPC).

✦ Packet Assembly/Disassembly Protocol (PADP). Built on the Serial Link
Protocol, PADP provides buffered data transmission capabilities for the
Desktop Link Protocol, described below. PADP is entirely internal, and your
applications do not have access to this layer.

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 508

509Chapter 15 ✦ Using the Serial Port

✦ Desktop Link Protocol (DLP). DLP is built on top of PADP and provides remote
access to various Palm OS subsystems, including data storage. HotSync tech-
nology uses DLP to perform synchronization and to install and back up data-
bases. Though you cannot directly access DLP’s features through a Palm OS
application, you indirectly make use of it if you write a HotSync conduit for a
desktop computer.

✦ Connection Management Protocol (CMP). CMP is built directly on the serial
manager layer, and it is another protocol the system uses for negotiating baud
rates and exchanging basic information with outside communication software.
Only the operating system has access to CMP. You can, however, alter connec-
tion profiles used by the Palm OS to connect applications via IR, serial, or net-
work communications using the connection manager.

Figure 15-1 shows how the different layers of the Palm OS serial communications
stack relate to one another.

Figure 15-1: Layers that make up the Palm OS serial communications stack

Software

Hardware

Desktop Link
Protocol (DLP)

Serial Link
Protocol (SLP)

Modem Manager

Serial Port

Modem (optional)

Connection Management
Protocol (CMP)

Packet Assembly/Disassembly
Protocol (PADP)

Serial Manager

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 509

510 Part V ✦ Communicating Outside the Handheld

Using the Serial Manager
Since the serial manager is the basic underlying layer for all serial communications
on a Palm OS handheld, having the most direct control over the device’s hardware,
the serial manager is the most flexible way to connect a Palm OS application to
another device. Of course, this flexibility comes with a price: you are entirely respon-
sible for implementing your own communications protocols. The higher-level serial
protocols available on the Palm OS, such as SLP, provide more advanced communica-
tions capabilities than the basic serial manager, but they are rather limited in scope.
For example, SLP works well for communicating with a debugger, but it is difficult
to adapt to any other purpose. Whatever you connect the handheld to is likely to
require its own arbitrary communication format, so handling data transfer at the
byte level with the serial manager lets you adapt a Palm OS application to fit the
needs of whatever device is attached to the handheld.

The single most important thing to remember about serial communications on the
Palm Computing platform is that the serial port is extremely power intensive. An
open serial connection drains a handheld’s batteries faster than almost any other
system on the device.

To prolong battery life, you should keep the serial port open only long enough
to perform the necessary data transfer, and then close the port. Leaving the port
open for long periods of time will suck the life out of the handheld’s batteries, mak-
ing your application very unpopular with users. You will find various tips on con-
serving power use during serial communications throughout this chapter.

With the release of Palm OS 3.3, Palm Computing introduced the new serial
manager. Unlike the original serial manager, the new serial manager can maintain
multiple serial connections through different communications devices on a single
handheld; the old serial manager can make only a single connection at a time. The
new serial manager also allows you to write drivers for both hardware and virtual
serial devices, providing an abstraction layer between the serial hardware and the
operating system’s serial management routines. This new driver-based system is
more efficient on devices that have more than one serial device installed, such as
those in the Palm III family, whose physical serial and IR ports are both capable of
serial communications.

Handhelds that support the new serial manager still understand calls to the old
serial manager functions. In such handhelds, the system simply maps the old calls
to equivalent routines in the new serial manager. Palm Computing has plans to
phase out support for the old serial manager, so this chapter focuses primarily
on the new serial manager, presenting a few pointers later on if you need to write
code to support an older Palm OS handheld.

Caution

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 510

511Chapter 15 ✦ Using the Serial Port

If possible, be sure to use the new calls rather than the original serial manager
routines, since calling the older functions on a device with the new serial manager
installed results in a performance penalty.

Before calling new serial manager functions, you should determine whether the sys-
tem supports them. Use the following call to FtrGet to perform this check:

UInt32 value;

Err error = FtrGet(sysFileCSerialMgr, sysFtrNewSerialPresent,
&value);

If the new serial manager is installed, the value parameter will be non-zero, and
error will have the value 0, representing no error.

Checking that the operating system version is greater than 3.3 is not a reliable way
to ensure that the new serial manager is installed. Not all future Palm OS devices
will necessarily include the new serial manager, so checking for the manager
directly is a good idea if you want your code to continue working on upcoming
versions of the Palm OS.

Using the New Serial Manager
To demonstrate using the new serial manager, this chapter refers to a sample
application called Serial Chat, which allows a Palm OS handheld to chat with a con-
nected terminal program on the desktop via the cradle, or even with another hand-
held connected to the first one with a null modem cable. Figure 15-2 shows Serial
Chat in action.

Figure 15-2: The Serial Chat sample application

Serial Chat automatically opens a serial connection when it starts up, and then
closes the connection when it exits. Text to send to the desktop may be entered in
the Outgoing field at the bottom of the screen; entering a linefeed character sends
the contents of the field over the serial connection. Data coming back from the
desktop appears in the read-only Incoming field at the top of the screen. The Clear
button erases the contents of both fields.

Caution

Tip

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 511

512 Part V ✦ Communicating Outside the Handheld

Before you can use the serial manager to send or receive data, you must open an
appropriate serial device with either SrmOpen or SrmOpenBackground, depend-
ing on whether you want a foreground or background port connection. A fore-
ground connection, made with the SrmOpen function, can read from and write to
the port. There can be only one foreground connection at a time. A background
connection, made with SrmOpenBackground, can receive only incoming data, and
if an application makes a foreground connection, the background connection relin-
quishes the port to the foreground task. Like a foreground connection, only one
application or task may have background ownership of the port. Background con-
nections are primarily useful for providing hardware support for an external device,
such as a keyboard, which requires only one-way communication from outside the
handheld.

To open a connection using either function, you must specify either a logical port
number or a four-character creator ID that identifies a specific piece of serial hard-
ware on the handheld. Logical port numbers are generic identifiers for different
kinds of ports. If you specify a logical port number, the system finds an appropriate
port on the handheld and opens it. If you use a creator ID instead, the system
attempts to open the specific device identified by the creator ID. The Palm OS
header file SerialMgr.h defines the following constants for logical port numbers:

#define serPortLocalHotSync 0x8000 // Use physical HotSync port
#define serPortCradlePort 0x8000 // Use the RS-232 cradle

// port.
#define serPortIrPort 0x8001 // Use available IR port.

You can find useful constants for serial device creator IDs in SystemResources.h:

#define sysFileCUart328 ‘u328’ // Creator type for ‘328 UART
// plug-in

#define sysFileCUart328EZ ‘u8EZ’ // Creator type for ‘328EZ
// UART plug-in

#define sysFileCUart650 ‘u650’ // Creator type for ‘650 UART
plug-in (IR port on an
upgraded Palm III device)

#define sysFileCVirtIrComm ‘ircm’ // Creator type for IrComm
virtual port plug-in

For compatibility with different versions of the Palm OS, you are better off using a
logical port number than the creator ID of a specific hardware port. I ran across this
kind of compatibility problem when developing the Serial Chat example program
for this chapter, because I had originally used the u328 code to specify the serial
port directly. While this works fine on POSE when it emulates a Palm III running
Palm OS 3.3, when I installed the application on my Palm IIIx running Palm OS 3.5,
the SrmOpen call at the start of the program returned the error serErrBadPort.
This is because the IIIx has a DragonBall EZ processor, whose serial UART has a
creator ID of u8EZ instead of u328, which is the code for non-EZ devices like the
Palm III. Specifying the logical port ID of 0x8000 ensures that Serial Chat works on
devices with either the DragonBall or the DragonBall EZ processor.

Tip

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 512

513Chapter 15 ✦ Using the Serial Port

Opening the serial port
Specify the logical port number or creator ID as the first argument to SrmOpen and
SrmOpenBackground, both of which take the same parameters. Here is the proto-
type for SrmOpen:

Err SrmOpen (UInt32 port, UInt32 baud, UInt16* newPortIdP)

After the port identifier, specify an initial baud rate for the connection. The third
parameter to SrmOpen and SrmOpenBackground is a pointer to a variable to
receive the port ID. The port ID must be passed to other serial manager functions
so they can find the open connection and work with it.

A return value of 0 from SrmOpen and SrmOpenBackground indicates that the
port was opened successfully. You should also specifically check for the error value
serErrAlreadyOpen. If either open function returns this value, the port was suc-
cessfully opened, but another task is already installed as the foreground or back-
ground port owner. In this case, the system increments an open count for the port
to keep track of how many tasks are using the port concurrently.

It is possible for two tasks to use the port at the same time, but I do not recom-
mend sharing reads and writes between two applications unless you like vast
amounts of pain. Sharing the port is more likely to result in corrupt data and
debugging headaches than in anything useful.

If your application receives a serErrAlreadyOpen error, it should call SrmClose to
decrement the open count, and then display an appropriate error message. Failure
to call SrmClose after a serErrAlreadyOpen error will leave the serial port open
after your application exits, a surefire way to drain battery power.

Serial Chat calls SrmOpen from its OpenSerial function to make a foreground con-
nection. The OpenSerial function, called from Serial Chat’s StartApplication rou-
tine, looks like this:

static Err OpenSerial (void)
{

Err error = 0;

// Open the serial port with an initial baud rate of 9600.
error = SrmOpen(serPortCradlePort, 9600, &gPortID);
ErrNonFatalDisplayIf(error == serErrBadPort,

“serErrBadPort”);
switch (error) {

case errNone:
break;

case serErrAlreadyOpen:

Caution

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 513

514 Part V ✦ Communicating Outside the Handheld

SrmClose(gPortID);
FrmAlert(SerialBusyAlert);
return error;
break;

default:
FrmAlert(SerialOpenAlert);
return error;
break;

}

gConnected = true;

// Clear the port in case garbage data is hanging around.
SrmReceiveFlush(gPortID, 100);

// Code to set connection parameters omitted.

return error;
}

The OpenSerial function calls SrmOpen with the serPortCradlePort logical
port number (0x8000), setting an initial baud rate of 9600. Serial Chat uses the
global variable gPortID to store the port ID obtained by SrmOpen for use with
other new serial manager functions. After a bit of error checking, including display-
ing appropriate alerts to the user if there is a problem opening the serial connec-
tion, OpenSerial sets the global variable gConnected to true. Serial Chat uses
gConnected to determine whether or not the application is connected.

Once the connection has been made, OpenSerial empties the serial receiving queue
with the SrmReceiveFlush routine. This step ensures that any stale data remaining
in the queue from earlier uses of the serial port are discarded before Serial Chat
starts to use the port. The SrmReceiveFlush function has two parameters: the port
ID returned from SrmOpen, and a timeout value:

Err SrmReceiveFlush (UInt16 portId, Int32 timeout)

When flushing the port, SrmReceiveFlush first discards all the waiting data and
then waits a number of system ticks equal to timeout. If more data arrives at the
port before the timeout period is up, SrmReceiveFlush empties the queue again,
resets its timer to the timeout value, and waits again. As soon as SrmReceiveFlush
waits the entire timeout period without seeing any more data, the function returns.
If you want to just empty the queue once without letting SrmReceiveFlush wait for
more data, call SrmReceiveFlush with a timeout value of 0.

Right after opening the serial port is also a good time to set communications param-
eters for the connection, such as the number of bits per character and the parity.
The code that does this in OpenSerial has been omitted in this section; see the
“Changing serial port settings” section later in this chapter for more information.

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 514

515Chapter 15 ✦ Using the Serial Port

Closing the serial port
Once you are done with the serial port, close it with the SrmClose function, which
looks like this:

Err SrmClose (UInt16 portID)

The portID parameter of SrmClose is the port ID as returned by the SrmOpen or
SrmOpenBackground call that opened the port in the first place. The SrmClose
function returns 0 if it successfully closes the port, or serErrBadPort if the speci-
fied port ID is invalid.

Be sure to pair every successful call to SrmOpen or SrmOpenBackground with a
call to SrmClose to ensure that the serial port is not left open when your applica-
tion exits.

Serial Chat wraps a call to SrmClose in its CloseSerial function, which the applica-
tion calls in its StopApplication routine just before exiting. The CloseSerial func-
tion looks like this:

static void CloseSerial (void)
{

Err error;

error = SrmSendWait(gPortID);
ErrNonFatalDisplayIf(error == serErrBadPort,

“SrmClose: bad port”);
if (error == serErrTimeOut)

FrmAlert(SerialTimeoutAlert);

SrmClose(gPortID);

gConnected = false;
}

Before calling SrmClose, CloseSerial makes a call to SrmSendWait. The SrmSend
Wait function waits until all the data in the transmit queue has been sent, and then
returns. Calling SrmSendWait ensures that all the data sent by your application is
transmitted before the application exits; simply closing the port immediately stops
transmission and might strand a few bytes in the outgoing queue before they get a
chance to leave the port, resulting in lost data.

The SrmSendWait function has only one parameter, the port ID as returned by
SrmOpen or SrmOpenBackground. A return value of 0 from SrmSendWait means
that the function was able to successfully send all the data remaining in the outgo-
ing queue. If SrmSentWait times out before it finishes its task, the function returns
the serErrTimeOut error code, which causes Serial Chat’s CloseSerial routine to
display an alert to inform the user that some data may not have been transmitted.

Caution

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 515

516 Part V ✦ Communicating Outside the Handheld

You can control the timeout value used by SrmSentWait by setting the
ctsTimeout value with the SrmControl function; see the “Changing serial port
settings” section later in this chapter.

Sending data
Sending data over a serial connection is a simple matter of calling SrmSend. The
SrmSend routine has the following prototype:

UInt32 SrmSend (UInt16 portId, void *bufP, UInt32 count,
Err* errP)

The first parameter of SrmSend is simply the familiar port ID reference obtained
with SrmOpen or SrmOpenBackground. The bufP parameter should be a pointer
to the data to send, and count is the length of that buffer in bytes. If SrmSend
encounters an error, it returns it through the errP parameter.

The SrmSend routine returns the number of bytes actually sent. If SrmSend suc-
cessfully transmits all the data in the buffer, the variable pointed to by errP is set
to NULL, and SrmSend returns a value equal to the count parameter. If errP is not
NULL, check the return value to determine how many bytes SrmSend managed to
send before it encountered an error.

Serial Chat uses SrmSend in its WriteSerial function, which is responsible for
retrieving the contents of the application’s Outgoing field and sending it over the
serial connection. The WriteSerial routine sends a linefeed character after it has
sent the field’s contents to signal the end of the message. Here is what WriteSerial
looks like:

static void WriteSerial (void)
{

Err error;
FieldType *field;
MemHandle textH;
Char *text;
Char lineFeed = chrLineFeed;

// Bail out if not connected.
if (gConnected == false) return;

// Retrieve a pointer to the outgoing field’s text.
field = GetObjectPtr(MainOutgoingField);
textH = FldGetTextHandle(field);
if (textH) {

text = MemHandleLock(textH);

Note

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 516

517Chapter 15 ✦ Using the Serial Port

// Send the contents of the outgoing field.
SrmSend(gPortID, text, StrLen(text), &error);
if (error)

FrmAlert(SerialSendAlert);

MemHandleUnlock(textH);

// Send a linefeed character.
SrmSend(gPortID, &lineFeed, 1, &error);
if (error)

FrmAlert(SerialSendAlert);
}

}

The new serial manager also has some useful utility functions to assist an applica-
tion with sending data. SrmSendCheck checks the transmission queue and returns
the number of bytes that have not been sent yet. The prototype for SrmSendCheck
looks like this:

Err SrmSendCheck (UInt16 portId, UInt32* numBytesP)

The SrmSendCheck function’s second parameter is a pointer to a variable that
receives the number of bytes left in the queue. If SrmSendCheck encounters an
error, it returns an appropriate error code. In particular, you should be on the look-
out for a serErrorNotSupported error, which indicates that checking the status of
the outgoing queue is not supported by the serial hardware. Not all serial devices
are capable of providing this information.

Another useful function is SrmSendFlush, which is the send queue equivalent of
SrmReceiveFlush, emptying the transmission queue instead of the receiving queue.
The SrmSendFlush routine takes a single argument, the port ID of the serial connec-
tion, and the function returns an error code if it was unable to flush the queue.
Unlike SrmReceiveFlush, SrmSendFlush does not have a timeout feature.

Receiving data
In order to allow an application to receive and process data as it becomes avail-
able from the serial port, you need to modify the event loop in your application.
Most applications use the constant evtWaitForever for the timeout argument to
EvtGetEvent, which means that the event loop is triggered only when user input
places a new event in the queue. If you change the timeout value to an actual num-
ber of system ticks, the event loop can be used to service the serial port at regular
intervals, while still allowing for user input to be handled. For example, the follow-
ing call to EvtGetEvent sets the timeout period to 100 ticks:

EvtGetEvent(&event, 100);

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 517

518 Part V ✦ Communicating Outside the Handheld

Alternatively, if your application needs to receive serial data in a tight loop that
does not call EvtGetEvent, you can still process user input with periodic calls to
EvtEventAvail to see if any user events are in the queue. These EvtEventAvail
calls should probably be no more than a second apart to allow the user ample
opportunity to interrupt the application. Sticking the application in a loop that can-
not be canceled, particularly when the loop is draining the battery through a serial
port connection, is a sure way to annoy users.

With EvtGetEvent set up with a timeout value, you can add code to the event loop
that checks the serial port for data. As an example, here is the EventLoop routine
from Serial Chat:

static void EventLoop (void)
{

Err error;
EventType event;
static UInt32 lastResetTime;

lastResetTime = TimGetSeconds();
do {

// Retrieve an event about once every second.
EvtGetEvent(&event, 100);

// Prevent the auto-off timer from putting the handheld
// into sleep mode by resetting the auto-off timer
// every 50 seconds.
if (TimGetSeconds() - lastResetTime > 50) {

EvtResetAutoOffTimer();
lastResetTime = TimGetSeconds();

}

// Read data from the serial port.
ReadSerial();

if (! SysHandleEvent(&event))
if (! MenuHandleEvent(0, &event, &error))

if (! ApplicationHandleEvent(&event))
FrmDispatchEvent(&event);

} while (event.eType != appStopEvent);

}

Serial Chat’s EventLoop routine calls the ReadSerial function to do the actual
receiving of incoming serial data. Before we get to ReadSerial, another feature
of the EventLoop function that we should look at. The EventLoop routine calls
EvtResetAutoOffTimer every 50 seconds to prevent the system auto-off timer

Note

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 518

519Chapter 15 ✦ Using the Serial Port

from putting the handheld in sleep mode. Preventing the system from going to
sleep means that Serial Chat can continue to receive and display data uninter-
rupted, even if there has been no user input on the handheld side of the connec-
tion. If you plan to use this technique to keep the handheld from sleeping during
communication, you need to call EvtResetAutoOffTimer at least once a minute,
since one minute is the smallest auto-off timer the user can normally set.

The ReadSerial function is where Serial Chat does its actual processing of incoming
serial data:

static void ReadSerial (void)
{

static Char buffer[maxFieldLength];
static UInt16 index = 0;
Err error;
UInt32 bytes;

if (gConnected == false) return;

// See if there is anything in the queue.
error = SrmReceiveCheck(gPortID, &bytes);
if (error) {

FrmAlert(SerialCheckAlert);
return;

}

// Make sure the data in the queue won’t overflow the
// buffer. If there is too much data waiting, only
// retrieve as much data as will fit in the buffer.
if (bytes + index > sizeof(buffer)) {

bytes = sizeof(buffer) - index - sizeOf7BitChar(‘\0’);
}

// Retrieve data.
while (bytes) {

SrmReceive(gPortID, &buffer[index], 1, 0, &error);
if (error) {

SrmReceiveFlush(gPortID, 1);
index = 0;
return;

}
switch (buffer[index]) {

case chrCarriageReturn:
// Treat a carriage return as the end of an
// incoming message, since some terminals may
// send CR instead of linefeed. Convert the CR
// to a LF so the message is displayed
// correctly in the incoming text field.
buffer[index] = chrLineFeed;

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 519

520 Part V ✦ Communicating Outside the Handheld

// Fall through...

case chrLineFeed:
// Treat a linefeed as the end of an incoming
// message. Leave the linefeed intact in the
// incoming data to properly format the
// incoming text field, tack a terminating null
// onto the string in the buffer, and then
// display the message in the incoming field.
buffer[index + 1] = chrNull;
MainFormDisplayMessage(buffer);
index = 0;
break;

default:
index++;
break;

}
bytes--;

}
}

The ReadSerial function uses a two-step process to retrieve data from the
incoming serial queue. First, it checks to see if there is any data in the queue
with SrmReceiveCheck. Second, if there is data in the queue, ReadSerial
receives it with SrmReceive.

The SrmReceiveCheck function retrieves the number of bytes sitting in the serial
port’s receive queue. This is the prototype for SrmReceiveCheck:

Err SrmReceiveCheck(UInt16 portId, UInt32* numBytesP)

As usual for new serial manager functions, the SrmReceiveCheck routine’s first
parameter is the port ID of the serial connection. The second parameter is a pointer
to a UInt32 variable that receives the number of bytes waiting in the queue. If
SrmReceiveCheck succeeds, it returns a 0 value, indicating no error.

If SrmReceiveCheck reports that there is data to retrieve, ReadSerial then calls
SrmReceive from within a while loop to retrieve the data one byte at a time, check-
ing each incoming character to see if it is a linefeed or a carriage return, which
Serial Chat uses to indicate the end of a message. If one of these end-of-message
characters is encountered, ReadSerial calls MainFormDisplayMessage to display
the message in the Incoming field.

The SrmReceive function has the following prototype:

UInt32 SrmReceive (UInt16 portId, void *rcvBufP, UInt32 count,
Int32 timeout, Err* errP)

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 520

521Chapter 15 ✦ Using the Serial Port

The SrmReceive routine’s second parameter is a pointer to a buffer to receive data
from the serial queue, and the third parameter specifies the number of bytes to
retrieve. The timeout parameter is the number of system ticks that the new serial
manager waits to receive the requested block of data; if the timeout period is reached
before the requested number of bytes has been retrieved, SrmReceive returns the
error code serErrTimeOut via the errP parameter. Regardless of any errors encoun-
tered, SrmReceive reports the actual number of bytes received in its return value.

If a line error occurs while receiving data, SrmReceive returns the error code serErr
LineErr in its errP parameter. When your application receives a serErrLineErr
result from a SrmReceive call, you should clear the error using the SrmClearErr
function, which takes the port ID of the connection as its only parameter. Alter-
natively, you can simply flush the receive queue with SrmReceiveFlush to ensure
that no garbage data remains in the queue for the next read; the SrmReceiveFlush
function also calls SrmClearErr internally to clear any line errors from the port.

If your application needs to receive records of a specific size, and it cannot
handle partial records, you may want to consider using SrmReceiveWait. The
SrmReceiveWait function waits a specified amount of time for a certain amount
of data to enter the receive queue, and then returns. The prototype for
SrmReceiveWait looks like this:

Err SrmReceiveWait(UInt16 portId, UInt32 bytes, Int32 timeout)

The bytes parameter specifies the number of bytes to wait for before returning,
and the timeout value is the length of time in system ticks that SrmReceiveWait
will stall while waiting to accumulate the required number of bytes. The
SrmReceiveWait routine returns the error code srmErrTimeOut if it cannot
retrieve all the bytes requested before the timeout period is up.

The SrmReceiveWait function puts the system into doze mode while it waits for
data. Using SrmReceiveWait is a battery-friendly way to await large blocks of
incoming data.

Retrieving serial port information
Should you wish to see what line errors were encountered when SrmReceive,
SrmReceiveCheck, or SrmReceiveWait returns a serErrLineErr error code,
you can use SrmGetStatus to retrieve them. The SrmGetStatus function has the
following prototype:

Err SrmGetStatus (UInt16 portId, UInt32* statusFieldP,
UInt16* lineErrsP)

The lineErrsP parameter should specify a pointer to a variable that will hold the
line error status. The line error value is a bit field that may contain a number of con-
stant values, defined in the Palm OS header file SerialMgr.h. Table 15-1 shows the
constants, their values, and what error each represents.

Tip

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 521

522 Part V ✦ Communicating Outside the Handheld

Table 15-1
Line Error Constants

Constant Value Description

serLineErrorParity 0x0001 Parity error

serLineErrorHWOverrun 0x0002 Hardware overrun

serLineErrorFraming 0x0004 Framing error

serLineErrorBreak 0x0008 Break signal detected

serLineErrorHShake 0x0010 Line handshake error

serLineErrorSWOverrun 0x0020 Software overrun

serLineErrorCarrierLost 0x0040 Carrier Detect (CD) signal dropped

The variable pointed to by the statusFieldP parameter receives a bit field con-
taining hardware status information for the port. The SerialMgr.h header also
defines constants for use with this status field, as described in Table 15-2.

Table 15-2
Serial Port Status Constants

Constant Value Description

srmStatusCtsOn 0x00000001 CTS line is active

srmStatusRtsOn 0x00000002 RTS line is active

srmStatusDsrOn 0x00000004 DSR line is active

srmStatusBreakSigOn 0x00000008 Break signal is active

Two more functions, SrmGetDeviceCount and SrmGetDeviceInfo, are useful if you
want to take a peek at what serial devices are available on a given handheld and
what capabilities those devices have. SrmGetDeviceCount requires a pointer to a
UInt16 value that will receive the total number of serial devices, both physical and
virtual, present on the handheld:

Err SrmGetDeviceCount (UInt16* numOfDevicesP)

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 522

523Chapter 15 ✦ Using the Serial Port

The SrmGetDeviceInfo function provides a description of a given serial port. It has
the following prototype:

Err SrmGetDeviceInfo (UInt32 deviceID,
DeviceInfoType* deviceInfoP)

You have a number of options for specifying the deviceID parameter, which identi-
fies which serial port you are interested in retrieving information from. The deviceID
parameter may be a valid port ID returned from SrmOpen or SrmOpenBackground,
the creator ID of a specific device, or a zero-based index. The index number is partic-
ularly useful when paired with the SrmGetDeviceCount function, as it allows you to
enumerate the existing serial devices and retrieve information for all of them. The fol-
lowing code walks through the serial ports on a device and retrieves information
about each port:

UInt16 index;
UInt32 i;
DeviceInfoType deviceInfo;

SrmGetDeviceCount(&index);
for (i = 0; i < index; i++) {

SrmGetDeviceInfo(i, &deviceInfo);
// Do something with the information here.

}

The DeviceInfoType that SrmOpenBackground returns via its deviceInfoP
parameter is defined in SerialMgr.h as follows:

typedef struct DeviceInfoType {
UInt32 serDevCreator; // Four Character creator type

// for serial driver (‘sdrv’)
UInt32 serDevFtrInfo; // Flags defining features of

// this serial hardware
UInt32 serDevMaxBaudRate; // Maximum baud rate for this

// device
UInt32 serDevHandshakeBaud; // HW Handshaking is

// recommended for baud rates
// over this value

Char *serDevPortInfoStr; // Description of serial HW
// device or virtual device

UInt8 reserved[8]; // Reserved
} DeviceInfoType;

You can retrieve values from the serDevFtrInfo bit field by using the constants
described in Table 15-3.

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 523

524 Part V ✦ Communicating Outside the Handheld

Table 15-3
Serial Capabilities Constants

Constant Value Description

serDevCradlePort 0x00000001 Serial hardware controls RS-232 serial
from cradle connector of Palm OS device

serDevRS-232Serial 0x00000002 Serial hardware has RS-232 line drivers

serDevIRDACapable 0x00000004 Serial hardware has IR line drivers and
generates IrDA mode serial signals

serDevModemPort 0x00000008 Serial hardware drives modem
connection

serDevCncMgrVisible 0x00000010 Serial device port name string should be
displayed in the Connection panel

Changing the size of the receive buffer
The default receive buffer provided by the new serial manager is 512 bytes
long. If you need a larger buffer, you can provide your own and install it with
SrmSetReceiveBuffer. The SrmSetReceiveBuffer function has the following
prototype:

Err SrmSetReceiveBuffer (UInt16 portId, void *bufP,
UInt16 bufSize)

Like most other new serial manager functions, the first argument to
SrmSetReceiveBuffer must be the port ID of the serial connection. The bufP
parameter is a void pointer to the buffer itself, and bufSize is the size of that
buffer in bytes.

Call SrmSetReceiveBuffer after a successful call to SrmOpen to install the
new buffer:

#define bufferSize 2048

Err error;
UInt16 portID;
Char buffer[bufferSize];

error = SrmOpen(serPortCradlePort, 9600, &portID);
if (! error)

SrmSetReceiveBuffer(portID, buffer, bufferSize);

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 524

525Chapter 15 ✦ Using the Serial Port

When your application is done using the serial port, it must reinstall the default
buffer before closing the port. To accomplish this task, call SrmSetReceiveBuffer
again, specifying NULL for both the bufP and bufSize parameters:

SrmSetReceiveBuffer(portID, NULL, NULL);

Changing serial port settings
Depending on what sort of device you are connecting a Palm OS handheld to, you
may need to alter various communications settings, such as baud rate and parity, to
be able to communicate with the other device. The SrmControl routine is the func-
tion to use when retrieving or setting communications settings for a serial port, and
it has the following prototype:

Err SrmControl (UInt16 portId, UInt16 op, void *valueP,
UInt16 *valueLenP)

The usual port ID heads the list of parameters for SrmControl. The next parameter,
op, is a control code that specifies what action you want SrmControl to perform.
This control code turns what looks like a simple four-parameter function into a tool
of Swiss-Army-knife capabilities, both complex and versatile. Values for the op
parameter should be from the enumerated type SrmCtlEnum, which is defined in
SerialMgr.h. Depending on the value of the control code, the valueP parameter
may specify either the address of a value to pass to the function, or the address of a
variable that will receive data from SrmControl. If the requested control code uses
the valueP parameter, then the valueLenP parameter specifies the address of a
variable that contains the length of the data in valueP. Not all control codes use
the valueP and valueLenP parameters; for those that do not require a value, pass
NULL for valueP and valueLenP.

The possible control codes in SrmCtlEnum, and how they should be used, are
described in Table 15-4.

Table 15-4
SrmControl Control Codes

Control code Description

srmCtlSetBaudRate Sets the baud rate for the connection. valueP
should point to an Int32 value that specifies the
baud rate, and valueLenP should point to
sizeof(Int32).

srmCtlGetBaudRate Retrieves the current baud rate of the connection.
valueP should point to an Int32 value that will
receive the baud rate, and valueLenP should
point to sizeof(Int32).

Continued

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 525

526 Part V ✦ Communicating Outside the Handheld

Table 15-4 (continued)

Control code Description

srmCtlSetFlags Sets flags for the serial hardware. These flags
control things like parity, number of stop bits,
and bits per character. valueP should point to a
UInt32 bit field containing the flags to set, and
valueLenP should point to sizeof(UInt32).

srmCtlGetFlags Retrieves flags for the serial hardware. valueP
should point to a UInt32 variable to receive
the flags, and valueLenP should point to
sizeof(UInt32).

srmCtlSetCtsTimeout Sets the length of the CTS timeout. valueP
should point to an Int32 value containing the
timeout value, and valueLenP should point to
sizeof(Int32).

srmCtlGetCtsTimeout Retrieves the length of the CTS timeout. valueP
should point to an Int32 variable to receive the
timeout value, and valueLenP should point to
sizeof(Int32).

srmCtlStartBreak Turns on the RS-232 break signal. Make sure to
leave the break signal on long enough to generate
a valid break on whatever device the handheld is
connected to.

srmCtlStopBreak Turns off the RS-232 break signal.

srmCtlStartLocalLoopback Starts local loopback test.

srmCtlStopLocalLoopback Stops local loopback test.

srmCtlIrDAEnable Enables IrDA connection on the serial port.

srmCtlIrDADisable Disables IrDA connection on the serial port.

srmCtlRxEnable Enables receiver for IrDA communications.

srmCtlRxDisable Disables receiver for IrDA communications.

srmCtlUserDef Passes the valueP and valueLenP pointers to
the SdrvControl function for a serial driver, or the
VdrvControl function for a virtual driver. This
control code is for use by serial driver developers,
who may need to send or receive custom control
information that the regular serial manager
interface cannot handle.

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 526

527Chapter 15 ✦ Using the Serial Port

Control code Description

srmCtlGetOptimalTransmitSize Asks the port for the most efficient buffer size
for transmitting data packets. If the serial or
virtual driver does not support this control
code, SrmControl will return the error code
serErrNotSupported, in which case no buffering
should be done. If the port wants some kind
of buffering, but it is not choosy about the buffer
size, this control code sets valueP to point to 0.
Otherwise, valueP will point to a number that
specifies the most efficient block size, in bytes, for
transmitting data through this port. valueLenP
points to sizeof(Int32).

The flags for the srmCtlSetFlags and srmCtlGetFlags control codes may be
accessed by means of a number of constant values, defined in SerialMgr.h.
Table 15-5 describes what each flag represents.

Table 15-5
Serial Settings Constants

Constant Value Description

srmSettingsFlagStopBitsM 0x00000001 Mask for stop bits field.

srmSettingsFlagStopBits1 0x00000000 One stop bit.

srmSettingsFlagStopBits2 0x00000001 Two stop bits.

srmSettingsFlagParityOnM 0x00000002 Mask for parity on.

srmSettingsFlagParityEvenM 0x00000004 Mask for parity even.

srmSettingsFlagXonXoffM 0x00000008 Mask for Xon/Xoff flow control;
not implemented as of Palm
OS 3.5.

srmSettingsFlagRTSAutoM 0x00000010 Mask for RTS receive flow
control.

srmSettingsFlagCTSAutoM 0x00000020 Mask for CTS transmit flow
control.

srmSettingsFlagBitsPerCharM 0x000000C0 Mask for bits per character field.

srmSettingsFlagBitsPerChar5 0x00000000 Five bits per character.

srmSettingsFlagBitsPerChar6 0x00000040 Six bits per character.

Continued

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 527

528 Part V ✦ Communicating Outside the Handheld

Table 15-5 (continued)

Constant Value Description

srmSettingsFlagBitsPerChar7 0x00000080 Seven bits per character.

srmSettingsFlagBitsPerChar8 0x000000C0 Eight bits per character.

srmSettingsFlagFlowControl 0x00000100 Enables software overrun
protection. If this flag and
srmSettingsFlagRTSAutoM
are both set, the new serial
manager asserts the RTS signal
when the receive buffer is full to
prevent the transmitting device
from overrunning the buffer.
When the application receives
data from the buffer, the system
turns off the RTS assertion to
allow more incoming data into
the buffer. Using this feature
prevents software overrun line
errors, but it may cause CTS
timeouts on the connected
device if the RTS line is asserted
longer than the current CTS
timeout value.

As of this writing, the default settings for the serial port are eight bits per character,
one stop bit, and no parity, with RTS flow control engaged and a CTS timeout value
of five seconds. The constant srmDefaultCTSTimeout, defined in SerialMgr.h,
specifies the default CTS timeout length; all the other defaults are part of the
srmDefaultSettings constant.

To demonstrate using SrmControl, here are the relevant parts of Serial Chat’s
OpenSerial function that were omitted earlier in this chapter:

Err error;
UInt32 flags = 0;
UInt16 flagsSize = sizeof(flags);

flags = srmSettingsFlagBitsPerChar8 |
srmSettingsFlagStopBits1 |
srmSettingsFlagRTSAutoM;

error = SrmControl(gPortID, srmCtlSetFlags, &flags,
&flagsSize);

Note

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 528

529Chapter 15 ✦ Using the Serial Port

Serial Chat sets the port up with eight bits per character, no parity, one stop bit,
and RTS hardware flow control. It could just as easily have used seven bits per
character, even parity, and one stop bit, in which case the flags variable would
have been set like this:

flags = srmSettingsFlagBitsPerChar7 |
srmSettingsFlagParityOnM |
srmSettingsFlagParityEvenM |
srmSettingsFlagStopBits1 |
srmSettingsFlagRTSAutoM;

If you are experimenting with the Serial Chat sample application by connecting it to
a terminal program on the desktop, be sure to set the terminal program to use eight
bits per character, no parity, and one stop bit to ensure that the data passed over
the serial connection does not become garbled.

If you plan to connect at speeds faster than 19,200 bps, use hardware handshak-
ing to make a successful connection:

flags = srmSettingsFlagRTSAutoM |
srmSettingsFlagCTSAutoM;

Using the Old Serial Manager
If you need to write an application that can use the serial port on devices that do
not support the new serial manager, you will have to use the old serial manager.
Fortunately, the two serial managers are very similar; in fact, the names of functions
in the old serial manager are almost identical to their counterparts in the new serial
manager, beginning with a Ser prefix instead of Srm. Most of the information already
presented about using the new serial manager is applicable to using the old serial
manager, so this section concentrates on the differences between the two managers.

To use any of the old serial manager functions with the Palm OS 3.5 or later
SDK headers, be sure to include the file SerialMgrOld.h in your project. Even
better, it is probably easiest to build with the 3.1 headers to avoid duplication of
the enumerated types and constants that are used by both the old and new serial
managers.

The first major difference between the old and new serial managers is that the old
serial manager does not use the port ID value required by most of the new serial man-
ager functions. Instead, old serial manager functions require a reference to the serial
manager library, which you must retrieve with the SysLibFind function, like this:

UInt16 serialRefNum;

Err error = SysLibFind(“Serial Library”, &serialRefNum);

Note

Tip

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 529

530 Part V ✦ Communicating Outside the Handheld

You must retrieve the serial library reference even before you call SerOpen to open
the connection, since SerOpen also requires the reference as an argument.

Opening and closing the serial port
The SerOpen function has the following prototype:

Err SerOpen (UInt16 refNum, UInt16 port, UInt32 baud)

The first parameter, refNum, is the serial library reference retrieved by SysLibFind.
The old serial manager supports only the standard physical serial port; to indicate
this port, pass 0 for the port parameter. Specify the baud rate for the connection
using the baud parameter.

Just as with the new serial manager, if SerOpen returns an error code of
serErrAlreadyOpen, another task is currently using the port, and unless you
want to deal with the nightmare of sharing the serial port with another applica-
tion, you should close the connection with the SerClose function.

After opening the port, you may wish to flush the receive buffer with the
SerReceiveFlush function, which operates just like its cousin SrmReceiveFlush.

When you are finished with the serial port, close it with the SerClose function.
Optionally, you may wish to first drain the transmit queue with SerSendWait,
which has an additional timeout parameter not present in SrmSendWait:

Err SerSendWait (UInt16 refNum, Int32 timeout)

The timeout parameter was never really implemented before the new serial man-
ager made its debut, so you should pass the value -1 for timeout.

Sending data
The SerSend function operates in the same fashion as SrmSend. If you require
backward compatibility with Palm OS 1.0, use SerSend10 instead, which has the
following prototype:

Err SerSend10 (UInt16 refNum, void *bufP, UInt32 size)

The SerSend10 function works in much the same fashion as SerSend and SrmSend;
it just returns less useful information than later versions of the function.

Receiving data
You can use SerReceive in the same way that you would use SrmReceive; they
have the same parameters. An older version of the function, SerReceive10, exists
to support Palm OS 1.0:

Err SerReceive10 (UInt16 refNum, void *bufP, UInt32 bytes,
Int32 timeout)

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 530

531Chapter 15 ✦ Using the Serial Port

Just like SerSend10, SerReceive10 is somewhat less useful than its newer counter-
part, as it returns less information about the transfer.

Getting serial port information
The old serial manager does not have functions equivalent to SrmGetDeviceCount
and SrmGetDeviceInfo. If you want to check on the status of the connection after
receiving a serErrLineErr error code from SerReceive, SerReceiveCheck, or
SerReceiveWait, call SerGetStatus. The SerGetStatus function looks and operates
differently from SrmGetStatus:

UInt16 SerGetStatus (UInt16 refNum, Boolean *ctsOnP,
Boolean *dsrOnP)

The values returned to the ctsOnP and dsrOnP parameters actually have no mean-
ing; they were never implemented before the new serial manager was created.
The return value from SerGetStatus is equivalent to the bit field returned in the
lineErrsP parameter of SrmGetStatus; see the discussion of SrmGetStatus in the
“Retrieving serial port information” section earlier in this chapter for some useful
constants to use when reading this bit field.

Changing the size of the receive buffer
Just like the new serial manager’s SrmSetReceiveBuffer function, SerSetReceive
Buffer allows you to install your own buffer in place of the default 512-byte buffer.
The same warnings as for SrmSetReceiveBuffer apply; be sure to reinstall the
default buffer before closing the port.

Altering serial port settings
In the new serial manager, SrmControl is responsible for a great number of tasks.
The old serial manager divides these duties among three functions: SerControl,
SerGetSettings, and SerSetSettings. The SerControl function handles everything
except for basic communications properties like baud rate and parity. The proto-
type for SerControl looks like this:

Err SerControl (UInt16 refNum, UInt16 op, void *valueP,
UInt16 *valueLenP)

There are fewer control codes available for the op parameter of SerControl than for
the SrmControl function, all of which are part of the SerCtlEnum enumerated type
defined in SerialMgrOld.h. Most of the control codes are similar to those required
by SrmControl; notable omissions are codes for setting and retrieving baud rate,
retrieving optimal block size, and passing data to a custom serial driver.

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 531

532 Part V ✦ Communicating Outside the Handheld

Use SerGetSettings to retrieve communications parameters for the serial port and
SerSetSettings to change the same parameters. These functions have the following
prototypes:

Err SerGetSettings (UInt16 refNum, SerSettingsPtr settingsP)
Err SerSetSettings (UInt16 refNum, SerSettingsPtr settingsP)

The SerSettingsType structure is required by both of these functions; this struc-
ture is defined as follows in SerialMgrOld.h:

typedef struct SerSettingsType {
UInt32 baudRate; // Baud rate
UInt32 flags; // Miscellaneous settings
Int32 ctsTimeout; // Max # of ticks to wait for CTS to

// become asserted before
// transmitting; used only when
// configured with
// serSettingsFlagCTSAutoM.

} SerSettingsType;

The flags parameter is a bit field that uses constants similar to those used by the
flags in the srmCtlGetFlags and srmCtlSetFlags control codes of the SrmControl
function; just use the same constants, with a ser prefix instead of srm. Note that
there is no equivalent in the old serial manager to the special srmSettingsFlag
FlowControl mode for preventing software buffer overrun.

Summary
In this chapter, you learned how to use the Palm OS serial manager to communicate
with other devices via the handheld’s serial port. After reading this chapter, you
should understand the following:

✦ The serial communications stack in the Palm OS is based on the byte-level
control of the serial manager; the following protocols are built on top of
the serial manager: the modem manager, Serial Link Protocol (SLP), Packet
Assembly/Disassembly Protocol (PADP), Desktop Link Protocol (DLP), and
Connection Management Protocol (CMP).

✦ The new serial manager is the preferred interface to basic serial input and out-
put, but there is still backward compatibility with the old serial manager to
allow serial communications programming for older devices.

✦ It is very important to close the serial port when your application does not
actually need it to be open, since the serial port drains the batteries rapidly
when open.

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 532

533Chapter 15 ✦ Using the Serial Port

✦ New serial manager functions require a port ID, which you retrieve by
passing a logical port number or a serial device creator ID to SrmOpen or
SrmOpenBackground; old serial manager functions require a reference to
the serial library, which you retrieve with the SysLibFind function.

✦ Unless you want to deal with the nightmare of sharing a connection between
two applications, call SrmClose and don’t use the serial port if SrmOpen or
SrmOpenBackground returns the serErrAlreadyOpen error code.

✦ When receiving incoming data, take care not to completely shut out user
input; the simplest way to achieve this is by passing a timeout parameter to
the EvtGetEvent call in your application’s event loop.

✦ You can change the size of the receive buffer with SrmSetReceiveBuffer, but
you must make sure to reinstall the default buffer before closing the port.

✦ ✦ ✦

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 533

4676-7 ch15.f.qc 9/29/00 12:56 PM Page 534

Creating
Web Clipping
Applications

Web clipping on the Palm VII (or the Palm V/Vx with an
OmniSky wireless modem) offers a powerful way to

connect the personal organizer to timely data on the Web or
in the enterprise. Though by no means the first company to
offer some kind of Web connectivity for a handheld computer,
Palm Computing has approached the problem from a different
angle. Before learning the nuts and bolts of Web clipping, it is
important to understand Palm’s philosophy regarding the
Web clipping process.

After presenting the theory behind Web clipping, this chapter
delves into the specifics of creating Palm Query Applications
(PQAs), the client-side interfaces for Web clipping applica-
tions. Later in the chapter, you will find information about how
to format Web clippings, the actual HTML pages returned to
the handheld from the Web as the user interacts with a PQA.

Building PQAs and Web clippings requires knowledge of
how to make Web pages using HTML (HyperText Markup
Language). No programming is involved in creating the
HTML pages themselves, although you should also be
familiar with some form of CGI programming if you wish to
dynamically generate Web clippings on the server end.

Understanding Web Clipping
Most Web content is predicated on the assumption that the
average Web user is seated in front of a desktop computer,
connected to the Web via a modem or even faster connection.
Web sites that contain lots of images and tricky page layout

Note

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
Web clipping

Building Palm Query
Applications (PQAs)

Building Web
clippings

Testing Web clipping
applications

✦ ✦ ✦ ✦

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 535

536 Part V ✦ Communicating Outside the Handheld

are perfectly acceptable for someone using a machine with a fast processor, plenti-
ful network bandwidth, and a lot of screen real estate. However, trying to display
this kind of content on a small personal organizer, connected to the Web via a
bandwidth-limited wireless modem, is a ludicrous proposition at best.

As with other Palm OS applications, limited processor power and screen size are
major constraints on the design of a PQA. Big, flashy pages simply won’t fit on the
small 160 × 160-pixel screen, even if the organizer’s processor could render them in
a reasonable amount of time. In addition, a PQA has another limitation: expensive
wireless bandwidth. Unlike modem connections, which tend to be billed at a flat
rate, wireless connections are billed by the number of bytes sent across the net-
work. Money matters aside, another problem is that lengthy connections also
drain the handheld’s battery at an alarming rate.

To deal effectively with the limitations of getting Web content to a handheld device
via a wireless network, Palm Computing uses an approach called Web clipping. Much
like clipping an article from a newspaper, Web clipping enables you to extract only
the information you need, and nothing else. Web clipping embodies two important
concepts:

✦ Query and response. Unlike Web browsing, where the focus is on hyperlinks
between documents, Web clipping focuses on a simple query that generates a
response (called the clipping). The query is defined by an HTML form, and the
clipping is usually generated dynamically with a CGI script. Instead of following
links through various documents to retrieve data, you assemble a single query
and receive a single answer containing all the data you are interested in. Query
and response design results in getting the data you want, and only the data
you want, much more quickly than if you had to browse for it. Limiting the
amount of data actually sent over the air, in both directions, keeps wireless
transmission costs down.

✦ Partitioning. A Web clipping solution is partitioned between the client and the
host. The query part of the equation, a Palm Query Application, is stored on the
client end (the Palm OS handheld itself), separate from the host. Unlike with a
normal Web application, in which a form must first be downloaded before the
user enters query parameters, filling out a Web clipping query requires no com-
munication over the network because a PQA contains the entire HTML form
required for query entry on the client device. Keeping the query form local
results in instant response time from the handheld while the user builds the
query and fewer bytes of transfer across the expensive wireless connection.
Data returned from the query, called a Web clipping or just a clipping, can also
be very small, since it contains only the data specifically requested by the user.
Furthermore, any processor-intensive computation required to generate the
clipping is restricted to the host server, which is much better suited to complex
number-crunching than the handheld.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 536

537Chapter 16 ✦ Creating Web Clipping Applications

A key element of Palm Computing’s solution to the problem of wireless network
bandwidth is the collection of Palm Web clipping proxy servers run as part of the
Palm.Net service. PQAs connect to a proxy server, run by Palm, that works as
a translator between the wireless network and the Internet. The proxy receives a
query request from the handheld via User Datagram Protocol (UDP); use of the sim-
ple UDP protocol on the wireless network means that only two small packets are
exchanged between the handheld and the proxy, one for the query and one for the
clipping. Next, the proxy communicates with HTML servers via standard Internet
protocols (TCP, HTTP, and SSL) to retrieve the information specified in the query.
Then the proxy compresses the data and sends it back to the handheld over the
wireless network.

Understanding Web Clipping Security
Web clipping has been designed to be secure enough for applications such as shop-
ping and online banking. Secure connections between the handheld and the wireless
network use Certicom’s elliptic curve encryption, a small and efficient but highly
secure public key cryptography system. Complete details of how elliptic curve cryp-
tography works are available on Certicom’s Web site at http://www.certicom.com.

Messages sent to the wireless network are also protected with a message integrity
check (MIC), which can detect both tampering and errors in transmission, ensuring
that the data you send in a secure message from the handheld remains unmolested
on its way to the wireless base station.

Once a Palm proxy server has received a secure query from the wireless network,
the connection between the proxy server and the query’s destination server on the
Internet is further protected by the use of Secure Sockets Layer (SSL) encryption
and authentication. SSL is in use throughout the Web, providing strong security for
many e-commerce and financial Web sites. To perform client authentication, a Web
clipping application should ask the user for a user name and password when a query
is submitted. Each Web clipping–enabled handheld device also has a unique identi-
fier attached to its ROM hardware, which may also be sent with the query for added
security. See the description of the special %deviceid string in the “Constructing
Query Forms” section later in this chapter for more details.

Designing PQAs and Web Clippings
Palm Query Applications and Web clippings are much simpler to create than
full-fledged Palm OS applications. Instead of being programmed in C or another
complex development language, PQAs and clippings begin their lives as HTML
documents. A subset of HTML 3.2, with some Palm-specific additions and modi-
fications, serves as the language for defining both the client and server ends of a
Web clipping application.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 537

538 Part V ✦ Communicating Outside the Handheld

Even though you use HTML to create a Palm Query Application, designing a PQA is
very different from designing normal Web-based content. Keep the following points
in mind when designing a PQA.

✦ Remote hyperlinks are expensive. Traditional Web pages present a certain
subject, and then provide hyperlinks that lead (at least in theory) to more
detailed information about the subject. This works fine with enough band-
width to serve up a new page each time the user follows a link, but over a
wireless network, it becomes prohibitively expensive. Where possible, pro-
vide static information, such as help documentation for the PQA itself, as
part of the client. Use the local query form to allow the user to explore possi-
bilities in the application, and present remote hyperlinks only when there is
information that cannot be stored in the client itself. For example, if your PQA
displays news headlines, an appropriate use of remote hyperlinks would be to
allow the user to retrieve the full text of a news story.

✦ The client is static. Many technologies exist to allow Web pages to be dynamic,
changing their contents rapidly in response to user input. In the Web clipping
model, the client end does not change. The host side of a PQA may be modified
at any time, but the PQA residing on the handheld will remain the same. Design
the client carefully to allow for expansion or changes on the host side. It is pos-
sible for the user to update a PQA on the handheld, but this requires down-
loading the updated PQA with the desktop machine and installing it through a
HotSync operation.

✦ Bandwidth is expensive. Bandwidth on a desktop machine, hooked up to the
Internet via a modem or more direct means, is relatively plentiful, and usually
billed at a flat rate. Every exchange of data over a wireless network, on the
other hand, requires expenditure of money, time, and battery life. The pricing
of the Palm.Net service is based on a typical transaction where the query
should send 40 bytes across the network, and the response should contain
360 bytes, figures that reflect compressed data in both the query and the
response. Avoid sending unnecessary HTML tags, images, or information to
the user. Images in particular require a great deal of bandwidth, and should
not be sent across the wireless network. Instead, consider embedding images
that you will use repeatedly in the client PQA itself, and then calling them
from the clipped pages.

✦ Performance is critical. A handheld user expects more speed of an applica-
tion than a user sitting at a desktop machine. People using desktop computers
are usually not in the middle of a conference call with important clients, dash-
ing through an airport to catch their next flight, or standing on a street corner
wondering where to find the nearest cash machine. A desktop user is more
likely to be patient with a slow application. Handheld users expect that the
device will present them with the data they need instantly and with as little
input on their part as possible. A PQA that requires the transfer of too much
data is not only expensive to use but will seem sluggish to the typical hand-
held user. For example, sending an in-depth news story to the handheld would
require the user to wait a considerable period of time, but a shorter synopsis
of the news story would download much more quickly.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 538

539Chapter 16 ✦ Creating Web Clipping Applications

✦ Screen size is limited. Although HTML is designed to format content indepen-
dent of the device that displays it, most Web designers assume that their
pages will be viewed on a desktop monitor. Even the smallest monitor at its
lowest resolution can display far more information than the tiny screen on a
handheld. The title bar and scroll bar of the Clipper application (the Palm OS
browser that displays PQAs) reduce the Palm’s already limited screen real
estate to a mere 153 pixels wide by 144 pixels high. Clipper’s display can
scroll vertically, but not horizontally, so avoid lines of text or images that
will exceed the 153-pixel width of the screen.

Building Palm Query Applications
Creating the client side of a Palm wireless application is relatively simple and
requires no knowledge of programming. You need only two things:

✦ A standard text editor, or a non-WYSIWYG HTML editor

✦ The Query Application Builder

Many WYSIWYG (What You See Is What You Get) HTML editors insert nonstandard
or unnecessary HTML elements into the pages they produce. Both PQAs and Web
clippings use a particular subset of HTML — and weird tags, or tags not supported
by Palm OS Web clipping, can cause Clipper to render a page improperly on the
handheld. Even if the page renders properly, extra HTML elements beyond the bare
minimum required to format a page are a waste of wireless bandwidth; strive to use
as little HTML tagging as possible when making a PQA, particularly when designing
Web clippings, which must be transmitted in their entirety over the wireless con-
nection. It is safest to use a simple text editor for creating PQAs and Web clippings.

The Query Application Builder is a program for both Windows and Mac OS that
converts standard HTML pages into a .pqa file on your PC, which you may then
install to the handheld like any other Palm OS application or database. Palm
Computing provides the Query Application Builder free of charge on its Web site
at http://www.palm.com/devzone/webclipping/.

The Query Application Builder is also available on the CD-ROM attached to
this book.

Think of the Query Application Builder as a compiler that takes your HTML source
and compiles it into a form that Clipper, the Palm OS browser application on the
handheld, can display. The Query Application Builder also compresses the PQA
between 5 and 60 percent, depending on the actual content of the HTML pages
and images that make up the PQA.

On the
CD-ROM

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 539

540 Part V ✦ Communicating Outside the Handheld

Organizing HTML Files
A PQA may be composed of multiple pages, each of which is defined by a single
HTML file with either an .htm or .html extension. The best way to organize the
pages displayed in a PQA is to center the application around a home page, by con-
vention called index.html. The home page should contain the primary query form
for the application, or a list of local and online links for requesting more specific
content than what the home page displays.

Try to make sure the home page provides quick access to the most-used features
in the PQA. In that way, users need to launch only the PQA and immediately start
querying for information, instead of having to tap through multiple pages to find
the information they are looking for.

All of the pages that make up a PQA must fall under the same root directory, but
pages and images may be contained in subdirectories if you wish to better organize
development of a complex PQA. Keep in mind that from within a PQA, links to pages
and images must be relative paths that include whatever subdirectories contain the
element pointed to by the link. For example, the following link points to a page in a
subdirectory of the PQA project’s root directory:

Page Two

In particular, pay attention to relative paths when linking to a page in a higher
directory level than the current page. For example, the following link is required to
return to the index.html page in the root directory from the page2.html page
in the last example:

Home

However, because of the fact that the Query Application Builder puts all the pages
and images into a single Palm OS database, you should make sure that individual
pages and images have unique names across the project, even if they are stored in
separate directories. For example, if you already have an index.html file in the
root directory of the PQA project, you cannot also have another file named index.
html in any subdirectory. In fact, the file extension is not enough to differentiate
files, so a page called index.html and an image called index.gif cannot be in the
same PQA. Identically named files cause an error in the Query Application Builder,
which also reports the line number of the offending link so you can easily track
down any accidental duplicates.

The unique file names also play a part when a Web clipping links to the local PQA.
Once the PQA has been compiled, any subdirectories used when you first built the
application are “forgotten,” so links in Web clippings to local pages on the handheld
must treat the PQA as if all its files existed in a single flat directory. For example,
the following Web clipping link goes to the same page2.html page mentioned ear-
lier in this section:

Page Two

Note

Tip

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 540

541Chapter 16 ✦ Creating Web Clipping Applications

See the “Linking to Other Pages and Applications” section below, and the “Building
Web Clippings” section later in this chapter, for more information about adding
hyperlinks to query applications and clippings.

Keeping file sizes small
Technically, the total size of a PQA is limited only by the amount of RAM storage on
the handheld. An individual page that makes up a PQA can be no larger than 63KB
in size, which is the largest size allowed for a database by the system. Of course,
63KB of text and small images is a ridiculous amount for a PQA; something this
large would require users to scroll through many pages of information to find what
they are looking for.

If at all possible, try to fit all the elements necessary to assemble a query onto a
single page; scrolling through a large page to find the submit button at the bottom
tends to irritate users.

A good guideline to follow is to make the entire compiled PQA, including all pages
and images, no larger than about 15KB. Remember that the Query Application
Builder performs a good deal of compression on the text that makes up a PQA, so
even an application with many pages should be fairly easy to fit within this limit.
When you have compiled a PQA, the Query Application Builder shows you exactly
how much compression it was able to achieve.

Although the obvious solution to limiting PQA size is to use fewer images (which do
not compress as well as text), you should also try to use as little HTML markup as
possible. Every character in an HTML file, including tags, adds to a PQA’s overall size.

Defining Header Tags
Just like a standard HTML document, a PQA should start with an <html> tag, fol-
lowed by a <head> tag to define the header elements of the page. The following sim-
ple example is a complete one-page PQA that simply displays the text “Hello, world”
on a mostly blank page. Figure 16-1 shows this page as it appears on the handheld.

<html>
<head>
<title>Hello PQA</title>
<meta name=”palmcomputingplatform” content=”true”>
<meta name=”palmlauncherrevision” content=”1.0”>
</head>
<body>
Hello, world.
</body>
</html>

The text contained in a page’s <title> tag appears in the title bar of the Clipper
application. This title string must be fairly small; when testing the PQA in POSE or

Tip

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 541

542 Part V ✦ Communicating Outside the Handheld

on an actual device, be sure to check the title to make sure it has not been trun-
cated to fit within the title bar.

Figure 16-1: A very simple example PQA

Two special <meta> tags should be used in PQA pages. The palmcomputingplatform
tag should appear in the <head> section of every page in a PQA. This tag tells the
Query Application Builder that the page was written specifically for display on a Palm
OS handheld. Without the palmcomputingplatform tag, images will not be included
in the PQA.

The palmlauncherrevision tag allows you to specify a version number for the PQA.
Just like the version number resource in a full-fledged Palm OS application, the ver-
sion number of a PQA appears in the system launcher application’s Info dialog box,
allowing users to look up what version of the PQA is installed if you have released
multiple versions of the same PQA. You should include the palmlauncherrevision
tag only on the home page of your PQA.

Formatting Text
The Clipper application displays HTML pages using its own special typeface, called
Palm TD. At its normal size, Palm TD looks just like the standard Palm OS font
(specified by the constant stdFont when developing normal Palm OS applications).
Unlike the standard Palm OS font, however, Palm TD has bold, italic, bold italic, and
monospaced versions.

There are only a few sizes available for the Palm TD font, from 7 to 12, and only
certain sizes are available for the <small>, <big>, or HTML tags,
depending on what other HTML formatting has been applied to the text in question.
For example, text contained in an <h2> heading tag is normally displayed in bold
Palm TD 11, but with the <big> tag applied to it, it becomes bold Palm TD 12. Such
interactions between formatting and size tags are not terribly intuitive, since there
are so few options available for font size and style in Clipper. Use Table 16-1 to
determine how Clipper will display text using specific combinations of formatting
and sizing tags. The Smallest and Largest columns of the table display the smallest
and largest sizes available when using the tag to set text size.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 542

543Chapter 16 ✦ Creating Web Clipping Applications

Table 16-1
Fonts Used to Display Specific HTML Elements

HTML Tag Normal <small > < big> Smallest Largest

<address> TD 9 B It TD 8 B TD 10 B TD 7 B TD 11 B

 TD 8 B TD 8 B TD 10 B TD 7 B TD 11 B

<blockquote> TD 9 TD 8 B TD 9 B TD 7 B TD 11 B

<cite> TD 9 It TD 8 B TD 9 It TD 7 B TD 10 B

<dfn> TD 9 It TD 8 B TD 9 It TD 7 B TD 10 B

<dir> TD 9 TD 8 B TD 9 B TD 7 B TD 11 B

<dl> TD 9 TD 8 B TD 9 B TD 7 B TD 11 B

 TD 9 It TD 8 B TD 9 It TD 7 B TD 10 B

<h1> TD 12 B TD 11 B TD 12 B TD 11 B TD 12 B

<h2> TD 11 B TD 10 B TD 12 B TD 9 B TD 12 B

<h3> TD 10 B TD 9 B TD 11 B TD 8 B TD 12 B

<h4> TD 8 B TD 8 B TD 10 B TD 7 B TD 11 B

<h5> TD 8 B TD 8 B TD 9 B TD 7 B TD 10 B

<h6> TD 7 B TD 7 B TD 8 B TD 7 B TD 9 B

<i> TD 9 It TD 8 B TD 9 It TD 7 B TD 10 B

<kbd> TD Mono TD Mono TD Mono TD Mono TD Mono

<listing> TD Mono TD Mono TD Mono TD Mono TD Mono

<menu> TD 9 TD 8 B TD 9 B TD 7 B TD 11 B

 TD 9 TD 8 B TD 9 B TD 7 B TD 11 B

<p> TD 9 TD 8 B TD 9 B TD 7 B TD 11 B

<plaintext> TD Mono TD Mono TD Mono TD Mono TD Mono

<pre> TD Mono TD Mono TD Mono TD Mono TD Mono

<sample> TD Mono TD Mono TD Mono TD Mono TD Mono

 TD 8 B TD 8 B TD 10 B TD 7 B TD 11 B

<table> TD 9 TD 8 B TD 9 B TD 7 B TD 11 B

<tt> TD Mono TD Mono TD Mono TD Mono TD Mono

 TD 9 TD 8 B TD 9 B TD 7 B TD 11 B

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 543

544 Part V ✦ Communicating Outside the Handheld

A complete list of HTML elements supported by Web clipping and explanations of
how those elements differ between Clipper and a normal Web browser are avail-
able in Web Clipping Developer’s Guide, included on this book’s CD-ROM.

Linking to Other Pages and Applications
The standard HTML <a> tag defines links between pages within a local PQA, as well
as links to online content. You can also use hyperlinks to launch other PQAs and
applications on the handheld.

Marking a location in a document
Just as with standard HTML, you can mark a specific location in a page with the <a
name> tag. Such a mark is called an anchor ; the syntax required to define an anchor
looks like this:

Some text string

You can then link to that specific location in the page with the following link:

Link text

This style of linking is mostly useful when a hyperlink needs to point to text on a large
page that might otherwise require scrolling to reach the desired part of the page.

Linking to local pages
You can link to another page within the same PQA with the following syntax:

Link text

If the local page you want to link to is in a subdirectory, use this syntax instead:

Link text

Linking to remote pages
Remote links are very similar to local links. Instead of a relative path to a local page,
though, you use a complete URL for the desired page:

Link text

For a secure connection to an Internet server using SSL for security, use the https
prefix in the URL:

Link text

On the
CD-ROM

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 544

545Chapter 16 ✦ Creating Web Clipping Applications

When you create a link to a remote page, Clipper automatically appends a distinc-
tive over-the-air icon to the end of the link’s text. This icon alerts the user that fol-
lowing the link will make a connection over the wireless network, incurring possible
charges for the data transmitted. Similarly, links to secure servers are followed by
a secure over-the-air icon, which lets the user know that the link may send even
more data across the wireless connection, since the encrypted contents of a secure
query require extra header information for message integrity checks and authenti-
cation. Figure 16-2 shows both of the over-the-air icons.

Figure 16-2: The over-the-air icon (left) and the
secure over-the-air icon (right)

If you make images that serve as links to online content, incorporate the appropri-
ate over-the-air icon as an element in the image to tell the user that the image is
a link over the wireless connection. Clipper does not append the over-the-air icon
to images. The two icons are part of the standard Palm OS font, and you can
include them in regular applications by using the character constants chrOta and
chrOtaSecure.

Making link buttons
The HTML subset supported by Clipper has a button attribute that you can add to
standard hyperlinks:

Link text

Using button surrounds the link text with a standard Palm OS button, as shown in
Figure 16-3. Clipper will automatically add an appropriate over-the-air icon to the
button’s text for remote links.

Figure 16-3: Link buttons for local (left)
and remote (right) hyperlinks

Linking to another PQA
You can link to another PQA by using the file: prefix and the name of the PQA you
wish to jump to:

Launch other PQA

Be sure to include the .pqa extension after the name of the other PQA; without the
extension, Clipper will return an error.

Note

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 545

546 Part V ✦ Communicating Outside the Handheld

To link to a specific page within another PQA, use this syntax:

Link text

Since you are linking to a compiled PQA, subdirectory names do not exist, so you
should treat all the pages in the target PQA as belonging to the same flat directory
structure.

Linking to other applications
Hyperlinks within a PQA can also launch other applications on the handheld. There
are two ways to launch another application: palm and palmcall.

The palm syntax launches an application using the Palm OS SysUIAppSwitch rou-
tine, which causes Clipper to quit before launching the program. Here is the syntax
for launching an application using the palm URL:

Launch app

In the above syntax, cccc represents the creator ID of the application to launch,
and tttt is the database type of the application. Usually, you will use appl for
tttt to specify an application database. For example, the following URL launches
the built-in Memo Pad application:

Launch Memo Pad

The palmcall syntax uses SysAppLaunch to start another application, which
leaves Clipper running in the background and launches the new application as a
subroutine of Clipper. An application launched with palmcall does not have access
to its global variables. This is what the palmcall syntax looks like in action:

Sub-launch app

See the “Launching Applications” section of Chapter 10, “Programming System
Elements,” for more details about SysUIAppSwitch and SysAppLaunch.

Most of the time, you will probably want to use the palm URL to give control
to another application. The palmcall URL is primarily useful for passing data to
another application, which the called program can then process or store as
appropriate.

When using either the palm or palmcall URL, Clipper sends the launched applica-
tion a sysAppLaunchCmdURLParams launch code. The parameters to this launch
code include the complete URL as it was passed in the link. If you append a ques-
tion mark (?) to the URL, any characters following the question mark may be used

Cross-
Reference

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 546

547Chapter 16 ✦ Creating Web Clipping Applications

by the called application for whatever purposes the program needs. The following
example launches an application and passes it some parameters:

Save name

Parsing the URL for data after the question mark is the responsibility of the applica-
tion handling the sysAppLaunchCmdURLParams launch code.

Adding mail links
You can use a standard mailto URL to allow the user to send e-mail using the
iMessenger application, which is included on a Palm OS device with Clipper
installed. The syntax looks like this:

Send mail

It is also possible to define the subject and body of the mail using the following
syntax:

Send mail

When the user taps on a mailto link, the iMessenger application opens to display
the new mail for editing. The iMessenger application does not automatically send
the mail message, even if the subject and body are filled in using parameters,
because the user should have ultimate control over when the handheld sends
data over the wireless network.

Launching Clipper from Applications

Not only can you launch applications from within a PQA or Web clipping, you can also call
PQAs from within another application. Before blindly trying to use wireless features from
another application, though, you should check to make sure those features are present on
the handheld. To find out if the system supports wireless Internet access, check for the exis-
tence of the Clipper and iMessenger applications. The Palm OS provides constants for the
creator IDs of Clipper (sysFileCClipper) and iMessenger (sysFileCMessenging).

To check for the existence of Clipper, use the following code:

DmSearchStateType searchState;
UInt cardNo;
LocalID dbID;
Err error;

Continued

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 547

548 Part V ✦ Communicating Outside the Handheld

Continued

error = DmGetNextDatabaseByTypeCreator(true, &searchState,
sysFileTApplication, sysFileCClipper, true, &cardNo, &dbID);

If DmGetNextDatabaseByTypeCreator returns an error, Clipper is not present on the
handheld. Substitute sysFileCMessenging for sysFileCClipper in the code above to
check for iMessenger.

Once you have verified that the system supports wireless net access, you can open a PQA
in Clipper by calling SysUIAppSwitch to launch Clipper with a sysAppLaunchCmdOpenDB
launch code. Pass the LocalID and card number of the PQA to display in Clipper as param-
eters to the launch code. The following function launches a PQA, given the PQA’s name:

Err LaunchPQA (Char *pqaName)
{

SysAppLaunchCmdOpenDBType *params;
DmSearchStateType searchState;
UInt16 cardNo;
LocalID dbID;
Err error = 0;

cardNo = 0;
dbID = DmFindDatabase(0, pqaName);
if (dbID) {

params = MemPtrNew(sizeof(SysAppLaunchCmdOpenDBType));
if (! params)

return sysErrNoFreeRAM;
¶ms->cardNo = cardNo;
¶ms->dbID = dbID;
MemPtrSetOwner(params, 0);
error = SysUIAppSwitch(cardNo, dbID,

sysAppLaunchCmdOpenDB, ¶ms);
}

return error;
}

You can also pass an arbitrary URL to Clipper using the sysAppLaunchCmdGoToURL launch
code, and Clipper will fire up a wireless connection and display that URL. Keep in mind that
regular Web content that does not have a palmcomputingplatform <meta> tag will be
truncated and have all its images removed by the Palm.Net proxy server. You should restrict
using sysAppLaunchCmdGoToURL to calling Palm-friendly content.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 548

549Chapter 16 ✦ Creating Web Clipping Applications

Constructing Query Forms
To collect data for a query from a user, use a standard HTML form, enclosed in the
HTML <form> tag. All the standard HTML form input types are available, including
text fields, text areas, pop-up menus, radio buttons, check boxes, hidden fields, and
submit buttons. Also, Clipper understands a couple of Palm OS–specific tags for
inserting date and time pickers into a PQA or Web clipping form.

There are two things you should keep in mind when creating a query form:

✦ Minimize user input. Make it easy for the user to enter data into the query
form. For example, instead of requiring the user to enter text in a field, con-
sider using a pop-up list instead, which allows the user to pick a value with a
couple of stylus taps instead of slowly entering the data using Graffiti or the
on-screen keyboard.

The following function passes a URL, given as a string argument to the function, to Clipper:

Err LaunchURL (Char *url)
{

DmSearchStateType searchState;
Err error = 0;
Char *tempUrl;
UInt cardNo;
LocalID dbID;

tempUrl = MemPtrNew(StrLen(url));
if (!tempUrl)

return sysErrNoFreeRAM;
StrCopy(tempUrl, url);
MemPtrSetOwner(tempUrl, 0);

error = SysUIAppSwitch(cardNo, dbID, sysAppLaunchCmdGoToURL,
tempUrl);

return error;
}

If you directly call up a link in Clipper using sysAppLaunchCmdGoToURL, be sure your appli-
cation makes it perfectly clear that it is about to make a wireless connection. Because wire-
less airtime is expensive, the user should never be surprised by an unexpected over-the-air
connection. One way to ensure that the user knows a wireless connection might be made
is to incorporate the over-the-air icons in your own application. The Palm OS headers
define the character constants chrOta and chrOtaSecure for regular and secure connec-
tion icons; both of these characters are part of the standard Palm OS font.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 549

550 Part V ✦ Communicating Outside the Handheld

✦ Minimize query data. Keep the amount of data that must go over the air as
small as possible. One way to do this is to use short, all-lowercase name param-
eters for form controls. Also, try to abbreviate the data itself if it comes from
something other than a text field. For example, in a pop-up list of states, if the
user selects California from the list, send the string CA instead of California.
Every single byte transmitted counts.

You should also strive to make the interface of a query form as close to the inter-
face of dialog boxes in other Palm OS applications as possible. The easiest way to
do this is to use a table to format the input form, which allows you to use a right-
justified label for each left-justified form input control. The following example pro-
duces the form displayed in Figure 16-4:

<form action=”http://someURL” method=”get”>
<table>
<tr>
<td align=right>First Name:</td>
<td><input type=”text” name=”fname” size=”15”

maxlength=”30”></td>
</tr>
<tr>
<td align=right>Last Name:</td>
<td><input type=”text” name=”lname” size=”15”

maxlength=”30”></td>
</tr>
<tr>
<td align=right>Color:</td>
<td><select name=”color”>

<option selected value=”0”>-Select a color-
<option value=”r”>red
<option value=”g”>green
<option value=”b”>blue
</select></td>

</tr>
</table>
<input type=”submit” value=”Submit Query”>
</form>

Figure 16-4: A sample query form
that uses a table for formatting

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 550

551Chapter 16 ✦ Creating Web Clipping Applications

HTML form controls become specific Palm OS form elements in Clipper. The follow-
ing sections describe how the various HTML input tags affect the appearance and
properties of user interface elements that appear in Clipper.

Text fields and text areas
For a single line of text input, use a text field input type:

<input type=”text” name=”name” size=”15” maxlength=”20”>

The size attribute controls the width of the text field on the screen. You will have
to experiment with the size attribute to find a width that works. A size of 25 will
give you a line of text that fills the width of the Clipper browser.

Use the maxlength attribute to control the maximum number of characters that
may be entered in the field.

If you want to allow entry of larger amounts of text in a query form, use the
<textarea> tag:

<textarea rows=”3” name=”name” maxlength=”100”>This text
appears in the text area</textarea>

The <textarea> tag creates a multiline text field, complete with scroll bar if the user
enters more text than can be displayed at once in the field. Use the rows attribute to
control how many visible rows the text field can display, and maxlength to set the
maximum number of characters that the field will accept.

Pop-up menus
The <select> and <option> tags work together to create a pop-up list. For exam-
ple, the following code creates a simple four-item pop-up list:

<select name=”popup”>
<option selected value=”0”>-Select a color-
<option value=”r”>red
<option value=”g”>green
<option value=”b”>blue
</select>

Whichever <option> contains the selected attribute is initially displayed in the
pop-up trigger. Remember to keep the value attributes as small as possible, since
they will be transmitted over the wireless connection. Also, try to limit the size
of a pop-up list; scrolling through a massive list is time-consuming and tends to
annoy users.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 551

552 Part V ✦ Communicating Outside the Handheld

Check boxes and radio buttons
The checkbox type of <input> tag creates a check box:

<input type=”checkbox” value=”1” name=”name”>

Note that there is no label associated with the check box. If you want to label the
check box (a good idea if you want the user to know what the check box is for),
simply include the label as text before or after the <input> tag:

<input type=”checkbox” value=”1” name=”name”>Check here

Radio buttons have a similar format. All radio buttons that share a common name
form an exclusive group; only one radio button in a group may be selected at a
time, and that button’s value attribute is sent when the user submits the form:

<input type=”radio” name=”color” value=”r”>Red
<input type=”radio” name=”color” value=”g”>Green
<input type=”radio” name=”color” value=”b”>Blue

Clipper implements each radio button as a Palm OS push button. Whatever text
immediately follows the <input> tag appears within that particular push button.
To make sure that the push buttons line up properly, keep the text within the radio
button tags short, and be sure not to include any
 or other formatting tags
between buttons that make up a group.

Buttons
The <input type=”button”> variety of form button is not supported by Web clip-
ping, since there is no scripting possible in a PQA or clipping page, and the primary
function of a button input is to launch script. Clipper does support the submit and
reset styles of button, however.

A submit button launches the action defined in the query’s <form> tag:

<input type=”submit” value=”Submit Query”>

A reset button resets the form’s values to the state they were in when the page
was first displayed:

<input type=”reset” value=”Reset”>

The value attribute for submit and reset buttons defines the text that appears
within the button. Clipper automatically appends the over-the-air icon to the text
in a submit button.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 552

553Chapter 16 ✦ Creating Web Clipping Applications

Date and time pickers
Clipper understands two special form input types that take advantage of the built-in
Palm OS date and time picker dialog boxes: datepicker and timepicker. Tapping
the selector trigger defined by these input types launches the appropriate picker
dialog box for selection of a date or a time.

To insert a selector trigger that runs the date picker, use the following syntax:

<input type=”datepicker” name=”name” value=”YYYY-MM-DD”>

The date picker displays the date using whatever system date preferences are cur-
rently in use on the handheld, even though the format of the date returned by the
date picker and the format used to set the value attribute is YYYY-MM-DD. If you
omit the value attribute, the date picker initially displays the current date accord-
ing to the handheld’s internal clock.

To insert a selector trigger that runs the time picker, use the following syntax:

<input type=”timepicker” name=”name” value=”HH:MM”>

Like the date picker, the time picker displays the time in whatever user-defined
time format is in use on the handheld. The format used for setting and returning
the time picker’s value is the 24-hour HH:MM clock format. If you omit the value
attribute, the time picker initially displays the current time according to the hand-
held’s internal clock.

Special Palm OS variables
Two special variables may be included in any data that you submit from a PQA
query: %zipcode and %deviceid. These variables are usually included as hidden
inputs in the form, though they may also be tacked onto the end of the form’s
action URL.

The Palm.Net proxy servers fill in the %zipcode variable with the ZIP code of the
nearest wireless base station, usually within 5 to 10 miles of the handheld. Use the
following syntax to send the ZIP code in a hidden form input:

<input type=”hidden” value=”%zipcode” name=”zip”>

The proxy servers also determine if a query comes from a valid Palm VII handheld;
if so, they can fill in the %deviceid variable with the unique identifier contained in
a particular handheld’s ROM. Include %deviceid in a hidden form input like this:

<input type=”hidden” value=”%deviceid” name=”id”>

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 553

554 Part V ✦ Communicating Outside the Handheld

Possible return values for %deviceid comprise the following:

✦ 1 if the proxy server recognizes the device ID as valid

✦ 0 if the query may or may not have come from a Palm VII handheld

✦ -1 if the query did not originate from a valid Palm VII handheld

✦ A string unique to the user and handheld

You may also include the %zipcode and %deviceid variables as part of the URL
submitted for the query:

<form action=”http://www.companyname.com/
cgi?zip=%zipcode&id=%deviceid” method=”get”>

Adding Images
You can add images to a PQA using the standard HTML tag. Clipper under-
stands images in both GIF and JPEG formats, with color depths of either 1 bit (black
and white) or 2 bits (four-color grayscale). Images may be no wider than 153 pixels,
the maximum display width available in the Clipper window. A suggested maximum
height for images is 144 pixels, which is as much vertical space as Clipper can dis-
play at once. Vertically, larger images may be scrolled, so 144 pixels is not a hard
and fast limit on the height of an image.

Graphics tend to be space hogs in a PQA. Try to minimize the number of images
included in an application, and make those images that you do include as small
and as simple as possible.

The following example shows the syntax for inserting an image into a PQA:

Just as with linking to other HTML pages in a PQA, you may include images in sub-
directories and reference them using a relative path:

Adding PQA icons
Every PQA should have both large and small icons to display in the system appli-
cation launcher. Just like standard Palm OS application icons, large icons should
be 32 × 22 pixels, and small icons should be 15 × 9 pixels. The Query Application
Builder can make icons from BMP, GIF, or JPEG format images. If you do not explic-
itly add your own icons to a PQA, the Query Application Builder provides default
icons.

Tip

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 554

555Chapter 16 ✦ Creating Web Clipping Applications

The default icons used by the Query Application Builder are shipped with the
builder as separate BMP files. You can use these files as a starting point for your
own PQA icons.

Using Palm Image Checker
To get a feel for what a particular image will look like once it is on the handheld,
you can use the Palm Image Checker. In the Windows version of the Query Applica-
tion Builder, the image checker is a separate application, called pic.exe. The Mac
OS version of the Query Application Builder includes the image checker as a built-in
function. Figure 16-5 shows the Palm Image Checker running on a Windows system.

Figure 16-5: The Palm Image Checker

To open an image, click the Open button in the toolbar (signified by an open folder
icon), and select the File ➪ Open menu option, or press Ctrl+O. Select an image to
display from the file dialog box, and image checker then displays the image as it will
appear in Clipper.

You can also use the image checker to resize images. Once you have an image open,
select the Image ➪ Resize Image menu option, or press Ctrl+S. The New Image Dimen-
sions dialog box, pictured in Figure 16-6, appears.

Figure 16-6: The New Image
Dimensions dialog box

Enter the new image dimensions, and then click the OK button. Palm Image Checker
opens a new window containing the resized image. From here, you may copy the
image to the clipboard (using the Copy button or the Edit ➪ Copy menu option, or
pressing Ctrl+C) and paste the resized image into a graphics-editing program of
your choice.

Tip

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 555

556 Part V ✦ Communicating Outside the Handheld

Palm Image Checker does not actually modify any image files. If you want to use
the image checker to resize images, or convert them into black and white or
grayscale, you need to have a separate graphics program into which you can paste
modified images.

Using the Query Application Builder
Once you have assembled all the HTML pages and images that compose a PQA, you
need to build it into an installable .pqa file with the Query Application Builder. The
interface for the Windows version of the Query Application Builder is shown in
Figure 16-7; the Mac OS interface is nearly identical.

Figure 16-7: The Query Application Builder’s main screen

Opening an index file
The first step toward building a PQA is to open the project’s home page, which you
can do by selecting File ➪ Open Index or by pressing Ctrl+O. A standard file dialog
box appears, prompting you for the location of the PQA’s index file. Once you select
the index file and click the Open button, the Query Application Builder looks
through the home page for links to other pages and images that make up the PQA.
Assuming that there are no errors in your PQA, the Query Application Builder then
displays all the files that make up the PQA’s interface, as shown in Figure 16-8.

Figure 16-8: The Query Application Builder, after loading
an index file

The status bar at the bottom of the Query Application Builder gives you a compari-
son of the uncompressed and compressed sizes of the PQA.

Note

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 556

557Chapter 16 ✦ Creating Web Clipping Applications

Building a PQA
Once you have a PQA loaded into the Query Application Builder, select File ➪
Build PQA, or press Ctrl+B, to build the PQA. The Build PQA dialog box, pictured
in Figure 16-9, appears.

Figure 16-9: The Build PQA dialog box

In this dialog box, you need to do three things:

✦ Set the location and file name for the finished .pqa file in the file dialog box in
the upper-left area of the Build PQA screen. The Mac OS version of the Query
Application Builder gives you a separate space to define the PQA’s display
name in the Palm OS application launcher, which might be different from its
file name on the desktop computer. The Windows version does not have this
option, instead using the beginning of the file name before the .pqa extension
for the display name. You can, however, change the display name to some-
thing else in the Windows Query Application Builder by calling it from the
command line; see below for details.

✦ Check the Install to User check box and select an appropriate user if you want
to immediately install the PQA to a connected handheld at the next HotSync
operation.

✦ Set the large and small icons for the PQA with the Large and Small buttons.

Pressing the icon buttons opens a standard file dialog box, prompting you for
the BMP, GIF, or JPEG images that you wish to use for the PQA’s small and large
launcher icons. The Reset Icons button resets the icons to the default blank PQA
icons that ship with the Query Application Builder.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 557

558 Part V ✦ Communicating Outside the Handheld

Building a PQA from the command line
You may also run the Windows version of the Query Application Builder from the
command line, which allows you to build a PQA as part of a batch process. Table
16-2 shows the parameters you may pass to the qab.exe application and how those
parameters affect the building of a PQA.

Table 16-2
QAB Command-Line Parameters

Parameter Description

/h Displays a help dialog box, which explains how to use the
command-line options for qab

/pqa “index.html” Builds a PQA, using the file index.html as the PQA’s
home page

/n “pqaname” Specifies the display name for the PQA that appears in the
Palm OS application launcher

/o “output.pqa” Specifies the output file name for the compiled PQA

/l “largeicon.bmp” Specifies the file name of the image to use for the PQA’s
large icon

/s “smallicon.bmp” Specifies the file name of the image to use for the PQA’s
small icon

/u “username” Installs the compiled PQA during the next HotSync operation,
using username to specify the user to synchronize with

/v Verbose mode; displays more detailed error strings if the PQA
could not be compiled

As an example, the following command line compiles the PQA described in the next
section:

qab /pqa “index.html” /n “Greeting” /o “Greeting.pqa”
/l “largeicon.bmp” /s “smallicon.bmp”

Looking at a Sample PQA
The Formal Greeting Generator is a complete, if simple, PQA. Its purpose is to gen-
erate a personalized greeting, taking into account the user’s preferred title and the
time of day. Figure 16-10 shows the Formal Greeting Generator in action.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 558

559Chapter 16 ✦ Creating Web Clipping Applications

Figure 16-10: The Formal Greeting Generator sample PQA

The home page for the Formal Greeting Generator, defined in the file index.html,
appears in Listing 16-1.

Listing 16-1: The Formal Greeting Generator’s home page,
index.html

<html>
<head>
<title>Greeting</title>
<meta name=”palmcomputingplatform” content=”true”>
<meta name=”palmlauncherrevision” content=”1.0”>
</head>
<body>
<h2>Formal Greeting Generator</h2>
<p>Enter your name below for a personalized formal
greeting.</p>

<form action=”http://www.palmosbible.com/greeting.cgi”
method=”get”>
<table>
<tr>
<td align=right>Title:</td>
<td><select name=”title”>

<option selected value=”0”>None
<option value=”1”>Mr.
<option value=”2”>Mrs.
<option value=”3”>Ms.
<option value=”4”>Dr.
<option value=”5”>General
<option value=”6”>King
<option value=”7”>Queen
</select></td>

</tr>
<tr>
<td align=right>First Name:</td>
<td><input type=”text” name=”fname” size=”15”

maxlength=”30”></td>
</tr>

Continued

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 559

560 Part V ✦ Communicating Outside the Handheld

Listing 16-1 (continued)

<tr>
<td align=right>Last Name:</td>
<td><input type=”text” name=”lname” size=”15”

maxlength=”30”></td>
</tr>
<tr>
<td align=right>Time:</td>
<td><input type=”timepicker” name=”time”></td>

</tr>
</table>
<pre> </pre>
<pre> </pre>
<input type=”submit” value=”Say Hello”>
Help
</form>
</body>
</html>

The action URL used by the Formal Greeting Generator to create its greeting calls
the greeting.cgi script on a remote server. The greeting.cgi script is described
in the next section of this chapter, “Building Web Clippings.”

Formal Greeting Generator presents a pop-up list, from which the user may select
a title. Notice that the value attributes in this pop-up list are not the actual titles
themselves, which would take up unnecessary bytes if sent as part of the query.
Instead, index.html just uses the zero-based index of the selected list item, which
greeting.cgi expands into the appropriate string on the server end when gener-
ating a Web clipping response. This technique is a little harder to maintain and
debug, since any changes to the pop-up list in index.html must be duplicated
on the server end, but it is worth the extra trouble to make the query smaller
and thereby save wireless bandwidth.

The time picker automatically displays the current time according to the handheld’s
clock, so if the user leaves this picker alone, the greeting returned as a result of
Formal Greeting Generator’s query will reflect the current time of day.

A Help button at the bottom of the page is a link to the local file help.html, shown
in Listing 16-2. This sort of help is information that does not change, so it is not
appropriate to store it on the server and require the user to query for it; instead, it
is a second page built into the PQA itself.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 560

561Chapter 16 ✦ Creating Web Clipping Applications

Listing 16-2: The Formal Greeting Generator’s help page,
help.html

<html>
<head>
<title>Greeting</title>
<meta name=”palmcomputingplatform” content=”true”>
</head>
<body>
<h2>Formal Greeting Help</h2>
<p>The fields on the home page have the following meanings:</p>

Title. Sets the title by which you wish to be

addressed in the greeting.
First Name and Last Name. Enter your first

and last names in these text fields.
Time. Enter the time of day for which you wish to

be greeted, or leave the time picker alone
to use the current time of day according to
your handheld’s clock.

<pre> </pre>
Return to Home Page
</body>
</html>

Building Web Clippings
The biggest difference between creating a PQA and creating a Web clipping is that
Web clippings tend to be generated on-the-fly from some sort of CGI program at the
server end. You can link to static HTML pages from a PQA, but there is little point in
doing so, since any information that does not change very often should probably be
built into the PQA itself. Therefore, when building the server end of a Web clipping
solution, you will probably write a program on the server end that dynamically gen-
erates HTML pages to return to the PQA as Web clippings.

There are far more languages and tools available for generating dynamic Web content
than this book could possibly cover. Whatever tools you use to generate Web clip-
pings, you need only make sure that the HTML pages created are properly formatted
for use by Clipper. The Web clipping end of the sample Formal Greeting Generator in
this book uses a Perl CGI script to generate Web clippings in response to queries from
the Formal Greeting Generator PQA. You do not need to understand Perl CGI pro-
gramming to create Web clippings, though; you should be able to adapt the tech-
niques in this section to any language or system to generate dynamic content.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 561

562 Part V ✦ Communicating Outside the Handheld

If you are unfamiliar with Perl CGI programming, you can find an excellent primer
on the Web at http://www.cgi101.com.

Most of the details of building Web clippings are identical to the details of building
a PQA. The primary difference to keep in mind when assembling Web clippings is
that the entire clipping is returned via the wireless network. Even more than with
PQAs, you must strive to keep Web clippings short and to the point to prevent
wasting precious airtime.

Defining Header Tags
A Web clipping should have the same palmcomputingplatform <meta> tag as a
PQA page. Without the palmcomputingplatform tag, the Palm.Net proxy server
truncates the page by 1KB and removes all images, so it is important to include this
tag so the proxy knows that the page is formatted properly for use as a Web clipping.

In addition, you should include a <meta> tag containing a historylisttext
attribute. This tag has the following syntax:

<meta name=”historylisttext” content=”string &date &time”>

Clipper uses the contents of the historylisttext tag to keep track of cached clip-
pings. Whatever text you supply for string in the content attribute appears in the
History pop-up list in the upper right of Clipper’s title bar. The &date and &time
variables are replaced with the date and time when the user made the query. If you
omit the historylisttext tag entirely, Clipper will use the name of your applica-
tion in the History pop-up list.

You do not need to use palmlauncherrevision in a Web clipping page.

Creating Clipping Pages for Desktop Browsers
If you want to make a CGI program that does double duty, serving pages that work for
display in both Clipper and in more traditional desktop browsers, you can use the
<smallscreenignore> tag to hide content from the handheld. For example, if you
have a big full-color image that you would like to display in the Web page for the ben-
efit of regular Web browsers, you can place it within a <smallscreenignore> tag to
keep it from being displayed in Clipper:

<smallscreenignore>

</smallscreenignore>

Cross-
Reference

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 562

563Chapter 16 ✦ Creating Web Clipping Applications

Linking Outside the Web Clipping
Hyperlinks in a Web clipping may point to the same things that links in a PQA may
point to. Any links from a Web clipping to pages in a local PQA require a file: URL,
like this:

Link text

Remember that links from a Web clipping to a PQA must treat the pages in the PQA
as if they were all part of the same flat directory; no subdirectories are available in
a PQA to anything outside that PQA.

The palm and palmcall URLs have the same effect from a Web clipping that they
do from within a PQA, as do mailto URLs.

Adding Images
In general, it is a bad idea to download images through a Web clipping, though you
may include images from the server with the standard tag:

A better approach is to store in the PQA itself images that the Web clipping might
need to display. If there is no reference to an image elsewhere in a PQA with the
 tag, you can make sure it is included in the PQA by using the localicon
<meta> tag in the header of one of the PQA’s HTML pages:

<meta name=”localicon” content=”image.gif”>

Once you have included an image in a PQA with localicon, you can access it from
a Web clipping with the following syntax:

In fact, you can also use localicon to store entire pages in a PQA that are only
referred to from Web clippings:

<meta name=”localicon” content=”page.html”>

You may then refer to these pages just as you would any other local pages from a
Web clipping.

Looking at a Sample Web Clipping
The Formal Greeting Generator PQA described earlier in this chapter has a compan-
ion Perl CGI script, called greeting.cgi, which generates Web clippings based on
input from the PQA. The complete greeting.cgi script is listed at the end of this

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 563

564 Part V ✦ Communicating Outside the Handheld

section in Listing 16-3, but it is easiest to see how greeting.cgi and Formal
Greeting Generator work together by looking at the actual clipping generated by
some specific input to the PQA.

In this example, Figure 16-11 shows the Formal Greeting Generator as it appears
after the user enters some sample query information, but just before the user taps
the Say Hello button.

Figure 16-11: The Formal Greeting Generator
PQA, ready to go with some sample data

When the user sends this query, the following parameters are passed to the
greeting.cgi script:

title=4&fname=John&lname=Doe&time=18:50

Notice that the time is sent as a 24-hour value in the form HH:MM; greetin.cgi
must be able to parse this time properly to come up with the time of day for the
greeting it generates.

The greeting.cgi script parses the parameters for the title, first name, last
name, and time values, and then uses those values to assemble a greeting appro-
priate for the title, name, and time of day. Figure 16-12 shows the clipping returned
by greeting.cgi for these particular input values.

Figure 16-12: A Web clipping returned by greeting.cgi

The HTML for the clipping returned by greeting.cgi looks like this:

<html>
<head>
<title>Greeting</title>

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 564

565Chapter 16 ✦ Creating Web Clipping Applications

<meta name=”historylisttext”
content=”Greeting - &date &time”>

<meta name=”palmcomputingplatform” content=”true”>
</head>
<body>
<p>Good evening, Dr. Doe.</p>
<pre> </pre>
<a button href=”file:Greeting.pqa/index.html”>

Get Another Greeting
</body>
</html>

The Web clipping returned contains a handy button link to the Formal Greeting
Generator’s home page in the local PQA, using the file: style of URL.

The Perl 5 CGI module, which greeting.cgi uses to create the actual HTML code
itself, does not format HTML nearly as nicely as the listing above. The CGI module
tends to omit linefeeds, resulting in HTML source that is hard to read for humans,
but perfectly acceptable to browser applications. An added bonus of omitting line-
feeds, however, is that it saves a few bytes in the returned Web clipping.

Listing 16-3 shows the greeting.cgi script, which contains all the Perl code nec-
essary to respond to queries from the Formal Greeting Generator PQA:

Listing 16-3: The greeting.cgi script

#!/usr/bin/perl
hello.cgi - Sample Web clipping application for the
Palm OS Programming Bible
use strict;

use CGI qw(:standard);

Set up the titles array.
my @titles = (“None”,

“Mr.”,
“Mrs.”,
“Ms.”,
“Dr.”,
“General”,
“King”,
“Queen”);

Retrieve parameters
my $titleIndex = param(“title”);
my $firstName = param(“fname”);

Continued

Note

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 565

566 Part V ✦ Communicating Outside the Handheld

Listing 16-3 (continued)

my $lastName = param(“lname”);
my $time = param(“time”);

Assemble an appropriate formal name if there is enough name
to provide a proper greeting.
my $titleName = “”;
if ($titleIndex == 0) {

if ($firstName && $lastName) {
$titleName = $firstName . “ “ . $lastName;

}
} elsif ($titleIndex >= 1 && $titleIndex <= 5) {

if ($lastName) {
$titleName = $titles[$titleIndex] . “ “ . $lastName;

}
} elsif ($titleIndex >= 6 && $titleIndex <= 7) {

if ($firstName) {
$titleName = $titles[$titleIndex] . “ “ . $firstName;

}
}

Make an appropriate string for the time of day.
my $greetTime;
$time =~ s/:.+//;
if ($time < 4 || $time >= 22) {

$greetTime = “night”;
} elsif ($time >= 4 && $time < 12) {

$greetTime = “morning”;
} elsif ($time >= 12 && $time < 17) {

$greetTime = “afternoon”;
} else {

$greetTime = “evening”;
}

Output the Web clipping.
print header();
print start_html(-title => ‘Greeting’,

-meta => {‘palmcomputingplatform’ => ‘true’,
‘historylisttext’ =>

‘Greeting - &date &time’});

Check to see if there is a title name. If title name has not
been assembled, there is not enough data to form a proper
greeting. Present an appropriate message to the user.
if (! $titleName) {

my $errTitle;
my $errName;
if ($titleIndex == 0) {

$errTitle = “, but without a title,”;

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 566

567Chapter 16 ✦ Creating Web Clipping Applications

$errName = “first and last names”;
} elsif ($titleIndex == 1) {

$errTitle = “ sir, but”;
$errName = “last name”;

} elsif ($titleIndex == 2) {
$errTitle = “ ma’am, but”;
$errName = “last name”;

} elsif ($titleIndex == 3) {
$errTitle = “ miss, but”;
$errName = “last name”;

} elsif ($titleIndex == 4) {
$errTitle = “ doctor, but”;
$errName = “last name”;

} elsif ($titleIndex == 5) {
$errTitle = “ General, but”;
$errName = “last name”;

} elsif ($titleIndex == 6) {
$errTitle = “ your Majesty, but”;
$errName = “first name”;

} elsif ($titleIndex == 7) {
$errTitle = “ your Majesty, but”;
$errName = “first name”;

}
print p(“I’m sorry$errTitle I need your $errName to give”,

“ you a proper greeting.”);
print p(“Tap the back arrow above and try again.”);

} else {
print p(“Good $greetTime, $titleName.”);

}

print pre(“ “);
print a({href => ‘file:Greeting.pqa/index.html’,

button => undef},
“Get Another Greeting”);

print end_html();

Testing Web Clipping Applications
Testing the local side of a PQA is easy — all you need to do is install the PQA on the
Palm OS Emulator (POSE), or an actual Palm OS device that supports Web clipping.
In particular, you should be on the lookout for page formatting problems, missing
images, and links that do not call up the correct page.

To test the actual online links in a PQA, you can install the PQA on an actual hand-
held that supports Web clipping. However, this can become very expensive if you
have a lot of testing to do, since each query must go through a standard Palm.Net
account.

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 567

568 Part V ✦ Communicating Outside the Handheld

Fortunately, POSE can redirect over-the-air queries to its host computer’s net connec-
tion, using the desktop machine as a replacement for the wireless network when the
Emulator hooks your PQA up to the Palm.Net proxy servers. Using this proxy system
is free of charge, and considerably more convenient for heavy-duty debugging.

To set up POSE for PQA testing, start up the Palm OS Preferences applet by tapping
the Prefs icon in the system launcher application. In the Preferences applet, select
Wireless from the pop-up list in the upper right-hand corner. Figure 16-13 shows the
resulting screen in the Preferences application.

Figure 16-13: The Wireless screen
in the Palm OS Preferences applet

The Proxy selector trigger in the center of the screen should display the IP address
207.240.80.136, which is a specific proxy server that Palm Computing has set up
for testing purposes. If the selector displays a different address, tap it, and enter
the correct address in the dialog box that appears.

Palm Computing may move the proxy server in the future. If the IP address listed
above does not work, take a look at http://www.palm.com/devzone/
webclipping for the current address of the proxy server.

After verifying the proxy address, select Settings ➪ Properties from POSE’s menu.
The dialog box pictured in Figure 16-14 will appear.

Figure 16-14: The POSE Properties dialog box

Note

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 568

569Chapter 16 ✦ Creating Web Clipping Applications

Make sure that Redirect NetLib calls to host TCP/IP is checked. If it is, POSE redi-
rects all network library calls to your desktop machine’s network connection.

With the proxy address and NetLib redirection set up, PQAs in POSE should connect
to remote Internet servers as if POSE were a real Palm OS device. The only imperfec-
tions to this masquerade involve the %zipcode and %deviceid variables mentioned
earlier in this chapter. Since the proxy connection through POSE does not actually
hook up to a wireless base station, there is no ZIP code information available, and
POSE does not contain the unique identifier present in an actual handheld’s ROM.
To test these two features, you will have to use a real Palm OS device.

Summary
In this chapter, you learned about how to take advantage of the wireless features of
some Palm OS devices. After reading this chapter, you should know the following:

✦ Palm Computing’s wireless Internet access model, called Web clipping, is built
around a query and response architecture to save on expensive wireless
bandwidth.

✦ A query starts at a Palm Query Application on the handheld, passes via radio
connection to the Palm.Net proxy servers, and connects to an Internet site;
the response from the Internet passes back through the proxy for processing,
and then travels across the wireless network again to arrive at the Palm OS
handheld.

✦ Web clipping solutions may be easily designed using standard HTML tools,
but you do need to keep in mind the limitations of expensive wireless band-
width, small screen real estate, and a slower processor when designing Web
content for Clipper, the Palm OS Web-browsing application.

✦ The Query Application Builder is the tool you use to convert HTML pages and
images into a PQA, which you can then install on a handheld that supports
Web clipping.

✦ You can use any dynamic Web content generation system you wish to create
Web clippings, as long as it is able to work within the guidelines required for
designing Clipper Web content.

✦ You can test PQAs with an actual Web clipping-enabled handheld, or through
POSE, using your desktop computer instead of an actual wireless network
connection.

✦ ✦ ✦

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 569

4676-7 ch16.f.qc 9/29/00 12:56 PM Page 570

Introducing
Conduit
Mechanics

Conduits are code modules that perform synchronization
between Palm OS handheld applications and data on a

desktop computer. The HotSync Manager calls conduits during
a HotSync operation to keep records in sync between the desk-
top and the handheld, back up data from the handheld to the
desktop, or download data from the desktop to the handheld.

The Conduit Development Kit (CDK), available as a free
download from Palm Computing, contains all the templates,
object classes, and documentation necessary to create con-
duits for the Mac OS and Windows operating systems. To
develop conduits for the Mac OS, you also need to have
Metrowerks CodeWarrior version 3.0 to 3.3 (the full version
of CodeWarrior, not just Metrowerks CodeWarrior for Palm
Computing platform). To create conduits for Windows, you
need to either use Microsoft Visual C++ 6.0 and the CDK for
Windows, or Symantec Visual Cafe Pro for Java and the CDK
Java Edition for Windows. The CDK Java Edition has also been
tested with Microsoft Visual J++ 1.1, but Visual Cafe Pro is the
development platform supported by Palm Computing.

The CD-ROM included with this book contains the 4.0 ver-
sions of the CDK for Mac OS, the CDK for Windows, and
the CDK Java Edition for Windows.

On the
CD-ROM

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
conduits

Designing conduits

Installing conduits

Logging actions in
the HotSync log

✦ ✦ ✦ ✦

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 573

574 Part VI ✦ Synchronizing Data with the Desktop

Part VI, “Synchronizing Data with the Desktop,” focuses on conduit development
for Windows, using Visual C++ and the CDK for Windows. However, much of the
information in this chapter is conceptual and applies just as well to Java and
Mac OS conduit development as it does to Visual C++ conduit development. The
next chapter, “Building Conduits,” delves into the actual details of conduit program-
ming using Visual C++, so it will not be as useful as this chapter for Mac OS or Java
conduit developers.

Because conduit development involves creating software to run on a desktop
machine instead of a Palm OS handheld, it requires a different set of skills and
tools from those needed for handheld application development. You should be
familiar with object-oriented programming in C++ or Java, depending on the CDK
you wish to use, and it also helps to have some experience with creating dynamic
link libraries (if using the CDK for Windows) or Code Fragment Manager plug-ins
(if using the CDK for Mac OS). Knowing your way around Microsoft Foundation
Classes (MFC) is a must if you plan to build a conduit based on the Palm MFC
Base Classes.

Understanding Conduits
A standard Windows conduit is a DLL module with entry points called by the HotSync
Manager (Mac OS conduits are Code Fragment Manager plug-in modules, and Java
conduits are Java classes that use the jsync.dll module to communicate with the
HotSync Manager). A conduit is only one piece of software that must cooperate with
a number of other programs to transfer data between a handheld and a desktop com-
puter. Some or all of the following components may be involved in a given HotSync
operation:

✦ HotSync Manager. This program controls the entire HotSync process. The
HotSync Manager runs in the background on the desktop computer, watching
appropriate communications ports for a HotSync request from a Palm OS
handheld. The HotSync Manager handles basic communication between the
desktop and a handheld, manages multiple users synchronizing with the same
desktop machine, provides an interface with which users can customize the
behavior of individual conduits, installs new applications and databases to
a handheld, and restores data on the handheld in the event of a hard reset
or other catastrophic data loss.

✦ Conduits. Conduits are plug-in modules that handle the actual transfer of data
between a handheld application and a desktop data source. During a HotSync
operation, the HotSync manager calls each registered conduit in turn to syn-
chronize a handheld application with its desktop data. A conduit does not
require any user interaction to perform its duties, instead relying on internal
logic to correctly modify data on the desktop, the handheld, or both. This lack
of interaction is important to remember when designing a conduit; if a user
synchronizes a handheld remotely, there is no way for the conduit to prompt
the user for input.

Note

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 574

575Chapter 17 ✦ Introducing Conduit Mechanics

✦ Notifier DLLs. If both a conduit and a desktop application can modify the
same data, it may be necessary to tell the desktop application to leave
the data alone during the course of a HotSync operation, thereby preventing
data loss, duplicate records, or just plain mangled data. The HotSync Manager
uses a process called notification to prevent this sort of mess. Before the
HotSync Manager launches a conduit to perform data transfer, the manager
calls a notifier DLL for that particular conduit. The notifier DLL in turn passes
information to the appropriate desktop application in a format that the appli-
cation understands. The best example of this process is the Palm Desktop
application, which does not allow the user to change any data during a
HotSync operation; the Palm Desktop knows that a HotSync operation is
in progress because it was notified by its notifier DLL, pdn20.dll.

✦ Handheld applications. A handheld application may serve as a quick data col-
lection tool for a desktop application or as a portable viewer for information
imported from the desktop. Also, an application on the handheld may simply
share data with a desktop application, just as the four main ROM applications
share data with the Palm Desktop program. If you follow standard Palm OS
programming guidelines, there is nothing you need to add to a handheld
application to allow it to work with the HotSync process.

See Chapter 13, “Manipulating Records,” for more details about handling data in a
Palm OS application.

✦ Desktop applications. Because of the flexibility inherent in conduit design,
virtually any desktop application may share data with a Palm OS handheld.
A desktop application can create data to send to the handheld, process data
retrieved from the handheld, or share data with the handheld.

✦ Sync Manager API. This application programming interface allows conduits
to communicate with the handheld, regardless of how the handheld is con-
nected to the desktop computer. The Sync Manager API can directly read
and write data on the handheld, and it forms the most basic layer in conduit
programming.

Figure 17-1 shows the relationships between the various components that may be
present in a Palm OS synchronization scheme. The arrows in the figure show how
data flows between different pieces of software. In most cases, components perform
two-way communication, sending data in both directions between the components;
notification, however, usually flows in one direction only, from the HotSync Manager
to a notifier DLL to a desktop application.

Cross-
Reference

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 575

576 Part VI ✦ Synchronizing Data with the Desktop

Figure 17-1: Data flow between the HotSync Manager
and other software components

Stepping Through the HotSync Process
When the user initiates a HotSync operation, either by pressing the HotSync button
on the cradle or by tapping the HotSync button in the HotSync application on the
handheld, the HotSync Manager springs into action, following a particular series
of steps to synchronize the desktop and the handheld.

A HotSync operation may be initiated only from the handheld. Because of limitations
in current cradle hardware, there is no way to start the synchronization process from
the desktop computer.

The following steps outline the actions taken by the HotSync Manager during a
HotSync operation:

1. User validation and location. Each Palm OS handheld has a unique user ID
associated with it. When the user synchronizes the handheld for the first
time, the HotSync Manager assigns a pseudo–random number to that particu-
lar handheld, which allows a single desktop computer to synchronize with
multiple handhelds and still keep their data separate. At the beginning of
a HotSync operation, the HotSync Manager makes sure the user ID on the
handheld is valid, and then locates the path to that particular user’s data on
the desktop computer. For example, my own user path is c:\Palm\FosterL.
Most conduits save their information in subdirectories of the user path.

Note

Desktop
application

Conduit

HotSync
Manager

Sync Manager
API

Palm OS
application

Palm OS
database

Desktop
data source Notifier DLL

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 576

577Chapter 17 ✦ Introducing Conduit Mechanics

2. Determination of synchronization type. A conduit may perform two kinds of
synchronization: SlowSync and FastSync. In a SlowSync, the conduit compares
each record in the handheld database with its corresponding record in the
desktop data source. In a FastSync, the conduit compares only records whose
modification flag is set.

The HotSync Manager determines which type of synchronization to perform
by looking at the PC ID stored on the handheld from its last HotSync opera-
tion. Like a user ID, the PC ID is a pseudo–random number generated by
the HotSync Manager to uniquely identify a desktop computer. Whenever a
HotSync operation takes place, the HotSync manager stores the PC ID of the
last desktop machine the handheld synchronized with on the handheld itself.

If the handheld was last synchronized with the same machine as the current
HotSync operation, the HotSync Manager tells conduits to perform a FastSync.
If the last machine the handheld synchronized with was a different machine,
conduits cannot rely on the modification flag of each record being valid, so in
this case the HotSync Manager tells installed conduits to perform a SlowSync.

3. Desktop application notification. The HotSync Manager calls the appropriate
notifier DLLs to let desktop applications know that the HotSync Manager is
about to modify data shared between desktop and handheld applications.

4. Conduit setup. Once notification is out of the way, the HotSync Manager
retrieves the creator ID of each application on the handheld (databases with
type appl). If a conduit is installed for a particular creator ID, the HotSync
Manager adds that conduit to a list of modules that should be run.

The HotSync Manager also looks through the other databases on the handheld
that are not of type DATA. If such a database has its backup bit set, the HotSync
Manager adds that database to a list that will be handled by the built-in Backup
conduit.

5. Installation. Now the HotSync Manager uses its built-in Install conduit to
install any databases that are queued up on the desktop computer. Typically,
these databases were queued by the Palm Install Tool (instapp.exe). On
Windows, the HotSync Manager knows there are databases to install when a
particular Registry key is present, namely \HKEY_CURRENT_USER\Software\
U.S. Robotics\Pilot Desktop\HotSync Manager\InstallNNNNN, where
NNNNN is the pseudo–random user ID assigned to the handheld. The Palm
Install Tool creates this Registry key when it queues databases for installation
and then copies those databases to the Install subdirectory of the appropri-
ate user data folder. For example, files awaiting installation on my machine go
into the c:\Palm\FosterL\Install directory. The Install conduit looks in
this particular directory for databases to install.

6. Conduit execution. The HotSync Manger cycles through the list of conduits
it assembled in Step 4, calling each in turn to synchronize data between the
handheld and desktop applications.

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 577

578 Part VI ✦ Synchronizing Data with the Desktop

7. Second Installation. Version 3.0.1 or later of the HotSync Manager calls the
Install conduit a second time, which gives the HotSync operation a chance
to pick up any databases queued for install by any of the conduits. This step
allows a conduit to generate a database and “push” it out to the handheld,
which can be very useful for conduits that retrieve information from the
Web or other network sources. For example, AvantGo uses this mechanism
to install newly downloaded Web pages to the handheld. Note that prior
to HotSync Manager version 3.0.1, this second installation phase does
not happen.

8. Database backup. The HotSync Manager calls the Backup conduit to copy
databases queued for backup in Step 4. These databases are stored in a
Backup subdirectory of the appropriate user data directory. For example,
my own backup directory is c:\Palm\FosterL\Backup.

9. Synchronization information update. Now that the HotSync Manager has
completed most of its tasks, it updates the sync time, PC ID, and user ID, if
necessary, in the HotSync application on the handheld. At this point, the
HotSync Manager also transfers a shortened version of the HotSync log
to the handheld, which the user may view to determine the nature of any
errors or warnings generated by the HotSync operation.

10. Second desktop application notification. The HotSync Manager calls the
appropriate notifier DLLs a second time, to alert applications that the HotSync
operation is complete and it is now safe for desktop applications to modify
shared data sources again.

11. Handheld application notification. The Palm OS itself gives notification of
a finished HotSync operation to newly installed handheld applications, and
those whose data was modified during the HotSync process, by sending a
sysAppLaunchCmdSyncNotify launch code to each of these applications.
Any application that needs to perform some operation immediately after
installation or having its data modified by a HotSync operation, such as
resetting alarms or registering to receive beamed data, may do so by
handling the sysAppLaunchCmdSyncNotify launch code.

Designing Conduits
Each conduit can synchronize with a single application on the handheld. You can
build a conduit to synchronize a custom Palm OS application with a custom data
source on the desktop, or to synchronize one of the built-in handheld applications
with a custom desktop data source. You could also hijack the Palm Desktop data
and synchronize it with your own handheld application, or even replace one of the
built-in conduits so it synchronizes a built-in handheld application with the default
Palm Desktop in a different way, although these two scenarios are less likely.

Given the different databases you can synchronize with each other, there are also
four different types of synchronization you can perform. From most complex to
least complex, here are the different styles of synchronization:

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 578

579Chapter 17 ✦ Introducing Conduit Mechanics

✦ Transaction-based. In a transaction-based scenario, the desktop computer
must perform some sort of processing between each record synchronization.
For example, a conduit that updates information on the handheld from a live
Internet source would require a transaction-based approach. This style of
synchronization takes a lot longer than other types and should be used only
when absolutely necessary, since it slows down the entire HotSync process.

✦ Mirror image. In this scenario, modifications to records may be made on
both the handheld and the desktop, and the conduit makes the databases
identical on both platforms. The conduit must also resolve conflicts when
the user modifies the same record on both the desktop and the handheld.
Palm’s four basic built-in applications use mirror image synchronization
with the Palm Desktop.

✦ One-directional. Only one side of the connection — either the desktop or the
handheld — may modify data in a one-directional scenario. This type of syn-
chronization is ideal for desktop applications that update some sort of data,
such as stock quotes, and then dump that data to the handheld for remote
viewing. One-directional synchronization also works well the other way, for
applications that use the handheld as a data collection device, and then
save that raw data to the desktop computer for further processing.

✦ Backup. If an application does not have a desktop component, it can rely
on the default Backup conduit provided with the HotSync Manager. This
could also work as a “poor man’s” one-directional synchronization if a desk-
top application can parse the .pdb file used by the Palm OS to store the
handheld application’s records on the desktop. An actual one-directional
conduit is easier to use, though.

Consider speed when picking a style of synchronization. Try not to over-engineer
your conduit; use the simplest type of synchronization that will get the job done.

Rapid synchronization is a vital part of the Palm Computing philosophy, and it has
been a key factor in the popularity of the Palm Computing platform. Also, because
most HotSync operations take place through the handheld’s serial port, which is a
major drain on the batteries, it is imperative to keep the total synchronization time
as short as possible. Try to design conduits to execute quickly and efficiently.

Choosing a Development Path
The CDK for Windows gives you three basic starting points for building a conduit,
each with its own strengths and weaknesses:

✦ Start with the Palm MFC Base Classes and customize them for your application.

✦ Start with the Palm Generic Conduit Base Classes and customize them for
your application.

✦ Start from scratch, calling Sync Manager API functions directly from
your conduit.

Note

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 579

580 Part VI ✦ Synchronizing Data with the Desktop

The Palm MFC Base Classes are a set of C++ object classes based on the Microsoft
Foundation Classes (MFC), and they provide a high-level interface to the HotSync
process. You must customize the base classes to interact properly with the hand-
held application’s data format. On the desktop side, an MFC conduit reads and
writes data using the MFC serialization format. To access this data from your own
desktop application, that application must be an MFC program that also makes use
of the Palm MFC Base Classes. The Palm MFC Base Classes provide all the logic
necessary to perform mirror image synchronization; all you need to do is fill in the
details about the data format from the handheld side of the HotSync operation.

The Palm Generic Conduit Base Classes are a different set of C++ object classes,
which also provide a high-level interface to the HotSync process. Unlike the Palm
MFC Base Classes, a generic conduit may be customized for different data formats
on both the handheld and on the desktop, so the Palm Generic Conduit Base
Classes are ideal for connecting a handheld application with a standard desktop
database format, such as ODBC or plain old comma-delimited value format. The
generic base classes are also designed with portability in mind; the same source
code works on both the Mac OS and Windows, making generic conduits ideal for
cross-platform conduit development. Like the Palm MFC Base Classes, the generic
conduit classes also provide their own synchronization logic, allowing you to con-
centrate on filling in code to convert between handheld and desktop data formats.

Generic conduits are the wave of the future as far as Palm Computing is con-
cerned. The Palm MFC Base Classes were originally the only high-level conduit
development classes available, but starting with the CDK version 3.0, Palm
Computing released the newer Palm Generic Conduit Base Classes as an unsup-
ported feature. Because generic conduits are more flexible and can be used for
cross-platform development, Palm Computing suggests that developers who are
new to conduit development start with generic conduits instead of MFC conduits.

The Sync Manager API is a set of low-level functions that directly control interaction
between the desktop and the handheld. Both MFC and generic conduits use the
Sync Manager API to perform the basic tasks of sending and receiving data during
a HotSync operation. The base classes take care of all the synchronization logic
required to keep a desktop data source in mirror image synchronization with a
handheld application. If your application does not require mirror image synchro-
nization, or if you want to implement your own sync logic, directly controlling the
handheld through the Sync Manager API requires less overhead than using the base
classes and can result in a much quicker and more efficient conduit.

Installing Conduits
A conduit cannot run without first being properly registered. Registration tells the
HotSync Manager that it should call your conduit when syncing databases with a
specific creator ID. For a conduit to be a good HotSync citizen and play nicely with
other conduits, its installation program must be able to register and unregister the
conduit without any user intervention and, more important, without damaging

Note

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 580

581Chapter 17 ✦ Introducing Conduit Mechanics

the HotSync process by overwriting or removing conduit registration information
that belongs to other conduits.

Prior to version 3.0 of the CDK, conduit registration involved adding entries directly
to the Windows Registry. This situation was tenuous at best, since there was no
mechanism in place to prevent one developer’s registration or unregistration code
from destroying the registration information of other conduits. Worse yet, unin-
stalling conduits often involved renaming existing Registry entries and, if not done
carefully, could prevent the entire HotSync process from working properly.

With the introduction of the CDK 3.0, Palm Computing added the Conduit Manager,
a set of functions for conduit registration and unregistration. The Conduit Manager
functions reside in a DLL called CondMgr.dll, which ships with version 3.0 and
later of the HotSync Manager. As of this writing, the HotSync Manager still uses
the Windows Registry to store conduit registration information, but the Conduit
Manager API hides the details of registration storage from developers, providing a
much cleaner and safer interface for registering conduits. Not only is it easier to use
the Conduit Manager than it is to try tiptoeing your way through the minefield of
HotSync Registry entries, it separates the act of registering and unregistering con-
duits from the method used to store registration data, so it is possible that future
versions of the HotSync Manager may not use the Windows Registry at all.

Installing Conduits Manually
When developing and testing a conduit, you can manually register and unregister it
using the Conduit Configuration tool supplied with the CDK. This tool, pictured in
Figure 17-2, provides a graphical interface for registering and unregistering conduits.

Figure 17-2: The Conduit Configuration tool

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 581

582 Part VI ✦ Synchronizing Data with the Desktop

The Conduit Configuration tool itself is an executable called CondCfg.exe, which
resides in the bin\HSM\Release and bin\HSM\Debug directories, underneath the
directory where you installed the CDK. Use the copy in the Release directory with
the release version of the HotSync Manager, and the copy in the Debug directory
when using the debug version of the HotSync Manager.

If you use the same desktop machine for both conduit development and for sync-
ing your own Palm OS handheld, be very careful when using the Conduit
Configuration tool. Improper use of the tool can cause unpredictable HotSync
behavior, preventing you from backing up your handheld’s data. Use the Conduit
Switch tool, described later in this section, to back up your HotSync registration
settings before modifying them.

The View Conduits and View Notifiers buttons in the configuration tool display the
currently registered conduits or notifier DLLs, respectively. Clicking the HotSync
Settings button brings up a dialog box, pictured in Figure 17-3, from which you may
change basic settings of the HotSync Manager itself.

Figure 17-3: The Conduit Configuration tool’s HotSync
Settings dialog box

On the main Conduit Configuration tool screen, if the list is currently displaying
conduits, clicking the Add button brings up the Conduit Information dialog box,
shown in Figure 17-4. From this dialog box, you can enter the settings for a new
conduit that you want to register.

The Conduit Type section at the top of the dialog box specifies whether the conduit
is independent (Application) or integrated as part of the Palm Desktop application
(Component). Generally, most third-party conduits are of the Application variety.

Caution

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 582

583Chapter 17 ✦ Introducing Conduit Mechanics

Figure 17-4: The Conduit Configuration
tool’s Conduit Information dialog box

The text boxes in the rest of the dialog box are pieces of registration information
for the conduit. The first three are required to properly register a conduit, while
the rest are optional. The entries are described below:

✦ Conduit. This is the file name of the conduit DLL. Without a complete path
name, the file needs to be located either in the same directory as the HotSync
Manager, or somewhere on the system path. Most conduit DLLs are placed in
the HotSync directory. If your conduit is written in Java, the DLL listed here
should be JSync.dll, which is a C++ DLL that communicates between the
HotSync Manager and the Java-based conduit. This entry is required.

✦ Creator ID. Enter the creator ID of the database or databases on the handheld
that this conduit should sync with into this text box. This entry is required
and case-sensitive.

✦ Directory. This should be the name of a directory where your conduit’s data
files will be stored. The HotSync Manager creates this directory within each
individual user’s directory, and it serves to separate your conduit’s files from
those used by other conduits. This entry is required.

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 583

584 Part VI ✦ Synchronizing Data with the Desktop

✦ File. The file name of the desktop data file with which your conduit synchro-
nizes goes here. Without a complete path, this file is assumed to be in the
conduit’s Directory, entered above. This entry is optional, because your con-
duit might synchronize with more than one file on the desktop; the File entry
is provided as a convenience for conduits based on the Palm MFC or generic
base classes, which use this file name by default for the desktop data file. This
field must contain at least one character, however, even if it is unused.

✦ Remote Database. This should be the name of the database on the handheld,
which the conduit may use to create the database if it does not already exist.
The name is case-sensitive, and like the File entry, must contain at least
one character.

✦ Name. This entry is the display name of the conduit, which the HotSync
Manager shows in its Custom dialog box and elsewhere.

✦ Username. This entry is not currently used, but it is intended to store the
name of the user for whom this conduit is installed.

✦ Priority. Every conduit has a priority value that determines the order in which
the HotSync Manager executes conduits. This value should be from 0 to 4, with
2 being the normal value for most conduits. The HotSync Manager runs conduits
with lower values in the Priority field before conduits with higher values in this
field. For example, a priority 1 conduit runs before one with priority 3.

✦ Information. This entry is used to display extra information to the user if
there is a conflict between your conduit and another that wishes to access
the same database on the handheld. A conduit installer might display this
string and ask the user which of two conflicting conduits should be permitted
to handle a particular database.

The two entries under Java Information are for Java-based conduits. See the CDK
for Windows, Java Edition, for more information.

Back on the main Conduit Configuration tool screen again, clicking the Details but-
ton also brings up the Conduit Information dialog box, but with certain fields dis-
abled. The conduit currently selected in the main screen’s list is displayed. You
can edit many of the registration entries for an installed conduit in this way.

To uninstall a conduit, select it from the list in the main screen, and then click Delete.
In the confirmation dialog box that appears, click OK to delete the conduit’s registra-
tion entries. Note that this does not delete the actual DLL file, only its registration
with the HotSync Manager.

Any changes you make using the Conduit Configuration tool will not take effect
until you restart the HotSync Manager.

Backing up and restoring HotSync configurations
Because changes made using the Conduit Configuration tool can potentially cause
strange things to happen during a HotSync operation, it is a good idea to back up a
working HotSync configuration before making changes so that you can restore it

Note

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 584

585Chapter 17 ✦ Introducing Conduit Mechanics

later if necessary. Being able to save different configurations is also useful during
development if you want to quickly switch back and forth between saved states to
try out different scenarios.

The CDK comes with a command-line tool for easily making backups of the HotSync
Manager’s registration settings and restoring them again later. The Conduit Switch
tool, an executable called CondSwitch.exe, is located in the bin\HSM\Release
directory under the directory where you installed the CDK. To save the current
HotSync configuration to a file, call the Conduit Switch tool with the following
parameters:

CondSwitch -b backup_file.txt

Later, when you want to restore a configuration you saved earlier, use this syntax:

CondSwitch -d -i backup_file.txt

Just as in the Conduit Configuration tool, any changes you make to the HotSync
configuration with the Conduit Switch tool will not take effect until you restart the
HotSync Manager. To save time, you can tack the -r switch onto the CondSwitch
command line to restart the HotSync Manager.

Creating Automatic Conduit Installations
Because your conduit’s users do not have access to the Conduit Configuration tool
(nor should they!), whatever program you use to install your conduit must take care
of registering and unregistering your conduit at installation and de-installation time.
The CDK for Windows contains a sample install script for version 5.5 of the popular
InstallShield Professional program, which you can modify for your own conduit.

The InstallShield sample included with the CDK does not work with the free ver-
sion of InstallShield that comes with Microsoft Visual C++. The free edition cannot
call functions in a DLL, an action that is required for proper conduit registration.

If you want to create your own installation program, you will need to use the Conduit
Manager API, contained in CondMgr.dll, to register or unregister your conduit. The
first hurdle you must clear during installation is finding the CondMgr.dll file.

Finding CondMgr.dll
One of the benefits of using a DLL to store the Conduit Manager functions is that if
Palm Computing decides to change the way it stores conduit registration informa-
tion, it can simply replace CondMgr.dll with a new version, and your installation
program will be none the wiser. Unfortunately, Palm Computing does not install the
DLL in the Windows system folder, where it would be easily accessible. Instead,
CondMgr.dll is in the same directory as the HotSync Manager executable.

Note

Note

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 585

586 Part VI ✦ Synchronizing Data with the Desktop

Finding the location of the HotSync Manager and all the core Palm Computing pro-
grams is actually very simple: Use the CmGetCorePath function from the Conduit
Manager. However, this function, as you may have already guessed, is located in
CondMgr.dll with the rest of the Conduit Manager API. This makes CmGetCorePath
somewhat difficult to use, because the point of this whole exercise is to find the
location of the CondMgr.dll file itself.

The way to solve this problem is to include a copy of CondMgr.dll with your instal-
lation program. That way, the installer can call CmGetCorePath from its local copy
of CondMgr.dll to find out where the “real” CondMgr.dll is located, and then use
the up-to-date copy to register the conduit. The sequence of events your installer
should follow looks like this:

1. Look for CondMgr.dll on the system path and use that version if you find it,
because it is probably from a more recent version of the Palm Desktop software
than the version you are shipping with your conduit.

2. If CondMgr.dll is not on the path, use the CmGetCorePath function from the
version bundled with your installer to find where the Palm Desktop is installed,
and look in that directory for CondMgr.dll. Use this version if it exists, because
it might be newer than the version included with your installer.

3. If you still cannot find CondMgr.dll in the Palm Desktop’s directory, use the
copy included with your installer. You may have to do this if the Palm Desktop
software installed on the user’s computer is older than version 3.0, because
CondMgr.dll did not ship with earlier versions of the Palm Desktop.

Registering with the Conduit Manager
Once you have located CondMgr.dll, you can call its functions to register your
conduit. There are two basic ways to accomplish this task:

✦ Build an installation structure and call a single function to register the conduit.

✦ Call many individual functions to set configuration entries for the conduit.

The first technique uses a CmConduitType structure with the CmInstallConduit
function. The CmConduitType structure looks like this:

typedef struct {
int iStructureVersion;
int iStructureSize;
int iType;
char szCreatorID[CREATOR_ID_SIZE];
DWORD dwPriority;
int iConduitNameOffset;
int iDirectoryOffset;
int iFileOffset;
int iRemoteDBOffset;

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 586

587Chapter 17 ✦ Introducing Conduit Mechanics

int iUsernameOffset;
int iTitleOffset;
int iInfoOffset;

} CmConduitType;

All of the various Offset fields in this structure specify the offset in bytes from
the beginning of the structure to the first character of a string value. This method
of storing strings saves some space, because it does not need to store empty string
values for those entries that you do not wish to include in your call to CmInstall
Conduit. When you allocate space for a CmConduitType structure, make sure to
include memory for the string values themselves.

The CmInstallConduit function takes a handle to a CmConduitType structure:

int CmInstallConduit (HANDLE hStruct)

The alternative, and much simpler, method of installing a conduit is to call individual
functions to set the various registration entries. First, you need to call CmInstall
Creator to set the creator ID that your conduit is registered to handle:

int CmInstallCreator (const char *pCreator, int iType)

For iType, specify the constant value CONDUIT_APPLICATION; pCreator should
point to a string containing the creator ID to register.

After calling CmInstallCreator, you can call other functions, in any order you like,
to set other registration entries:

✦ CmSetCreatorName. This function sets the file name of the conduit DLL, and
it corresponds to the Conduit field in the Conduit Configuration tool.

✦ CmSetCreatorDirectory. This function sets the conduit’s data directory.

✦ CmSetCreatorFile. This function sets the file name the conduit uses to store
desktop data.

✦ CmSetCreatorRemote. This function sets the name of the database on the
handheld that should be created if it does not already exist; it corresponds
to the Remote Database field in the Conduit Configuration tool.

✦ CmSetCreatorTitle. This function sets the display name for the conduit;
it corresponds to the Name field in the Conduit Configuration tool.

✦ CmSetCreatorUser. This function sets the user name for which this conduit was
installed; it corresponds to the Username field in the Conduit Configuration tool.

✦ CmSetCreatorPriority. This function sets the conduit’s priority.

✦ CmSetCreatorInfo. This function sets the conflict-resolution information
string for the conduit; it corresponds to the Info field in the Conduit
Configuration tool.

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 587

588 Part VI ✦ Synchronizing Data with the Desktop

All of these functions take, as their first argument, a pointer to a string containing
the creator ID that the conduit is registered to handle. For example, here is the
prototype for the CmSetCreatorName function:

int CmSetCreatorName(const char *pCreatorID,
const TCHAR *pConduitName)

Unregistering with the Conduit Manager
In the uninstall portion of your conduit’s installation program, cleanly uninstall the
conduit by calling the CmRemoveConduitByCreatorID function:

int CmRemoveConduitByCreatorID(const char *pCreatorID)

The CmRemoveConduitByCreatorID function removes all the conduits registered
under the creator ID you supply and returns the number of conduits removed.

In the current implementation of CmRemoveConduitByCreatorID, the return
value is always 1 if there is no error, because the HotSync Manager will allow only
one conduit per creator ID.

Logging Actions in the HotSync Log
The HotSync Manager keeps a log of its actions, along with certain errors it might
encounter, in a text file on the desktop computer, as well as a smaller version of the
log accessible from the HotSync application on the handheld. Although the HotSync
Manager does not actually write out the log file until after it has run all its conduits,
the Sync Manager API provides a number of functions to allow conduits to add their
own messages to the log. The HotSync Manager appends its own messages, and
those added by conduits, to the end of the log file. To keep the HotSync log file from
becoming too large, the HotSync Manager also trims the log file so that it only con-
tains information about the ten most recent HotSync operations.

By default, the log file generated by the HotSync Manager is called HotSync.log,
and it resides in the current user’s directory on the desktop.

The simplest function for adding a message to the log is LogAddEntry, which has
the following prototype:

long LogAddEntry (LPCTSTR pszEntry, Activity act,
BOOL bTimeStamp)

The pszEntry parameter is a pointer to a null-terminated string containing the text
that should be entered into the log. If bTimeStamp is TRUE, LogAddEntry appends
a timestamp to the log entry. The act parameter specifies the kind of activity that
you want to log, which must be a member of the Activity enumerated type.
Table 17-1 contains descriptions of most of the activity constants.

Note

Note

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 588

589Chapter 17 ✦ Introducing Conduit Mechanics

Table 17-1
Activity Logging Constants

Constant Description

slArchiveFailed An archive operation failed.

slCategoryDeleted A category was deleted.

slChangeCatFailed Changing the category of a record failed.

slDateChanged The date was changed.

slDoubleModify A record was modified on both the desktop
and the handheld.

slDoubleModifyArchive A record that was modified on both desktop
and the handheld was archived.

slDoubleModifySubsc A file link record was modified on the desktop.

slFileLinkCompleted File link processing has finished.

slLocalAddFailed Adding a record to the desktop failed.

slLocalSaveFailed Saving the desktop data file failed.

slRecCountMismatch The number of records on the desktop and the
number of records on the handheld do not match.

slRemoteAddFailed Adding a record to the handheld failed.

slRemoteChangeFailed Changing a record on the handheld failed.

slRemoteDeleteFailed Deleting a record from the handheld failed.

slRemotePurgeFailed Purging a record from the handheld failed.

slRemoteReadFailed Reading a record on the handheld failed.

slResetFlagsFailed Resetting synchronization flags failed.

slSyncAborted Synchronization was aborted.

slSyncFinished The synchronization operation completed successfully.

slSyncStarted The synchronization operation started.

slText Indicates a simple text entry.

slTooManyCategories The maximum number of categories has already
been reached.

slWarning Logs a warning.

slXMapFailed The position cross-map function failed.

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 589

590 Part VI ✦ Synchronizing Data with the Desktop

Most of the time, you will need to use only five of the activity logging constants:

✦ slSyncStarted. Call LogAddEntry with this constant and an empty string
when your conduit first starts up:

LogAddEntry(“”, slSyncStarted, FALSE);

✦ slSyncAborted. Use this constant if your conduit encounters an error that
forces it to quit synchronization:

LogAddEntry(“MyConduit”, slSyncAborted, FALSE);

✦ slSyncFinished. This constant signals to the log that your application
successfully completed its synchronization:

LogAddEntry(“MyConduit”, slSyncFinished, FALSE);

✦ slWarning. When this activity constant is specified, the HotSync Manager
displays a dialog box at the end of the HotSync operation to alert the user
that there are messages of interest in the log. This constant should be used
to warn the user about errors that did not cause the conduit to abort.

✦ slText. Use this constant to add a simple message to the log without alerting
the user at the end of the HotSync process. This constant is a good choice to
use if you want to quietly add diagnostic information to the HotSync log that
you could later use in resolving possible synchronization bugs in your con-
duit. These messages do not require immediate attention from the user, but
if the user has problems with your conduit, you can look through the user’s
HotSync log and find out exactly what your conduit was doing when the
problem occurred.

Besides LogAddEntry, there is a LogAddFormattedEntry function; it allows you
to use standard C sprintf format specifiers to format a log entry. The LogAdd
FormattedEntry function has the following prototype:

long LogAddFormattedEntry (Activity act, BOOL bTimeStamp,
const char* dataString, ...);

Use the dataString parameter the same way you would use the format specifier
for a sprintf call:

LogAddFormattedEntry(slWarning, false,
“%d terrible things happened during synchronization.”,
nTerrible);

You can also find out how many errors were logged using LogTestCounters, which
has the following prototype:

WORD LogTestCounters()

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 590

591Chapter 17 ✦ Introducing Conduit Mechanics

This function simply returns the number of error entries in the log, or 0 if the log
contains no errors. The following activity constants do not count as errors for the
purposes of the LogTestCounters function:

✦ slSyncAborted

✦ slSyncFinished

✦ slSyncStarted

✦ slText

The LogTestCounters function treats every other type of log entry as an error and
adds it to its return value.

Internally, this function is how the HotSync Manager determines whether or not to
display a dialog box to the user mentioning the presence of messages in the
HotSync log. Although explicit use of the slWarning constant will trigger the dia-
log box, any of the other entry types that LogTestCounters counts will also cause
the dialog box to be displayed.

Summary
In this chapter, you learned some of the basics of how conduits work, as well as the
mechanical aspects of installing conduits and logging their actions to the HotSync
log. After reading this chapter, you should understand the following:

✦ A conduit is a code module that the HotSync Manager calls to synchronize
data between a handheld application and a data source on the desktop.

✦ The four types of synchronization a conduit can perform, from most complex
to least, are transaction-based, mirror image, one-directional, and backup.

✦ There are three basic paths to developing a conduit: starting with the Palm
MFC Base Classes, starting with the Palm Generic Conduit Base Classes, or
calling Sync Manager API functions directly.

✦ During development, you can manually install conduits using the Conduit
Configuration tool, and you can use the Conduit Switch tool to save backups
of your configurations and restore them later on.

✦ To provide for smooth installation of a conduit, your conduit’s install program
needs to register the conduit using the Conduit Manager API.

✦ You can add entries to the HotSync log with the LogAddEntry and LogAdd
FormattedEntry functions.

✦ ✦ ✦

Note

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 591

4676-7 ch17.f.qc 9/29/00 12:58 PM Page 592

Building
Conduits

No matter which set of base classes you decide to use
for your conduit, or even if you decide to forgo using

the base classes at all and use the Sync Manager API directly,
the Conduit Development Kit for Windows provides one easy
way to start any conduit project: the Conduit Wizard. The
Conduit Wizard is installed in Visual C++ when you install
the rest of the CDK for Windows.

You do not have to use the Conduit Wizard to build a
conduit in Visual C++, but it certainly saves you a lot of
time and frustration to let the wizard generate boilerplate
code for you to fill in. If you really need to start from
scratch (or if pain is something you enjoy), you can build a
conduit DLL without the wizard, but be sure to build it as
a regular DLL, not as an extension DLL.

Using the Conduit Wizard
To create a new conduit project in Visual C++ using the
Conduit Wizard, select File ➪ New. The New dialog box,
pictured in Figure 18-1, appears.

Select the Projects tab in the dialog box, then select “Palm
Conduit Wizard (dll)” from the list of available project types.
Enter a name for your project in the Project name text box,
then enter an appropriate path for the project in the Location
text box. Click the OK button when you have set everything to
your satisfaction.

Note

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using the Conduit
Wizard

Implementing conduit
entry points

Using the Palm MFC
base classes

Using the Palm
generic conduit
base classes

Using the Sync
Manager API

✦ ✦ ✦ ✦

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 593

594 Part VI ✦ Synchronizing Data with the Desktop

Figure 18-1: The Visual C++ New dialog box, from which you can create
a new conduit project using the Conduit Wizard

After you click OK, the Conduit Wizard launches and begins to prompt you for
parameters that control what kind of conduit project you want to create. The
Conduit Wizard has five steps:

1. Select the type of conduit.

2. Choose a handheld application with which to synchronize.

3. Select a type of data transfer.

4. Select conduit features.

5. Confirm the classes to be created by the Conduit Wizard.

If you choose to create only conduit entry points in Step 1 instead of using the
base classes, the Conduit Wizard skips Steps 2 and 3 and proceeds straight to
feature selection in Step 4. However, because of a glitch in the Conduit Wizard, it
still displays “Step 2 of 5” and “Step 3 of 5” in its title bar for Steps 4 and 5,
respectively. This little interface eccentricity will not have any affect on the tem-
plate code generated by the wizard, but it is a little confusing.

Note

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 594

595Chapter 18 ✦ Building Conduits

Selecting a Conduit Type
Step 1 in the Conduit Wizard prompts you for the set of base classes you want to
use for building the conduit. Figure 18-2 shows the Conduit Wizard at this stage of
the process.

Figure 18-2: Conduit Wizard Step 1: conduit type selection

The Conduit Wizard presents you with three choices:

✦ Generic. Choose Generic if you want to build a conduit using the Palm
Generic Conduit Base Classes.

✦ MFC (Table Based). Select this option if you want to build a conduit using
the Palm MFC Base Classes.

✦ Conduit entry points only (no sync logic). Pick this option if you do not want
to use either set of base classes but instead merely wish to use the Conduit
Manager to generate a framework for a Sync Manager API-based conduit.

Click Next to proceed to the next step or Back to return to the New dialog box.

Choosing a Handheld Application
From Step 2, pictured in Figure 18-3, you can choose with which handheld
application the conduit interfaces.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 595

596 Part VI ✦ Synchronizing Data with the Desktop

Figure 18-3: Conduit Wizard Step 2: handheld application selection

The Conduit Wizard can generate code for connecting to any of the four main Palm
OS ROM applications, or it can assemble a framework for you to fill in for synchro-
nization with your own custom handheld applications. The options presented by
the handheld application selection screen are as follows:

✦ Palm Address Book. Synchronize with the Address Book application.

✦ Palm Date Book. Synchronize with the Date Book application.

✦ Palm Memo Pad. Synchronize with the Memo Pad application.

✦ Palm Todo List. Synchronize with the To Do List application. This option
is not available if you selected Generic in Step 1.

✦ Other (you have to fill in). Synchronize with a custom application. This
option is for MFC conduits only and is not available if you selected Generic
in Step 1.

✦ Generic (will sync any app). Synchronize with a custom application. This
option is for generic conduits only and is not available if you selected MFC
(Table Based) in Step 1. In addition, when you select this option you may
also select the Subclass PCMgr (allows custom file format) check box, which
allows you to implement your own storage format on the desktop. Without
this box checked, the code generated by the Conduit Wizard saves to the
same MFC serialized format as an MFC conduit, so checking the box is impor-
tant if you want to synchronize with a different data source on the desktop.

Click Next to proceed to the next step or Back to return to Step 1.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 596

597Chapter 18 ✦ Building Conduits

Selecting a Data Transfer Type
Step 3 in the Conduit Wizard, shown in Figure 18-4, allows you to choose what type
of data transfer you want in your conduit.

Figure 18-4: Conduit Wizard Step 3: data transfer selection

The choices available in this step are described below:

✦ Two-way mirror image synchronization. If you select this option, the
Conduit Wizard creates code to implement mirror image synchronization
between the desktop and handheld, as described in Chapter 17, “Introducing
Conduit Mechanics.” This is by far the easiest way to add mirror image syn-
chronization to a conduit, because the base classes can take care of all the
ugly details of resolving record conflicts without your having to write a
single line of code.

✦ Upload from the organizer. With this option selected, the code produced by
the Conduit Wizard is geared toward retrieving information from the handheld
and storing it on the desktop, probably performing some kind of operation on
the data in the process.

If you are interested only in backing up data from the handheld application, rely
on the standard Backup conduit instead of building a conduit with the Upload
from the organizer data transfer option. You need to use this option only if you
want to convert the data to another format before storing it on the desktop. For
example, if you want your handheld application’s data to be stored in a Microsoft
Access database on the desktop computer, you should use the Upload from the
organizer option.

Note

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 597

598 Part VI ✦ Synchronizing Data with the Desktop

✦ Download to the organizer. This option creates application code that moves
data from the desktop computer to the handheld. If your data may be modified
only on the desktop computer and then transferred to the handheld, this is a
good option to select.

✦ Custom. Select this option if the other options listed above do not suit your
application.

Click Next to proceed to the next step or Back to return to Step 2.

Selecting Conduit Features
Step 4 in the Conduit Wizard, pictured in Figure 18-5, allows you to add optional
features to your conduit.

Figure 18-5: Conduit Wizard Step 4: feature selection

Depending on your selections in Steps 1 and 2, some of the features listed in
Step 4 may not be available, in which case they will be grayed out in the dialog
box. Others may be required by the conduit type and application, and they will be
grayed out but checked, to indicate that you cannot tell the Conduit Wizard to skip
making code for that feature. The features are:

✦ Category support. If this feature is selected, the Conduit Wizard generates
code to synchronize the standard system of record categories used by many
Palm OS applications.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 598

599Chapter 18 ✦ Building Conduits

✦ Archiving. Selecting Archiving causes the Conduit Wizard to add support for
archiving deleted and modified records to a separate file from the normal
desktop data source.

✦ Sync action configuration dialog box. Select this option to have the wizard
add code implementing a standard conduit configuration dialog box, pictured
in Figure 18-6. This dialog box appears when the user chooses the Custom
option in the HotSync Manager’s menu, and it allows the user to change how
the conduit synchronizes its data.

Figure 18-6: The standard Change HotSync Action
dialog box, which allows the user to modify a
conduit’s actions during a HotSync operation

✦ File linking. If this option is selected, the Conduit Wizard adds functions
to support file linking into your conduit project. File linking is a way to auto-
matically update handheld data from a file on the desktop. For example, you
could link a handheld application to an address database kept on the desktop;
changes made to the desktop database would then be made automatically to
the handheld application’s data during every HotSync operation. A file link
updates data in only one category of the handheld database.

Click Next to proceed to the next step or Back to return to Step 3.

Confirming Class and File Names
The final step in the Conduit Wizard, shown in Figure 18-7, allows you to customize
the names of classes and files generated by the wizard.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 599

600 Part VI ✦ Synchronizing Data with the Desktop

Figure 18-7: Conduit Wizard Step 5: class and file name
confirmation

By default, the Conduit Wizard creates class and file names based on the project
name you supplied when you first started the wizard. Sometimes, these names can
be somewhat unwieldy to use when actually programming the conduit, so this step
gives you an opportunity to change the names to something more aesthetically
pleasing or mnemonic.

To change a class, header file, or implementation file name, select a class name from
the list at the top of the dialog box. Modify the names in the Class name, Header file,
and Implementation file text boxes. When you have altered the names to your taste,
click Finish to proceed to the New Project Information dialog box, shown in Figure
18-8. You may also click Back to return to Step 4.

The New Project Information dialog box summarizes the classes and files that the
Conduit Wizard will create, and it also lists the options you select for the project.
Verify that everything is set up the way you want it, then click OK to actually create
the new conduit project. If you find that you would like to change something, click
Cancel, and Visual Studio will return you to the Conduit Wizard so you can make
changes to the project. You will not lose the changes you have already made if
you click Cancel.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 600

601Chapter 18 ✦ Building Conduits

Figure 18-8: The New Project Information dialog box

Implementing Conduit Entry Points
Now that you have created an application framework with the Conduit Wizard,
you can get to the actual work of coding your conduit. Whether you use the base
classes or not, every conduit has certain entry points that you must implement,
and several that are optional if you want to add other features to your conduit.
The following four functions are required entry points to any conduit:

✦ GetConduitInfo. This function returns various bits of information about the
conduit, including its name, whether MFC is used to build the conduit, and
the conduit’s default action.

✦ GetConduitName. This function returns the name of the conduit.

✦ GetConduitVersion. This function returns the version number of the conduit.

✦ OpenConduit. This function is the main entry point into the conduit. When
the HotSync Manager needs to call a conduit to perform synchronization, it
calls the conduit’s OpenConduit function.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 601

602 Part VI ✦ Synchronizing Data with the Desktop

In addition to the required entry points, you will need to implement additional
functions to provide certain features in your conduit:

✦ ConfigureConduit and CfgConduit. These two functions serve an identical
purpose, which is to display a configuration dialog box to allow the user to
customize how the conduit synchronizes its data. The CfgConduit function
is a newer version of the ConfigureConduit function that provides more
data to your conduit; CfgConduit is available in version 3.0 and later of
the HotSync Manager.

✦ ConfigureSubscription. This function allows the HotSync Manager to retrieve
file-linking details from your conduit.

✦ ImportData. This function loads data from a linked file and displays a dialog
box allowing the user to choose how fields should be mapped between the
linked file and the data source.

✦ SubscriptionSupported. The HotSync Manager calls this function to determine
if a conduit supports file linking.

✦ UpdateTables. This function updates a desktop data source with information
from a file-linking operation, such as changes to category names.

External entry points to a conduit DLL, just like any DLL entry point built with
Visual C++, must have a return type of __declspec(dllexport). One of the
header files created by the Conduit Wizard provides a bit of syntactic sugar for
this unwieldy expression:

#define ExportFunc __declspec(dllexport)

All of the entry point functions generated by the Conduit Wizard are declared
with an ExportFunc return type.

Implementing GetConduitInfo
The Conduit Wizard generates all of the code you will normally need for the
GetConduitInfo, GetConduitName, and GetConduitVersion functions. For the
most part, you should not have to customize these functions. Instead, you should
customize some of the strings in the string table created by the Conduit Wizard.
Click the ResourceView tab in the Visual C++ workspace toolbar, then find the
String Table resource and double-click it to view the strings in the conduit project.
Figure 18-9 shows the string table open for editing.

The two strings you should modify are IDS_CONDUIT_NAME, at the top of the list,
and IDS_SYNC_ACTION_TEXT, at the bottom of the list. The IDS_CONDUIT_NAME
string is simply the name of your conduit, as it will appear in the HotSync
Manager’s Custom dialog box (pictured in Figure 18-10) and in the HotSync log.
Typically, this will be the same as the name of the handheld application with
which the conduit synchronizes.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 602

603Chapter 18 ✦ Building Conduits

Figure 18-9: The string table in a typical Conduit Wizard–generated project

Figure 18-10: The HotSync Manager’s Custom dialog box

The IDS_SYNC_ACTION_TEXT string appears in the default configuration dialog
box (see Figure 18-6) that the Conduit Wizard provides if you select the Sync action
configuration dialog box feature during Step 4 of the Conduit Wizard. You should
set this string to something like HotSync Action for MyApp, where MyApp is the
name of your application.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 603

604 Part VI ✦ Synchronizing Data with the Desktop

Once you have the string table set up properly, you need only to alter
GetConduitInfo, GetConduitName, and GetConduitVersion if you want to
make them return information other than just information from the string
table. Here is the wizard-generated GetConduitInfo function:

ExportFunc long GetConduitInfo (ConduitInfoEnum infoType,
void *pInArgs, void *pOut,
DWORD *pdwOutSize)

{
if (!pOut)

return CONDERR_INVALID_PTR;
if (!pdwOutSize)

return CONDERR_INVALID_OUTSIZE_PTR;

switch (infoType) {
case eConduitName:

if (!pInArgs)
return CONDERR_INVALID_INARGS_PTR;

ConduitRequestInfoType *pInfo;
pInfo = (ConduitRequestInfoType *)pInArgs;
if ((pInfo->dwVersion !=

CONDUITREQUESTINFO_VERSION_1) ||
(pInfo->dwSize != SZ_CONDUITREQUESTINFO))
return CONDERR_INVALID_INARGS_STRUCT;

if (!::LoadString((HINSTANCE)hLangInstance,
IDS_CONDUIT_NAME,
(TCHAR*)pOut, *pdwOutSize))

return CONDERR_CONDUIT_RESOURCE_FAILURE;
break;

case eDefaultAction:
if (*pdwOutSize != sizeof(eSyncTypes))

return CONDERR_INVALID_BUFFER_SIZE;
(*(eSyncTypes*)pOut) = eFast;
break;

case eMfcVersion:
if (*pdwOutSize != sizeof(DWORD))

return CONDERR_INVALID_BUFFER_SIZE;
(*(DWORD*)pOut) = MFC_NOT_USED;
break;

default:
return CONDERR_UNSUPPORTED_CONDUITINFO_ENUM;

}
return 0;

}

The GetConduitInfo function must deal with three possible requests for information:

✦ eConduitName— a request for the name of the conduit

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 604

605Chapter 18 ✦ Building Conduits

✦ eDefaultAction— a request for the conduit’s default action, expressed as
a member of the eSyncTypes enumerated type

✦ eMfcVersion— a request for the version of MFC used to build the conduit

Boilerplate code generated by the Conduit Wizard for GetConduitInfo returns
the IDS_CONDUIT_NAME string when GetConduitInfo receives an eConduitName
request, and it returns eFast as the default action for the conduit. The eSyncTypes
enumerated type, defined in the CDK header file syncmgr.h, looks like this:

enum eSyncTypes {eFast,
eSlow,
eHHtoPC,
ePCtoHH,
eInstall,
eBackup,
eDoNothing,
eProfileInstall,
eSyncTypeDoNotUse=0xffffffff

};

If your application should perform a default action other than a FastSync, simply
replace the eFast constant in GetConduitInfo with the appropriate eSyncTypes
constant. For example, if your conduit only backs up a handheld application’s
data to a database on the desktop computer, you should choose eBackup.

If you used the Conduit Wizard to generate an MFC conduit, the GetConduitInfo
function will return different values in response to an eMfcVersion request than
if you used the Conduit Wizard to create a conduit based on the Palm Generic
Conduit Classes. These values are defined as follows in the CDK header file
Condapi.h:

#define MFC_VERSION_41 0x00000410
#define MFC_VERSION_50 0x00000500
#define MFC_VERSION_60 0x00000600
#define MFC_NOT_USED 0x10000000

The versions in these constants correspond to the version of Visual C++ that MFC
shipped with, not the version number included in the MFC libraries themselves.

Implementing GetConduitName
The default GetConduitName function provided by the Conduit Wizard merely
returns the IDS_CONDUIT_NAME string:

ExportFunc long GetConduitName (char* pszName, WORD nLen)
{

long retval = -1;

Note

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 605

606 Part VI ✦ Synchronizing Data with the Desktop

if (::LoadString((HINSTANCE)hLangInstance,
IDS_CONDUIT_NAME, pszName, nLen))

retval = 0;

return retval;
}

Implementing GetConduitVersion
The GetConduitVersion function is even simpler than GetConduitName, returning
a constant from one of the conduit project’s header files; the following code from a
wizard-generated generic conduit implements GetConduitVersion:

ExportFunc DWORD GetConduitVersion()
{

return GENERIC_CONDUIT_VERSION;
}

Within the DWORD value you return from GetConduitVersion, you must pack the
major version number in the high byte of the return value’s low word, and the
minor version number goes into the low byte of the low word. For example, a
standard generic conduit created by the Conduit Wizard defines the following
constant, equivalent to a version number of 1.2:

#define GENERIC_CONDUIT_VERSION 0x00000102

Never use a conduit version of 0x00000100 (1.0). Although it seems intuitive for
a new conduit to have a version of 1.0, there is a bug in version 2.x of the Palm
Desktop software that prevents any conduit from running with a version of 1.0.
This affects all Macintosh Palm Desktop users. The default version constant
provided by the Conduit Wizard is 0x00000101, which you should leave alone
until you need to increment your conduit’s version number.

Implementing OpenConduit
The OpenConduit function is responsible for actually performing synchronization
between a specific handheld application and its desktop data source. If you used
the Conduit Wizard to create a conduit framework based on the generic or MFC
base classes, OpenConduit will already contain some code that calls base class
methods to perform the synchronization. If you used the Conduit Wizard only to
create entry points, the OpenConduit function is rather sparse, providing you with
only a placeholder to fill in with your own code:

ExportFunc long OpenConduit (PROGRESSFN pFn,
CSyncProperties& rProps)

{
long retval = -1;
if (pFn)

Caution

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 606

607Chapter 18 ✦ Building Conduits

{
// TODO - create your own custom sync class, and run it

}
return(retval);

}

The pFn argument to OpenConduit is a pointer to a callback function provided by
the HotSync Manager, which allows you to update the HotSync Manager with status
messages regarding the progress of your conduit.

None of the conduits for the four built-in applications actually makes use of the
callback, and documentation regarding it is scant at best. The MFC boilerplate gen-
erated by the Conduit Wizard assigns the function pointer to the m_pfnProgress
member of the conduit’s subclass of CBaseConduitMonitor, but it never actually
calls the function. If you feel like experimenting, the following comment from the
basemon.cpp source file, which implements the MFC CBaseConduitMonitor
class, might provide a starting place if you want to explore further:

// The Progress Callback is not currently used, but here
// is an example of how you could use it:
// char probString[64];
// memset(probString,0,sizeof(probString));
// strcpy(probString, “Joe”);
// (*m_pfnProgress)(probString);

The HotSync Manager fills the rProps argument to OpenConduit with a pointer
to a CSyncProperties object, which contains a wealth of information about the
environment in which the conduit is running. The CDK header file Syncmgr.h
defines CSyncProperties as follows:

class CSyncProperties
{
public:

eSyncTypes m_SyncType;
char m_PathName[BIG_PATH];
char m_LocalName[BIG_PATH];
char m_UserName[BIG_PATH];
char* m_RemoteName[SYNC_DB_NAMELEN];
CDbListPtr *m_RemoteDbList;
int m_nRemoteCount;
DWORD m_Creator;
WORD m_CardNo;
DWORD m_DbType;
DWORD m_AppInfoSize;
DWORD m_SortInfoSize;
eFirstSync m_FirstDevice;
eConnType m_Connection;
char m_Registry[BIG_PATH];
HKEY m_hKey;
DWORD m_dwReserved;

};

Note

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 607

608 Part VI ✦ Synchronizing Data with the Desktop

Table 18-1 describes the data members of the CSyncProperties class.

Table 18-1
CSyncProperties Data Members

Member Description

m_SyncType Current synchronization type.

m_PathName Pathname that precedes files on the desktop computer.

m_LocalName File name of the data source on the desktop.

m_UserName User name used for this HotSync operation.

m_RemoteName An array of names of databases on the handheld to
synchronize with.

m_RemoteDbList Pointer to a CDbList class that contains further information
about the remote databases, including various status flags and
modification dates.

m_nRemoteCount Number of databases on the handheld that should be synchronized

m_Creator Creator ID of the handheld databases.

m_CardNo Card number containing the handheld databases.

m_DbType Database type for databases on the handheld.

m_AppInfoSize Size of the handheld database’s application info block, stored here
for convenience.

m_SortInfoSize Size of the handheld database’s sort info block, stored here for
convenience.

m_FirstDevice Specifies if this is the first time this particular desktop or handheld
has been synchronized, using the eFirstSync enumerated type,
which has the following possible values: eNeither, ePC, and eHH.

m_Connection Connection medium used for this HotSync operation. This value
comes from the eConnType enumerated type, which has the
following possible values: eCable and eModemConnType.

m_Registry Full Windows Registry path for the conduit.

m_hKey Primary Windows Registry key for the conduit.

m_dwReserved Reserved for future use. Set this field to NULL before using a
CSyncProperties object.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 608

609Chapter 18 ✦ Building Conduits

Within the OpenConduit function, you should create a new instance of whatever
class you are using to implement synchronization logic, call an appropriate method
of that class to begin the actual synchronization process, then delete the object. If
you are working from a bare bones conduit with only the entry points created by
the Conduit Wizard, you have your work cut out for you. If you are using either
the generic or MFC base classes, the Conduit Wizard will have already filled in the
appropriate code for the OpenConduit function. In a generic conduit, OpenConduit
looks like this:

ExportFunc long OpenConduit (PROGRESSFN pFn,
CSyncProperties& rProps)

{
long retval = -1;
if (pFn)
{

CLibCondSync* pGeneric;
pGeneric = new CLibCondSync(rProps,

GENERIC_FLAG_CATEGORY_SUPPORTED |
GENERIC_FLAG_APPINFO_SUPPORTED);

if (pGeneric){
retval = pGeneric->Perform();

delete pGeneric;
}

}
return(retval);

}

An MFC-based conduit has the following OpenConduit implementation:

ExportFunc long OpenConduit (PROGRESSFN pFn,
CSyncProperties& rProps)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState());
long retval = -1;
if (pFn)
{

CLibCondMonitor* pMonitor;

pMonitor = new CLibCondMonitor(pFn, rProps, myInst);
if (pMonitor)
{

retval = pMonitor->Engage();

delete pMonitor;
}

}
return(retval);

}

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 609

610 Part VI ✦ Synchronizing Data with the Desktop

Calling the AFX_MANAGE_STATE macro at the start of each exported function in
an MFC DLL is required for the DLL to function properly. The Conduit Wizard puts
the macro in the proper places when it generates a framework for your conduit,
and you should not delete any occurrence of AFX_MANAGE_STATE.

The “Using Palm MFC base classes” and “Using Generic Conduit base classes”
sections later in this chapter provide more details about customizing the base
classes so that they will perform appropriate actions for your own conduits.

Implementing Configuration Entry Points
The ConfigureConduit and CfgConduit entry points allow the user to change
how the conduit synchronizes its data. You can think of the dialog box displayed
by these functions as a control panel from which the user can not only select
synchronization types (such as choosing between “Synchronize the files” and
“Do nothing”) but also change any other settings that might be specific to your
own conduit (like setting paths to other files that your conduit might need on
the desktop).

Although doing so is not strictly required, you should implement Configure
Conduit or CfgConduit in every conduit, because without one of these functions,
nothing happens when the user tries to configure the conduit from the HotSync
Manager’s Custom dialog box (see Figure 18-10). At the very least, you should
display a dialog box explaining that there is nothing to configure in your conduit,
or perhaps just display an About box.

The CfgConduit function is a newer version of ConfigureConduit, which Palm
Computing added with the introduction of version 3.0 of the HotSync Manager. When
the user chooses to change a conduit’s HotSync action, 3.0 and later versions of
the HotSync Manager attempt to call CfgConduit first; if that function is not imple-
mented, the HotSync Manager tries to call ConfigureConduit. Earlier versions of
the HotSync Manager call only ConfigureConduit.

If you used the Conduit Wizard to generate a generic conduit, or only conduit
entry points, the boilerplate code already contains a default dialog box resource
(IDD_CONDUIT_ACTION) and the code to implement it in CfgConduit and
ConfigureConduit. Figure 18-11 shows IDD_CONDUIT_ACTION as it appears
in the Visual C++ resource editor.

Note

Note

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 610

611Chapter 18 ✦ Building Conduits

Figure 18-11: The IDD_CONDUIT_ACTION resource generated by
the Conduit Wizard

The IDD_CONDUIT_ACTION dialog box is a good starting point if you want to offer the
user more, or possibly fewer, configuration options for your conduit. All you need to
do is modify the resource, then add code to CfgConduit and ConfigureConduit to
implement user interaction with the new dialog box. The base code for the wizard-
generated ConfigureConduit function in generic and bare bones conduits looks
like this:

ExportFunc long ConfigureConduit (CSyncPreference& pref)
{

long nRtn = -1;
CfgConduitInfoType cfg;
cfg.dwVersion = CFGCONDUITINFO_VERSION_1;
cfg.dwSize = sizeof(CfgConduitInfoType);
cfg.dwCreatorId = 0;
cfg.dwUserId = 0;
memset(cfg.szUser , 0, sizeof(cfg.szUser));
memset(cfg.m_PathName, 0, sizeof(cfg.m_PathName));
cfg.syncPermanent = pref.m_SyncType;
cfg.syncTemporary = pref.m_SyncType;
cfg.syncNew = pref.m_SyncType;
cfg.syncPref = eTemporaryPreference;

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 611

612 Part VI ✦ Synchronizing Data with the Desktop

int iResult;
iResult = DialogBoxParam((HINSTANCE)hLangInstance,

MAKEINTRESOURCE(IDD_CONDUIT_ACTION),
GetForegroundWindow(),
(DLGPROC)ConfigureDlgProc,
(LPARAM)&cfg);

if (iResult == 0) {
pref.m_SyncType = cfg.syncNew;
pref.m_SyncPref = cfg.syncPref;
nRtn = 0;

}
return nRtn;

}

A wizard-generated MFC conduit project also contains fully implemented CfgConduit
and ConfigureConduit functions. Instead of a resource that is included as part of the
project, an MFC conduit created by the Conduit Wizard uses a CHotSyncActionDlg
object, which is a descendant of the MFC CDialog class. The resulting dialog is identi-
cal to that produced by the generic conduit code, but changing the dialog requires
that you subclass CHotSyncActionDlg and make modifications there instead of
altering a dialog resource. The ConfigureConduit function in an MFC conduit
project looks like this:

ExportFunc long ConfigureConduit (CSyncPreference& pref)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState());
long nRtn = -1;
char szName[81];
CHotSyncActionDlg actDlg(CWnd::GetActiveWindow());

pref.m_SyncPref = eNoPreference;

GetConduitName(szName,80);
actDlg.m_csGroupText = szName;

switch (pref.m_SyncType) {
case eFast:
case eSlow:

actDlg.m_nActionIndex = 0;
break;

case ePCtoHH:
actDlg.m_nActionIndex = 1;
break;

case eHHtoPC:
actDlg.m_nActionIndex = 2;

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 612

613Chapter 18 ✦ Building Conduits

break;
case eDoNothing:
default:

actDlg.m_nActionIndex = 3;
}

if (actDlg.DoModal() == IDOK) {
switch (actDlg.m_nActionIndex) {

case 0:
pref.m_SyncType = eFast;
break;

case 1:
pref.m_SyncType = ePCtoHH;
break;

case 2:
pref.m_SyncType = eHHtoPC;
break;

case 3:
default:

pref.m_SyncType = eDoNothing;
break;

}

pref.m_SyncPref = (actDlg.m_bMakeDefault) ?
ePermanentPreference : eTemporaryPreference;

nRtn = 0;
}
return nRtn;

}

The pref argument that the HotSync Manager passes to ConfigureConduit is a
CSyncPreference object containing information about the current HotSync settings
for the conduit. Defined in the CDK header file Syncmgr.h, this is what the
CSyncPreference class looks like:

class CSyncPreference
{
public:

char m_PathName[BIG_PATH];
char m_Registry[BIG_PATH];
HKEY m_hKey;
eSyncPref m_SyncPref;
eSyncTypes m_SyncType;
DWORD m_dwReserved;

};

Table 18-2 describes what the data members of the CSyncPreference class mean.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 613

614 Part VI ✦ Synchronizing Data with the Desktop

Table 18-2
CSyncPreference Data Members

Member Description

m_PathName Indicates the pathname that precedes files on the desktop computer.

m_Registry Specifies the full Windows Registry path for the conduit.

m_hKey Indicates the primary Windows Registry key for the conduit.

m_SyncPref Specifies whether the user’s selected synchronization preferences
should be applied temporarily (on the next HotSync action only)
or permanently. This field uses the eSyncPref enumerated
type, which can have the following values: eNoPreference,
ePermanentPreference, or eTemporaryPreference.

m_SyncType Specifies the synchronization type using a constant from the
eSyncTypes enumerated type.

m_dwReserved Reserved for future use. Set this field to NULL before using a
CSyncPreference object.

Not only does the CSyncPreference object serve to provide the ConfigureConduit
function with information it needs, CSyncPreference also returns values to the
HotSync Manager in response to changes the user makes to the conduit’s settings.
In particular, the m_SyncPref and m_SyncType members of CSyncPreference
should be set to appropriate values before returning from ConfigureConduit.

The CfgConduit function allows later versions of the HotSync Manager to pass
more data to the conduit than can be done through the ConfigureConduit function.
Instead of passing data through a CSyncPreference object, CfgConduit accepts a
CfgConduitInfoType structure. Here is the prototype for CfgConduit:

long CfgConduit (ConduitCfgEnum cfgType, void *pArgs,
DWORD *pdwArgsSize);

The first argument to CfgConduit indicates what version of the CfgConduit function
the HotSync Manager is attempting to call, as defined by the ConduitCfgEnum enu-
merated type. As of this writing, there is only one version of the CfgConduit func-
tion, which you should specify using the eConfig1 constant.

The pArgs argument contains a pointer to the incoming CfgConduitInfoType
structure, and pdwArgsSize is a pointer to a variable containing the size of that
structure, in bytes. Defined in the CDK header file Condapi.h, the CfgConduit
InfoType structure looks like this:

typedef struct CfgConduitInfoType {
DWORD dwVersion;
DWORD dwSize;

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 614

615Chapter 18 ✦ Building Conduits

DWORD dwCreatorId;
DWORD dwUserId;
TCHAR szUser[64];
char m_PathName[BIG_PATH];
eSyncTypes syncPermanent;
eSyncTypes syncTemporary;
eSyncTypes syncNew;
eSyncPref syncPref;

} CFGCONDUITINFO;

Table 18-3 describes the fields in the CfgConduitInfoType structure.

Table 18-3
CfgConduitInfoType Fields

Field Description

dwVersion Version number of the CfgConduitInfoType structure

dwSize Size of the CfgConduitInfoType structure

dwCreatorId Creator ID of the handheld application this conduit is registered
to handle

dwUserId User ID number for whom the conduit should be configured

szUser Name of the user for whom the conduit should be configured

m_PathName Pathname that precedes files on the desktop computer

syncPermanent Type of synchronization to perform on a permanent basis

syncTemporary Type of synchronization to perform temporarily (on the next
HotSync operation)

syncNew Type of synchronization to perform for a handheld that has never
been synchronized before

syncPref Specifies whether the user’s selected synchronization preferences
should be applied temporarily (on the next HotSync action only)
or permanently

Like the CSyncPreference class, the CfgConduitInfoType structure carries
return values back to the HotSync Manager. In particular, you should make sure
the syncPermanent, syncTemporary, and syncPref values are set appropriately
before the end of the CfgConduit function.

As an example of how to use values from the CfgConduitInfoType structure,
here is the default CfgConduit function from a generic conduit project:

ExportFunc long CfgConduit (ConduitCfgEnum cfgType,
void *pArgs, DWORD *pdwArgsSize)

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 615

616 Part VI ✦ Synchronizing Data with the Desktop

{
long nRtn = -1;
TCHAR szName[256];
DWORD dwNamesize;
ConduitRequestInfoType infoStruct;
CfgConduitInfoType *pCfgInfo;

dwNamesize = sizeof(szName);

if (!pArgs)
return CONDERR_INVALID_INARGS_PTR;

if (!pdwArgsSize)
return CONDERR_INVALID_ARGSSIZE_PTR;

if (*pdwArgsSize != SZ_CFGCONDUITINFO)
return CONDERR_INVALID_ARGSSIZE;

if (cfgType != eConfig1)
return CONDERR_UNSUPPORTED_CFGCONDUIT_ENUM;

pCfgInfo = (CfgConduitInfoType *)pArgs;
if (pCfgInfo->dwVersion != CFGCONDUITINFO_VERSION_1)

return CONDERR_UNSUPPORTED_STRUCT_VERSION;

infoStruct.dwVersion = CONDUITREQUESTINFO_VERSION_1;
infoStruct.dwSize = SZ_CONDUITREQUESTINFO;
infoStruct.dwCreatorId = pCfgInfo->dwCreatorId;
infoStruct.dwUserId = pCfgInfo->dwUserId;
strcpy(infoStruct.szUser, pCfgInfo->szUser);
nRtn = GetConduitInfo(eConduitName, (void *)&infoStruct,

(void *)szName, &dwNamesize);
if (nRtn)

return nRtn;

int iResult;
iResult = DialogBoxParam((HINSTANCE)hLangInstance,

MAKEINTRESOURCE(IDD_CONDUIT_CFG_DETAILED),
GetForegroundWindow(),
(DLGPROC)ConfigureDlgProc,
(LPARAM)pCfgInfo);

return 0;
}

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 616

617Chapter 18 ✦ Building Conduits

Understanding Native Synchronization Logic

Synchronizing two sets of records that may have been modified on both the desktop com-
puter and the handheld requires a large amount of complex logic to resolve conflicts. If the
user alters the same record in both places, or deletes the record on one platform and changes
it on another, the conduit must be sure to do the “right thing” with the data, ensuring that the
result of the sync makes sense to the user and that no data is ever lost that the user did not
explicitly delete. Writing code to handle all the possible combinations of modification on two
different devices can be sheer hell, particularly when it comes time to debug it.

Fortunately, the developers at Palm Computing have already gone through the agony of
implementing native synchronization logic in both sets of base classes. If you use the base
classes as a foundation for your conduit, you can concentrate on the details of customizing
the conduit for your handheld and desktop application data formats, instead of spending
time trying to implement your own two-way mirror synchronization code.

Because it may be helpful for you to know what is going on under the hood, the following
table describes what the native sync logic does when it encounters each possible combination
of changes that can be made to handheld and desktop records.

Record Status Record Status
on Handheld on Desktop Conduit Action

Added No record Add the handheld record to the desktop
database.

Archived Deleted Archive the handheld record, then delete the
record from both the handheld and desktop
databases.

Archived No changes Archive the handheld record, then delete the
record from both the handheld and desktop
databases.

Archived No record Archive the handheld record.

Archived and Changed Archive both the handheld record and the
changed desktop record if the changes are identical. If

the changes are not identical, do not archive
the handheld record; instead, add the
desktop record to the handheld database,
and add the handheld record to the desktop
database.

Archived, Changed Do not archive the handheld record; instead,
no changes replace it with the desktop record.

Continued

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 617

618 Part VI ✦ Synchronizing Data with the Desktop

Continued

Record Status Record Status
on Handheld on Desktop Conduit Action

Changed Archived Archive the handheld record if the changes
and changed are identical, and then delete the record from both

the handheld and desktop databases. If the changes
are not identical, do not archive the desktop record;
instead, add the desktop record to the handheld
database and add the handheld record to the
desktop database.

Changed Archived, Do not archive the desktop record; instead, replace
no changes the record in the desktop database with the handheld

record.

Changed Changed Take no action if the changes are identical. If the
changes are not identical, add the handheld record
to the desktop database and add the desktop
record to the handheld database.

Changed Deleted Do not delete the desktop record; instead, replace
the desktop record with the handheld record.

Changed No changes Replace the desktop record with the handheld
record.

Deleted Changed Do not delete the handheld record; instead, replace
the handheld record with the desktop record.

Deleted No changes Delete the record from the desktop and handheld
databases.

No changes Archived Archive the desktop record, then delete the record
from both the desktop and handheld databases.

No changes Changed Replace the handheld record with the desktop record.

No changes Deleted Delete the record from both the desktop and
handheld databases.

Keeping records in sync is not the only task a conduit implementing mirror image synchro-
nization needs to worry about. It is equally important to maintain consistency between
ategories of records on the desktop and the handheld. Like record synchronization logic,
this is rather difficult and time-consuming to code, so category syncing is also part of the
native synchronization logic.

Maintaining harmony between categories on two devices requires that the sync logic keep an
eye on each category’s name, category ID, and index location in relation to other categories.
The following table shows how the native sync logic deals with different category situations
between desktop and handheld.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 618

619Chapter 18 ✦ Building Conduits

Using the Palm MFC Base Classes
To create a conduit using the Palm MFC base classes, you must make your own
subclasses of the various base classes, then override virtual methods of those
classes to customize the conduit’s behavior for your own purposes. In order to
do all that, you need to know what the base classes are and how they interact with
one another. The following list introduces and briefly describes the base classes:

✦ CBaseMonitor. The base monitor class controls the entire synchronization
operation, creating, using, and destroying instances of the other base classes
as necessary to perform its job. In fact, the CBaseMonitor class contains, as
data members, a CBaseDTLinkConverter object, four CBaseTable objects,
and two CCategoryMgr objects. The monitor class also contains most of the
methods responsible for running the synchronization process, including the
Engage method, which OpenConduit calls to set the entire sync procedure
in motion.

Name Category ID Index Conduit Action

Desktop name matches Not applicable Desktop index Take no action.
handheld name matches handheld

index

Desktop name matches Not applicable Desktop index Change all desktop
handheld name does not match records in the category

handheld index to match the handheld’s
category ID.

Desktop name does not Desktop ID Not applicable Change the category
exist on handheld and matches name on the handheld
desktop name has been handheld ID to match the desktop.
modified

Desktop name does not Desktop ID does Desktop index is Add desktop category
exist on the handheld not exist on the not in use on the to the handheld.

handheld handheld

Desktop name does not Desktop ID does Desktop index is Add desktop category
exist on the handheld not exist on the already in use on at the next free index

handheld the handheld on the handheld,
and update desktop
records in the category
to use the new index.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 619

620 Part VI ✦ Synchronizing Data with the Desktop

✦ CBaseDTLinkConverter. A link converter object is responsible for converting
records from the handheld into their equivalent format on the desktop com-
puter. It can convert data both ways, from handheld to desktop and vice versa.

✦ CCategoryMgr. Category manager objects manage the categories to which
records belong. There are two CCategoryMgr objects in the CBaseMonitor
class, one to keep track of desktop categories and one for handheld categories.
Category managers are also present in the CBaseTable class.

✦ CBaseTable. A table object contains records in a linear format. The
CbaseMonitor class uses a number of table objects for storing records
from the desktop database, an archive copy of the desktop database, and
the handheld.

✦ CBaseIterator. Every table object has an iterator object associated with it
that takes care of sorting and searching for records within the table.

✦ CBaseSchema. Each table object also has an associated schema object, which
serves as a template for identifying individual records within the linear format
the table object uses for storage.

✦ CBaseRecord. All records within a table object are accessed by an object
derived from the CBaseRecord class. In order for desktop data to mesh
properly with the database format used on the handheld, you must heavily
modify whatever subclass of CBaseRecord you create for your conduit.

Figure 18-12 shows how the various Palm MFC base classes relate to one another.
The base classes are all closely related to one another. Some classes are nested
within others (for example, there are four CBaseTable objects within CBaseMonitor),
whereas others allow one another access to their internals using the C++ friend
mechanism (for example, all the functions in CBaseTable are friends of CBaseRecord).

Figure 18-12: How the Palm MFC base classes relate to one another

CBaseDTLinkConverter

CCategoryMgr

CBaseSchema

CBaseTable

CBaseMonitor

CCategoryMgr

CBaseIterator

CBaseRecord

CBaseSchema

friend

friend

friend

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 620

621Chapter 18 ✦ Building Conduits

In order to allow customization of the conduit’s actions, the Conduit Wizard gener-
ates subclasses of the base classes. You must add the custom behavior by overrid-
ing virtual functions in the subclasses. The default subclass names provided by the
Conduit Wizard look just like the base class names described previously, substitut-
ing your project name for the Base part of the name. For example, if your project is
named MyConduit, the wizard-generated monitor subclass is CMyConduitMonitor.

Following MFC Conduit Flow of Control
The flow of control through an MFC-based conduit starts in the OpenConduit func-
tion, which creates an instance of your conduit’s CBaseMonitor subclass, then calls
the monitor’s Engage method to start the sync process. After the monitor object
has done its job, OpenConduit destroys the monitor and returns. Here is a sample
OpenConduit function, as generated by the Conduit Wizard:

ExportFunc long OpenConduit (PROGRESSFN pFn,
CSyncProperties& rProps)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState());
long retval = -1;
if (pFn)
{

CMyConduitMonitor* pMonitor;

pMonitor = new CMyConduitMonitor(pFn, rProps, myInst);
if (pMonitor)
{

retval = pMonitor->Engage();

delete pMonitor;
}

}
return(retval);

}

Once the monitor object is in control, it creates a pair of table objects (CBaseTable
subclasses), one to represent the records on the desktop and one to contain records
from the handheld database. Using an iterator object (CBaseIterator subclass), the
monitor steps through the records in the handheld table object, retrieving only mod-
ified records from the handheld if the HotSync operation is a FastSync or retrieving
all the handheld records in the case of a SlowSync.

As it retrieves handheld records, the monitor converts each record into its desktop
format by calling methods from a link converter object (CBaseDTLinkConverter
subclass). Once the handheld and desktop records are in the same format, the
monitor can compare them using the conduit’s native sync logic and deal with
each record appropriately. See the sidebar “Understanding Native Synchronization
Logic” in this chapter for more details about how the native sync logic works.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 621

622 Part VI ✦ Synchronizing Data with the Desktop

Implementing a Monitor Class
To make your conduit’s subclass of CBaseMonitor work, you need to override five
of its virtual methods:

✦ ConstructRecord. This method creates a new record object within a table,
derived from the CBaseRecord class.

✦ CreateTable. This method creates a new table, derived from CBaseTable.

✦ LogApplicationName. This method returns the name of your conduit, for
purposes of writing the conduit’s name to the HotSync log.

✦ LogRecordData. If the monitor object has to report errors with synchronizing
a specific record, it needs to write a string describing the problem record to
the HotSync log. The LogRecordData function assembles this string, based
on the unique record format of the handheld application to which the conduit
is attached.

✦ SetArchiveFileExt. This method sets up the file extension your conduit
appends to its desktop archive file.

The Conduit Wizard makes light work of most of the function overrides; a
wizard-generated conduit already has minimal implementations for all but the
LogRecordData function. Because every handheld application’s record format is
different, the wizard cannot automatically generate LogRecordData. Some hand-
held applications may store their data as simple text strings, such as the storage
method used by the built-in Memo Pad application, but other applications, like the
Address Book, use a more complicated structure containing multiple fields of data
for each record. The string you return from LogRecordData should uniquely iden-
tify a single record in the handheld database. For example, if the conduit connects
to the Address Book, LogRecordData should generate a string consisting of the
first name, last name, and company fields in an address book record.

As an example, the following LogRecordData function is from the Address
Book conduit. Notice how the function casts the CBaseRecord rRec parameter
as the address conduit’s own CAddressRecord class, then uses methods from
CAddressRecord to retrieve the appropriate field values needed for the log string.

void CAddressConduitMonitor::LogRecordData (CBaseRecord& rRec,
char * errBuff)

{
CAddressRecord &rLocRec = (CAddressRecord&)rRec;
CString csStr;
int len = 0;

rLocRec.GetName(csStr);
len = csStr.GetLength();
if (len > 20)

len = 20;

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 622

623Chapter 18 ✦ Building Conduits

strcpy(errBuff, “ “);
strncat(errBuff, csStr, len);
strcat(errBuff, “, “);

rLocRec.GetFirst(csStr);
len = csStr.GetLength();
if (len > 20)

len = 20;

strncat(errBuff, csStr, len);
strcat(errBuff, “, “);

rLocRec.GetCompany(csStr);
len = csStr.GetLength();
if (len > 30)

len = 30;

strncat(errBuff, csStr, len);
}

Implementing a Table Class
A CBaseTable object stores records in a linear format, relying on the position and
size of each record to identify individual records within the table. All of the size and
position data for a table lies within its associated CBaseSchema object, which is
described in the next section of this chapter. Most of the really tricky work that
goes on in a table is handled by the schema and record objects, but you do need
to perform a little bit of customization before the table subclass provided by the
Conduit Wizard will work properly.

Conceptually, a conduit table object looks just like a table in a database or spread-
sheet. The table is composed of rows and columns; each row represents a single
record from the database, and each column is a particular field within that record.
Usually, the logical storage structure to use for this sort of construct would be a
two-dimensional array, but CBaseTable actually keeps the entire mess in a big
single-dimensional array, packing records in one after another. A table object relies
on its associated schema object to properly position a CBaseRecord object at the
right place in the array for changing an individual record. Each table object is able
to read itself from and write itself out to disk in the standard MFC data serialization
format.

To implement a table class, you need to override its AppendDuplicateRecord
method, which adds a new row to the table. The conduit wizard generates a
skeleton for the AppendDuplicateRecord method, which looks something
like this:

long CMyConduitTable::AppendDuplicateRecord(CBaseRecord& rFrom,
CBaseRecord& rTo,
BOOL bAllFlds)

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 623

624 Part VI ✦ Synchronizing Data with the Desktop

{
long retval = -1;

CMyConduitRecord& rFromRec = (CMyConduitRecord&)rFrom;
CMyConduitRecord& rToRec = (CMyConduitRecord&)rTo;

//
// Source record must be positioned at valid data.
//
if (rFromRec.m_Positioned)
{

if (!CBaseTable::AppendBlankRecord(rToRec))
{

// TODO - successfully added blank record, now copy
// the data into it
if (bAllFlds)
{

// copy record ID and status as well
}
// copy all remaining field data

}
}
return(retval);

}

The monitor object passes AppendDuplicateRecord the addresses of a pair of
record objects derived from CBaseRecord. Of these two record objects, rFrom
is the address of a record to copy data from, and rTo is the address of a newly
created blank record where the data should be copied. Note that the first action
AppendDuplicateRecord takes is to cast the incoming classes as your own
conduit’s subclass of CBaseRecord; in the example above, this happens to be
CMyConduitRecord. This step is necessary, because AppendDuplicateRecord
relies on the methods of the derived record class to retrieve and set record
fields. Implementing these Get and Set methods is covered in more detail
under “Implementing a Record Class.”

The bAllFlds argument to AppendDuplicateRecord will be true if the monitor
wants to make an exact copy of a record, including its record ID and status bits.
If bAllFlds is false, the monitor needs only AppendDuplicateRecord to copy
the record’s data, and not the information describing the record itself.

What follows is an example of what AppendDuplicateRecord might look like for
a hypothetical database containing only one field:

long CMyConduitTable::AppendDuplicateRecord(CBaseRecord& rFrom,
CBaseRecord& rTo,
BOOL bAllFlds)

{
long retval = -1;
int nTemp;
CString csTemp;

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 624

625Chapter 18 ✦ Building Conduits

CMyConduitRecord& rFromRec = (CMyConduitRecord&)rFrom;
CMyConduitRecord& rToRec = (CMyConduitRecord&)rTo;

//
// Source record must be positioned at valid data.
//
if (rFromRec.m_Positioned)
{

if (!CBaseTable::AppendBlankRecord(rToRec))
{

if (bAllFlds)
{

// If bAllFlds is true, copy all fields,
// including the record ID.
retval = rFromRec.GetRecordId(nTemp) ||

rToRec.SetRecordId(nTemp);
if (retval != 0)

return retval;

retval = rFromRec.GetStatus(nTemp) ||
rToRec.SetStatus(nTemp);

if (retval != 0)
return retval;

retval = rToRec.SetArchiveBit(
rFromRec.IsArchived());

if (retval != 0)
return retval;

}

// Copy remaining field data.
retval = rToRec.SetPrivate(rFromRec.IsPrivate());
if (retval != 0)

return retval;

retval = rFromRec.GetData(csTemp) ||
rToRec.SetData(csTemp);

if (retval != 0)
return retval;

return 0;
}

}
return(retval);

}

There is one other method in CBaseTable that you may need to override if your
application’s data requires special initialization or sorting: AppendBlankRecord.
This function has a single parameter, which is the address of a CBaseRecord object.
The declaration of AppendBlankRecord looks like this:

virtual long CBaseTable::AppendBlankRecord (CBaseRecord& rec);

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 625

626 Part VI ✦ Synchronizing Data with the Desktop

Implementing a Schema Class
Because the schema object is responsible for positioning records within a
table object, it must be custom-built to work with the record format used in
the table. The subclass of CBaseSchema created by the conduit wizard also has
a DiscoverSchema method, which you need to override, because it sets up data
members of the schema object according to the record format.

Before setting up the DiscoverSchema function, you should #define some con-
stants to identify the fields in each record. These constant definitions should go
in the header file that contains the declaration of your conduit’s CBaseSchema
subclass. For example, here are some sample definitions for a very simple record
format:

#define myFLDRecordID 0
#define myFLDStatus 1

#define myFLDData 2

#define myFLDPrivate 3
#define myFLDCategoryID 4
#define myFLDPosition 5

#define myFLDLast myFLDPosition

In this example, the actual data stored by the record format is in the myFLDData
field; everything else describes various properties of the record itself.

The DiscoverSchema function tells the schema object what type of data is present
in each field. Another task that DiscoverSchema must perform is to let the schema
object know where certain key fields are located in the record, such as the record
ID and status. Here is an implementation of DiscoverSchema that sets up a schema
object for the fields described above:

long CMyConduitSchema::DiscoverSchema (void)
{

// Define the number of fields per record.
m_FieldsPerRow = myFLDLast + 1;
m_FieldTypes.SetSize(m_FieldsPerRow);

// Set field positions.
m_FieldTypes.SetAt(myFLDRecordID, (WORD)eInteger);
m_FieldTypes.SetAt(myFLDStatus, (WORD)eInteger);

m_FieldTypes.SetAt(myFLDData, (WORD)eString);

m_FieldTypes.SetAt(myFLDPrivate, (WORD)eBool);
m_FieldTypes.SetAt(myFLDCategoryID, (WORD)eInteger);
m_FieldTypes.SetAt(myFLDPosition, (WORD)eInteger);

// Set the location of the four common fields.
m_RecordIdPos = myFLDRecordID;

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 626

627Chapter 18 ✦ Building Conduits

m_RecordStatusPos = myFLDStatus;
m_CategoryIdPos = myFLDCategoryID;
m_PlacementPos = myFLDPosition;

return 0;
}

Implementing a Record Class
Instances of a record class are not used to actually store record data; that data
resides in a table object. Instead, an object derived from CBaseRecord provides
other parts of the conduit with read and write methods for accessing and modifying
the data stored in a table. Your conduit’s subclass of CBaseRecord will probably
require more customization than the other classes in the conduit, simply because
you must provide Set and Get functions for each and every data field in a record.
The base class provides methods for reading and writing the record ID, status,
category ID, and position of a record, but you must provide your own methods
for everything else.

Make sure the fields you define in your record subclass match the fields you defined
in your schema subclass. Any disagreement between them will be very messy.

To continue with the simple record format shown in the last example, here is the
declaration of a CMyConduitRecord class:

class CMyConduitRecord : public CBaseRecord
{
protected:

friend CLibCondTable;

public:
CMyConduitRecord (CBaseTable &rTable,

WORD wModAction = MODFILTER_STUPID) :
CBaseRecord (rTable, wModAction){};

CMyConduitRecord (CMyConduitTable &rTable,
WORD wModAction = MODFILTER_STUPID) :
CBaseRecord (rTable, wModAction){};

long GetData (CString &csData);
BOOL IsPrivate (void);

long SetData (CString csData);
long SetPrivate (BOOL bPrivate);

// Required function overrides
long Assign(const CBaseRecord&);
BOOL operator==(const CBaseRecord&);

};

Caution

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 627

628 Part VI ✦ Synchronizing Data with the Desktop

Constructors for a record subclass do not actually need to do anything special, so
they simply call the CBaseRecord constructor. The MODFILTER_STUPID constant
used for the wModAction parameter’s value indicates that the conduit will mark
a record dirty if any of its Set methods are called to alter its data. If your conduit
changes the contents of records during synchronization instead of just keeping
them in sync between the desktop and handheld (“smart” filtering, as opposed to
the default “stupid” filtering provided by MODFILTER_STUPID), you should pass a
value of 0 for wModAction.

The CMyConduitRecord class described previously defines two methods for each
data field in the record, one for retrieving its value and one for setting its value.
The GetData and IsPrivate functions look like this:

long CMyConduitRecord::GetData (CString &csData)
{

CStringField* pFld;

if (m_Positioned &&
(pFld = (CStringField*) m_Fields.GetAt(myFLDData)) &&
pFld->GetValue(csData) == 0)
return 0;

else
return DERR_RECORD_NOT_POSITIONED;

}

BOOL CMyConduitRecord::IsPrivate (void)
{

CBoolField* pFld;

if (m_Positioned &&
(pFld = (CBoolField*) m_Fields.GetAt(myFLDPrivate))) {
if (pFld->IsTrue())

return TRUE;
else

return FALSE;
}
else

return DERR_RECORD_NOT_POSITIONED;
}

Aside from the CStringField and CBoolField classes used above for retrieving string
and Boolean field values, the Palm MFC base classes also provide CIntegerField for
integer values, CDateField for date values, and CAlphaField for fixed-length byte
fields. All of these classes are defined in the CDK header file bfields.h as sub-
classes of CBaseField, also defined in bfields.h.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 628

629Chapter 18 ✦ Building Conduits

Before retrieving data, the Get functions check the value of the m_Positioned mem-
ber of the record object. This data member keeps track of whether or not the table
is positioned on the record in question. If the table is not positioned on the correct
record, the Get methods return the error constant DERR_RECORD_NOT_POSITIONED.

Following is SetData, the partner function to GetData. SetPrivate is almost identical,
so it is not listed here. Notice that SetData leaves the modification status of the record
alone if the new value of the field is equal to the old value; if they are identical, no
changes have really been made, so no update is required.

long CMyConduitRecord::SetData (CString csData)
{

BOOL bFlipStatus = FALSE;
int nStatus = 0;
long retval = DERR_RECORD_NOT_POSITIONED;
CString* pFld = NULL;

if (m_Positioned &&
(pFld = (CString*) m_Fields.GetAt(myFLDData))) {
if (m_wModAction == MODFILTER_STUPID) {

GetStatus(nStatus);
if (nStatus != fldStatusADD) {

CString csTemp(csData);
if (pFld->Compare(&csTemp))

bFlipStatus = TRUE;
}

}
if (!pFld->SetValue(csData)) {

if (bFlipStatus)
SetStatus(fldStatusUPDATE);

retval = 0;
}

}

return retval;
}

The fldStatusADD and fldStatusUPDATE constants used above are part of a fam-
ily of status constants defined in the CDK header file tables.h. These constants
describe the status of a desktop record. Table 18-4 describes each of the constants
and what they signify.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 629

630 Part VI ✦ Synchronizing Data with the Desktop

Table 18-4
Desktop Field Status Constants

Constant Value Description

fldStatusNONE 0 The record has not changed since the last sync.

fldStatusADD 0x01 The record has been added since the last sync.

fldStatusUPDATE 0x02 The record has been modified since the last sync.

fldStatusDELETE 0x04 The record has been deleted since the last sync.

fldStatusPENDING 0x08 The record requires some kind of action at the
end of the synchronization, depending on other
circumstances.

fldStatusARCHIVE 0x80 The record has been archived since the last sync.

Not only do you need to provide the various Get and Set methods, you need to
override a pair of virtual functions before your subclass of CBaseRecord will work
properly. You first need to override Assign, which copies one record object into
another. The conduit passes the address of the record object to copy from, which
you should cast to your own subclass of CBaseRecord before iterating over the
record’s fields and copying them.

long CMyConduitRecord::Assign (const CBaseRecord& rSubj)
{

if (!m_Positioned)
return -1;

for (int i = myFLDRecordID; i <= myFLDLast; i++) {
CBaseField* pMyFld = (CBaseField*) m_Fields.GetAt(i);
CBaseField* pSubjFld = (CBaseField*)

((CMyConduitRecord&) rSubj).m_Fields.GetAt(i);
if (pMyFld && pSubjFld)

pMyFld->Assign(*pSubjFld);
}

return 0;
}

You also need to override the comparison operator (operator==) to compare
two record objects for equality. This routine should ignore the record ID and
status, relying on the record’s own fields for the comparison. If you were clever
and defined the record ID and status field constants as the first two #define
statements earlier on, all you need to do is start at the next available field and
start iterating through the fields, comparing each one.

BOOL CMyConduitRecord::operator== (const CBaseRecord& rSubj)
{

if (!m_Positioned)

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 630

631Chapter 18 ✦ Building Conduits

return FALSE;
for (int i = myFLDData; i <= myFLDLast; i++) {

CBaseField* pMyFld = (CBaseField*) m_Fields.GetAt(i);
CBaseField* pSubjFld = (CBaseField*)

((CMyConduitRecord&)rSubj).m_Fields.GetAt(i);
if (!pMyFld || !pSubjFld)

return FALSE;
if (pMyFld->Compare(pSubjFld) != 0)

return FALSE;
}

return TRUE;
}

Implementing a Link Converter Class
The last class you need to implement is the link converter, which translates
records between their handheld format and the format used by your subclass of
CBaseRecord. To implement the link converter, you must override two functions:
ConvertToRemote and ConvertFromRemote. These functions have the following
prototypes:

long ConvertToRemote (CBaseRecord &rRec,
CRawRecordInfo &rInfo);

long ConvertFromRemote (CBaseRecord &rRec,
CRawRecordInfo &rInfo);

The first thing these functions should do is cast rRec as your own conduit’s sub-
class of CBaseRecord, then use the Get and Set methods of the record subclass
to retrieve or set values in rRec as appropriate. When the conduit calls either
function, it allocates a buffer in rInfo.m_pBytes, which you should write to in
ConvertToRemote, or read from in ConvertFromRemote. The CRawRecordInfo
class is defined in the CDK header file Syncmgr.h as follows:

class CRawRecordInfo
{
public:

BYTE m_FileHandle;
DWORD m_RecId;
WORD m_RecIndex;
BYTE m_Attribs;
short m_CatId;
int m_ConduitId;
DWORD m_RecSize;
WORD m_TotalBytes;
BYTE* m_pBytes;
DWORD m_dwReserved;

};

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 631

632 Part VI ✦ Synchronizing Data with the Desktop

Table 18-5 describes the data members that make up CRawRecordInfo and, by
extension, the rInfo parameter.

Table 18-5
CRawRecordInfo Data Members

Member Description

m_FileHandle Handle to the database on the handheld

m_RecId Record ID

m_RecIndex Sequential index of the record within the handheld database

m_Attribs Record attribute flags

m_CatId Category ID

m_ConduitId Unused

m_RecSize Actual amount of data in the record, in bytes

m_TotalBytes Size of the buffer allocated for data

m_pBytes Pointer to a buffer containing the record’s data

m_dwReserved Reserved for future use

Following earlier examples in this section, here is a ConvertToRemote function to
convert a CMyConduitRecord object to its handheld data format:

long CMyConduitDTLinkConverter::ConvertToRemote (
CBaseRecord& rRec, CRawRecordInfo& rInfo)

{
long retval = 0;
char *pBuff;
CString csTemp;
DWORD length;
int nTemp, destLen;
char *pSrc;

CMyConduitRecord& rAddrRec = (CMyConduitRecord &)rRec;
rInfo.m_RecSize = 0;

// Convert the record ID and category ID.
retval = rAddrRec.GetRecordId(nTemp);
rInfo.m_RecId = (long)nTemp;
retval = rAddrRec.GetCategoryId(nTemp);
rInfo.m_CatId = nTemp;

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 632

633Chapter 18 ✦ Building Conduits

// Convert record attributes.
rInfo.m_Attribs = 0;
if (rAddrRec.IsPrivate())

rInfo.m_Attribs |= PRIVATE_BIT;
if (rAddrRec.IsArchived())

rInfo.m_Attribs |= ARCHIVE_BIT;
if (rAddrRec.IsDeleted())

rInfo.m_Attribs |= DELETE_BIT;
if (rAddrRec.IsModified() || rAddrRec.IsAdded())

rInfo.m_Attribs |= DIRTY_BIT;

pBuff = (char*)rInfo.m_pBytes;

// Convert the body of the record.
retval = rAddrRec.GetData(csTemp);
length = csTemp.GetLength();
if (length != 0) {

// Strip the carriage returns; StripCRs places its
// result directly into pBuff.
pSrc = csTemp.GetBuffer(length);
destLen = StripCRs(pBuff, pSrc, length);
csTemp.ReleaseBuffer(-1);

// If there were more fields in the record, the
// following lines would advance the buffer pointer and
// add to the record’s total size:
// pBuff += destLen;
// rInfo.m_RecSize += destLen;

}

return retval;
}

Here is the counterpart to the last example, ConvertFromRemote:

long CAddrCondDTLinkConverter::ConvertFromRemote (
CBaseRecord& rRec, CRawRecordInfo& rInfo)

{
long retval = 0;
char *pBuff;
int nTemp;
CString csTemp;

CMyConduitRecord& rAddrRec = (CMyConduitRecord &)rRec;

// Convert record attributes.
retval = rAddrRec.SetRecordId(rInfo.m_RecId);
retval = rAddrRec.SetCategoryId(rInfo.m_CatId);
if (rInfo.m_Attribs & ARCHIVE_BIT)

retval = rAddrRec.SetArchiveBit(TRUE);
else

retval = rAddrRec.SetArchiveBit(FALSE);

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 633

634 Part VI ✦ Synchronizing Data with the Desktop

if (rInfo.m_Attribs & PRIVATE_BIT)
retval = rAddrRec.SetPrivate(TRUE);

else
retval = rAddrRec.SetPrivate(FALSE);

retval = rAddrRec.SetStatus(fldStatusNONE);
if (rInfo.m_Attribs & DELETE_BIT)

retval = rAddrRec.SetStatus(fldStatusDELETE);
else if (rInfo.m_Attribs & DIRTY_BIT)

retval = rAddrRec.SetStatus(fldStatusUPDATE);

// Only convert the body of the record if the remote record
// is not deleted.
if (!(rInfo.m_Attribs & DELETE_BIT)) {

pBuff = (char*)rInfo.m_pBytes;

// Add in any necessary carriage returns; AddCRs places
// its result in m_TransBuff.
AddCRs(pBuff, strlen(pBuff));
csTemp = m_TransBuff;
retval = rAddrRec.SetName(csTemp);

// If there were more fields in the record, the
// following line would advance the pointer in the
// buffer to the next field:
// pBuff += strlen(pBuff) + 1;

}

return retval;
}

Though the example above does not require them, the CBaseDTLinkConverter
class contains methods to easily swap byte orders between the handheld and
the desktop, which is quite useful when you consider that a Palm OS handheld
uses Motorola big-endian byte order and a Windows desktop machine uses Intel
little-endian. The functions available are:

✦ SwapDWordToMotor. This function translates a little-endian Intel DWORD
into a big-endian Motorola DWORD.

✦ SwapDWordToIntel. This function performs the reverse conversion from
that made by SwapDWordToMotor.

✦ FlipWord. You can use FlipWord to flip a WORD value back and forth between
Intel and Motorola formats.

The CBaseDTLinkConverter class also has methods for converting between the
date format used in the Palm OS (DateType in the Palm OS headers, TdDateType
in the conduit base classes) and the MFC CTime format. The ConvertToTdDate
translates CTime to DateType, and ConvertFromTdDate reverses the process.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 634

635Chapter 18 ✦ Building Conduits

Using the Generic Conduit Base Classes
Just like creating a conduit using the Palm MFC base classes, making a conduit
using the generic conduit base classes is a matter of subclassing the base classes
and overriding certain functions to provide your conduit with its own custom
behavior. This is where the similarity ends between the two sets of base classes;
the generic conduit classes have a different structure and flow of control from
those of the MFC classes. The following list briefly describes the function of each
of the generic conduit base classes. Throughout this section, any class name you
see that contains MyConduit will actually contain the project name you supplied
to the Conduit Wizard instead of MyConduit.

✦ CSynchronizer. The synchronizer object is responsible for performing the
actual synchronization of records, categories, and the handheld program’s
application info block. All of the native sync logic is implemented in
CSynchronizer.

✦ CPDbBaseMgr. This class serves as the foundation for CPcMgr and CHHMgr.
The various manager classes control storage and retrieval of records, from
both the desktop and the handheld.

✦ CPcMgr. The CPcMgr class deals with storing and retrieving records from
the desktop. Your generic conduit will have at least one subclass of CPcMgr
(named something like CMyConduitPcMgr), customized for handling what-
ever desktop format you choose to implement in the conduit. There might
also be subclasses of this subclass, used for archiving (CMyConduitArchive
Mgr) and backing up (CMyConduitBackupMgr) records on the desktop.

✦ CHHMgr. Counterpart to CPcMgr, CHHMgr stores and retrieves data on the
handheld end of the conduit. In general, there should be no need to subclass
CHHMgr; in fact, the Conduit Wizard does not even bother to generate a
CMyConduitHHMgr function.

✦ CPCategoryMgr and CPCategory. The synchronizer object uses these
classes to sync categories between the handheld and the desktop.

✦ CPalmRecord. This class provides a generic record storage format on the
desktop. The CPalmRecord class contains methods for converting itself to
and from the raw record format used on the handheld, as well as routines
for making common conversions between Intel and Motorola byte ordering.

✦ CMyConduitRecord. This is not really a base class but rather a class you
should define yourself. If you want to store data in something other than the
default serialization format used by the base classes, you need to provide
your own class to define the data format of your records on the desktop.

Figure 18-13 shows how the various generic conduit base classes, and the subclasses
you derive from them, relate to one another.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 635

636 Part VI ✦ Synchronizing Data with the Desktop

Figure 18-13: How the generic conduit classes relate to one another

Following Generic Conduit Flow of Control
Like any other conduit, a generic conduit starts syncing in its OpenConduit func-
tion. The OpenConduit function instantiates your subclass of CSynchronizer, then
invokes the synchronizer object’s Perform method to start the entire sync process.
After the synchronizer has finished its job, OpenConduit destroys it and exits. The
OpenConduit function generated by the Conduit Wizard looks like this:

ExportFunc long OpenConduit (PROGRESSFN pFn,
CSyncProperties& rProps)

{
long retval = -1;
if (pFn)
{

CLibCondSync* pGeneric;
pGeneric = new CLibCondSync(rProps,

GENERIC_FLAG_CATEGORY_SUPPORTED |
GENERIC_FLAG_APPINFO_SUPPORTED);

if (pGeneric){
retval = pGeneric->Perform();

delete pGeneric;
}

}
return(retval);

}

The synchronizer object’s Perform method creates two manager objects, one for
the desktop (CMyConduitPcMgr) and one for the handheld (CHHMgr). Depending
on the type of synchronization that should be performed, the managers retrieve
records from the handheld and the desktop (all of them in the case of a SlowSync,
only modified records for a FastSync).

CPCategoryMgr CPDbBaseMgr

CPCategory CPcMgr

CMyCondnItPcMgr

CHHMgr CSynchronizer CPalmRecord

CMyCondnItSync CMyCondnItRecord

CMyCondnItArchIueMgr CMyCondnItBackupMgr

Base Classes

Derived Classes

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 636

637Chapter 18 ✦ Building Conduits

Next, the synchronizer creates and uses CPCategoryMgr and CPCategory objects
to synchronize categories between handheld and desktop. Then the synchronizer
syncs the database’s application info block if it contains any extra information
besides just categories, such as the database’s sort order.

Once category and application info block synchronization are out of the way, the
synchronizer can concentrate on getting the records in sync between the desktop
and the handheld, using the native sync logic built into the CSynchronizer class.
When finished, the synchronizer destroys the managers it created.

To get your own generic conduit up and running, perform the following steps:

1. Describe the format of records on the desktop.

2. Implement desktop record storage and retrieval.

3. Implement conversion between your own data format and CPalmRecord.

4. Implement synchronization of the application info block.

Describing the Desktop Record Format
You can use a generic conduit created by the Conduit Wizard “out of the box,”
without adding a single line of code to it. If you make no modifications, a wizard-
generated generic conduit will interface with any Palm OS record database and
store its contents on the desktop in MFC serialized format. However, this makes
the generic conduit no different from a conduit developed from the Palm MFC base
classes. To truly make use of the flexibility of a generic conduit, you need to make
some changes to it so that it can read from and write to any arbitrary data format
you want.

Because the CPalmRecord class is more than adequate to the task of representing
records on the handheld, you need to provide only a class to correspond to records
on the desktop. This desktop record class is entirely for your own convenience;
a generic conduit can get along just fine without it, but having a desktop record
class will make your life easier when you have to implement storage and retrieval
of desktop records.

The Conduit Wizard does not create even a skeleton for a desktop record class,
so you will need to make your own from scratch. The Visual C++ WizardBar’s New
Class option is an easy way to start this task, because it creates new .h and .cpp
files to contain the class, along with a very basic code framework to fill out. What
follows is a sample declaration for a very simple record class, one that contains
only a single string for its data:

class CMyConduitRecord
{
public:

CMyConduitRecord(void);
~CMyConduitRecord();

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 637

638 Part VI ✦ Synchronizing Data with the Desktop

public:
DWORD m_dwRecordID;
DWORD m_dwStatus;
DWORD m_dwPosition;
CPString m_csData;
DWORD m_dwPrivate;
DWORD m_dwCategoryID;

public:
void Reset(void);

};

The CPString class used above to store the record’s data is a string class provided
by the CDK. A CPString object is essentially a Palm Computing implementation of
the standard MFC CString class, containing all the useful string-handling methods
and operators you might be used to in the CString class. You should be sure to
#include “CPString.h” at the head of your record’s .h file if you want to take
advantage of the CPString class.

Here is the actual implementation of the CMyConduitRecord class declared above:

CMyConduitRecord::CMyConduitRecord (void)
{

Reset();
}

CMyConduitRecord::~CMyConduitRecord()
{
}

void CMyConduitRecord::Reset(void)
{

m_dwRecordID = 0;
m_dwStatus = 0;
m_dwPosition = 0;
m_dwPrivate = 0;
m_dwCategoryID = 0;
m_csData.Empty();

}

There is nothing fancy here; the CMyConduitRecord class is pretty much just a
structure that initializes its own fields. If you want to, you can declare and imple-
ment other methods in your record class to aid in storing and retrieving its con-
tents from whatever storage format you use on the desktop computer.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 638

639Chapter 18 ✦ Building Conduits

Implementing Storage and Retrieval
Once you have defined a class that describes your desktop data format, you need
to override a couple functions in your conduit’s subclass of CPcMgr to implement
storage and retrieval of desktop records. The two methods you need to concern
yourself with are RetrieveDB and StoreDB. By default, the code generated by the
Conduit Wizard simply defers to the RetrieveDB and StoreDB methods of the
actual CPcMgr class, which read and write data in the MFC serialization format.

Implementing RetrieveDB
The following partial RetrieveDB function takes care of some required bookkeeping
tasks, such as reading in the database and application info blocks. The RetrieveDB
function that follows also leaves a spot in the middle for your own code to retrieve
data from the desktop. Much of this code is drawn straight from the RetrieveDB
method of the base CPcMgr class; there is no need to reinvent the wheel here
when much of the required code already exists.

long CMyConduitPcMgr::RetrieveDB (void)
{

m_bNeedToSave = FALSE;

// Check validity of the desktop file name and the handle
// to that file.
if (!_tcslen(m_szDataFile))

return GEN_ERR_INVALID_DB_NAME;
if (m_hFile == INVALID_HANDLE_VALUE)

return GEN_ERR_INVALID_DB;

// Initialize a space for the database info block.
BOOL bDone = FALSE;
long retval = 0;
retval = CreateDBInfo();
if (retval){

CloseDB();
return retval;

}

// Read in the database info block from disk.
retval = ReadInData((LPVOID)m_pDBInfo,

CM_STORAGE_HEADER_SIZE);

if (retval) {
CloseDB();
if (retval == GEN_ERR_STORAGE_EOF)

return 0;
return GEN_ERR_READING_DBINFO;

}

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 639

640 Part VI ✦ Synchronizing Data with the Desktop

// Read the application info block from disk.
if (m_pDBInfo->dwAppInfo > 0) {

m_pAppInfo = (STORAGE_INFO_PTR)
malloc(m_pDBInfo->dwAppInfo);

if (!m_pAppInfo)
retval = GEN_ERR_LOW_MEMORY;

if (!retval) {
retval = ReadInData((LPVOID)m_pAppInfo,

m_pDBInfo->dwAppInfo);
}
if (retval) {

CloseDB();
return GEN_ERR_READING_APPINFO;

}
}

// Code for reading data from the desktop goes here.

CloseDB();
m_bNeedToSave = FALSE;
return retval;

}

The m_szDataFile and m_hFile data members of the manager class store the
file name for the desktop data source and a handle to that file, respectively. When
it calls OpenConduit to start record synchronization, the HotSync Manager passes
the name of the desktop data file as part of a CSyncProperties object, which
eventually trickles its way down to the desktop manager object and becomes
the m_szDataFile and m_hFile members. You can use the file handle provided
in m_hFile to read data from the desktop data source.

The generic conduit code assumes that your data source on the desktop is a file. If
you want to pipe in data from a different source, you will also need to override the
Open, OpenDB, Close, and CloseDB methods of CPcMgr to handle opening and
closing the unusual data source.

After checking that m_szDataFile and m_hFile contain valid data, your RetrieveDB
method should initialize space in memory for a database information block. The
CreateDBInfo method of CPcMgr takes care of this task, setting a pointer to the
initialized memory block in the manager object’s m_pDBInfo member variable.
The pointer stored in m_pDBInfo points to a STORAGE_HEADER structure, which
is defined as follows in the CDK header file pcmgr.h:

typedef struct StorageHeaderType {
DWORD dwStructSize;
WORD wVersion;

char szName[DB_NAMELEN];
DWORD dwDBVersion;
DWORD dwDBCreator;
DWORD dwDBType;
WORD wDBFlags;

Note

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 640

641Chapter 18 ✦ Building Conduits

long lDBModDate;
DWORD dwDBModNumber;
long lDBCreateDate;
long lDBBackupDate;
long lDBRecCount;
long dwAppInfo;
long dwSortInfo;

} STORAGE_HEADER;

The STORAGE_HEADER structure contains information about the database itself,
including its number of records. It also contains the length of the database’s appli-
cation info block, in bytes, in its dwAppInfo field. The RetrieveDB method should
look in dwAppInfo for the length of the database’s application info block; armed
with this value, RetrieveDB can then copy that many bytes of data into a memory
block pointed to by the desktop manager object’s m_pAppInfo variable.

In the previous example, as in the CPcMgr base class itself, RetrieveDB uses the
ReadInData method of the manager object to retrieve the database and application
info blocks from the desktop data source. The ReadInData function provided in
CPcMgr is set up to read data from an MFC serialized file, but you can supply your
own override of ReadInData to read data from whatever format you wish to use on
the desktop. The arguments ReadInData takes are a pointer to a buffer to receive
data and the number of bytes to read in.

The structure used in this example, using ReadInData to read raw data from the file,
works great if you want to store your application’s information in a straight binary
format. If you want to use something more human-readable, like comma-delimited
values, or write straight to something like an ODBC database, you will need to
rework how RetrieveDB does its job. This example is only one possible way of
implementing RetrieveDB.

Implementing StoreDB
Many parts of StoreDB will look similar to your RetrieveDB function, only in
reverse, because it writes information to disk instead of reading.

long CMyConduitPcMgr::StoreDB (void)
{

// Check to see if there were any changes to the data. If
// not, save time by not saving unnecessarily.
if (!m_bNeedToSave) {

if ((!m_pCatMgr) || (!m_pCatMgr->IsChanged()))
return 0;

}

// Open the desktop database for writing.
long retval = OpenDB();
if (retval)

return GEN_ERR_UNABLE_TO_SAVE;

// Store database info block. If there is no info block,
// then there is nothing to store.

Note

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 641

642 Part VI ✦ Synchronizing Data with the Desktop

if (!m_pDBInfo){
CloseDB();
return 0; // No error if nothing to store

}

if (m_pDBInfo){
m_pDBInfo->lDBRecCount = (long)m_dwRecordCount;
if (m_pAppInfo)

m_pDBInfo->dwAppInfo = m_pAppInfo->dwStructSize;
else

m_pDBInfo->dwAppInfo = 0;

retval = WriteOutData(m_pDBInfo,
m_pDBInfo->dwStructSize);

if (retval != 0){
CloseDB();
return GEN_ERR_UNABLE_TO_SAVE;

}
}

// Store application info block, if it exists.
if (m_pAppInfo) {

retval = WriteOutData(m_pAppInfo,
m_pAppInfo->dwStructSize);

if (retval != 0){
CloseDB();
return GEN_ERR_UNABLE_TO_SAVE;

}
}

// Code for writing data to the desktop goes here.

CloseDB();
m_bNeedToSave = FALSE;
return 0;

}

The first thing StoreDB does is to check the desktop manager object’s
m_bNeedToSave variable. If m_bNeedToSave is FALSE, then there have been
no changes to the data that would require saving. In this case, StoreDB can
simply exit, as it has nothing to do.

If StoreDB does, indeed, have something to do, it calls the CPcMgr class method
OpenDB to open the desktop file for writing. Then StoreDB writes the database
information block to the beginning of the file, followed by the application info
block, but only if these pieces of information are available. Once the header
information is out of the way, StoreDB can get to the work of writing actual
records to the desktop.

Like its sibling ReadInData, the WriteOutData method of CPcMgr writes raw bytes
of data to the desktop file. You will need to replace WriteOutData with your own
code to write to something other than MFC serialization format.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 642

643Chapter 18 ✦ Building Conduits

Besides overriding RetrieveDB and StoreDB, if your conduit supports archiving of
deleted records or keeping a backup copy of the desktop database, the Conduit
Wizard will generate subclasses of your CPcMgr subclass to handle archive and
backup databases. Unless you need to do something special with the archive
and backup databases, such as saving these two databases in a different format
from your main desktop database, you can leave the CMyConduitArchive and
CMyConduitBackupMgr classes generated by the Conduit Wizard alone; they
will automatically handle archiving and backing up your desktop data.

Converting Data to and from CPalmRecord
The next step in making a generic conduit is implementing conversion between
your desktop record format and the generic CPalmRecord class. To do this, you
must override the ConvertGenericToPc and ConvertPcToGeneric methods of
CPcMgr. The following is an example of a ConvertGenericToPc method, using
the CMyConduitRecord class defined earlier in the chapter:

long CMyConduitPcMgr::ConvertGenericToPc (CPalmRecord &palmRec,
CMyConduitRecord &rec, BOOL bClearAttributes)

{
BYTE *pBuff;
long retval = 0;
int nLength;

rec.Reset();

if (palmRec.GetRawDataSize() == 0){
// This is a deleted record because it has no data.
return GEN_ERR_EMPTY_RECORD;

}

// Fill in the record ID.
rec.m_dwRecordID = palmRec.GetID();

// Unless the attributes should be thrown out
// (bClearAttributes == TRUE), fill in record attributes.
if (bClearAttributes)

rec.m_dwStatus = 0;
else {

rec.m_dwStatus = palmRec.GetAttribs();
}

// Fill in position, category ID, and the private status.
rec.m_dwPosition = palmRec.GetIndex();
rec.m_dwCategoryID = palmRec.GetCategory();
rec.m_dwPrivate = palmRec.IsPrivate();

DWORD dwRawSize = palmRec.GetRawDataSize();
if (!dwRawSize) {

// This is an invalid record.
return 0;

}

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 643

644 Part VI ✦ Synchronizing Data with the Desktop

pBuff = palmRec.GetRawData();

// Convert the actual record data. Add carriage returns.
nLength = _tcslen((char *)pBuff);

AddCRs((char *)pBuff,
rec.m_csData.GetBuffer(nLength * 2), nLength);

rec.m_csData.ReleaseBuffer();

pBuff += nLength + 1;

return retval;
}

Most of the example ConvertGenericToPc function above involves copying mem-
bers of the CPalmRecord object palmRec, such as the record ID and attributes,
straight into members of the CMyConduitRecord object rec, using CPalmRecord
methods to retrieve the appropriate values, because CPalmRecord stores just
about anything of interest in protected member variables. Retrieving the actual
data relies on the CPalmRecord class GetRawData method, which returns a
pointer to the raw data of a record.

The only real conversion performed by CMyConduitPcMgr::ConvertGenericToPc
is to add carriage return characters to the data, because Windows ends lines of
text with both carriage return and linefeed characters, and the Palm OS uses only
linefeeds. This conversion is made easy by the use of the CPcMgr::AddCRs method.
The CPcMgr class also has a companion StripCRs method for removing carriage
returns when converting data back to the handheld database.

Here is the companion ConvertPcToGeneric function:

long CMyConduitPcMgr::ConvertPCtoGeneric(CMyConduitRecord &rec,
CPalmRecord &palmRec)

{
long retval = 0;
char *pBuff;
int destLen;
BYTE szRawData[MAX_RECORD_SIZE];
DWORD dwRecSize = 0;

// Copy over all the record fields and attributes.
palmRec.SetID(rec.m_dwRecordID);

palmRec.SetCategory(rec.m_dwCategoryID);

if (rec.m_dwPrivate)
palmRec.SetPrivate(TRUE);

else
palmRec.SetPrivate(FALSE);

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 644

645Chapter 18 ✦ Building Conduits

palmRec.SetArchived((BOOL)(rec.m_dwStatus &
fldStatusARCHIVE));

palmRec.SetDeleted((BOOL)(rec.m_dwStatus &
fldStatusDELETE));

palmRec.SetUpdate((BOOL)(rec.m_dwStatus &
fldStatusUPDATE));

// Convert the actual record data.
pBuff = (char*)szRawData;

int nLength;
nLength = rec.m_csData.length();
if (nLength > 0) {

// Strip carriage returns. StripCRs places its result
// directly into pBuff.
destLen = StripCRs(pBuff, rec.m_csData.c_str(),

nLength);

pBuff += destLen;
dwRecSize += destLen;

}

if (dwRecSize == 0) {
// A record without any data has been deleted.
palmRec.SetDeleted();

}

retval = palmRec.SetRawData(dwRecSize, szRawData);

return(retval);
}

The MAX_RECORD_SIZE constant, used to define the size of the buffer that
ConvertPcToGeneric puts the record’s actual raw data into, is defined in the
CDK header file CPalmRec.h as the value 0xfff0, or 65,520 bytes, which is the
largest possible record allowed by the Palm OS data manager.

Syncing the Application Info Block
The last thing to implement in a generic conduit is synchronization of the database’s
application info block. The synchronizer object uses the CCategoryMgr object to
automatically convert category information stored at the head of an application
info block, so only extra information stored in the application info block needs to
be synced. Because not every Palm OS application stores extra information in its
application info block, not all conduits need to explicitly sync this data. Overriding
CPcMgr::SynchronizeAppInfo allows you to perform special processing of the
application info block data on its way between the handheld and the desktop.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 645

646 Part VI ✦ Synchronizing Data with the Desktop

Using the Sync Manager API
If your conduit does not keep records in mirror image sync between the desktop
and handheld, or if your conduit is very simple and does not require the record-
synchronization logic provided by the Palm MFC or Generic Classes, you can use
the Sync Manager API directly. The Sync Manager API contains a large number of
very low-level functions for communicating directly with a Palm OS handheld
during a HotSync operation. This section is only a brief overview of using Sync
Manager functions; for exhaustive details, see the Conduit Programmer’s Reference,
which ships as part of the CDK.

If any call to a Sync Manager function results in an error, treat the other return
values from the function as unusable. Using any of these undefined values is likely
to cause data corruption.

Registering and Unregistering a Conduit
Before a conduit can make any other Sync Manager calls, it must be registered
with the Sync Manager by calling the SyncRegisterConduit function.

This registration is not the same as registering the conduit upon installation. See
Chapter 17, “Introducing Conduit Mechanics,” for more information about registering
a conduit when it is installed.

The prototype for SyncRegisterConduit looks like this:

long SyncRegisterConduit(CONDHANDLE &rHandle)

The handle returned in the rHandle parameter is required by some other calls
your conduit makes to Sync Manager functions. The SyncRegisterConduit function
returns 0 if it successfully registered your conduit, or -1 if another conduit that ran
before yours did not unregister itself properly. Only one conduit may be registered
at a time, so it is imperative that you unregister your conduit before it exits, using
the SyncUnRegisterConduit function:

long SyncUnRegisterConduit(CONDHANDLE handle)

The SyncUnRegisterConduit function returns 0 if it successfully unregisters your
conduit, or -1 if you provide the function with an invalid handle parameter.

Opening and Closing Handheld Databases
Normally, you will use the SyncOpenDB function to open an existing database on
the handheld. The prototype for SyncOpenDB looks like this:

long SyncOpenDB(char *pName, int nCardNum, Byte& rHandle,
Byte openMode)

Cross-
Reference

Caution

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 646

647Chapter 18 ✦ Building Conduits

The pName parameter is a null-terminated string containing the name of the
database to open, and nCardNum receives the card number on which the database
is located (0 on all current Palm OS handhelds). You can specify the mode in which
to open the database using the openMode parameter, which should be one or more
eDbOpenModes constants combined with the OR operator (|). The CDK headers
define eDbOpenMode like this:

enum eDbOpenModes {eDbShowSecret = 0x0010,
eDbExclusive = 0x0020,
eDbWrite = 0x0040,
eDbRead = 0x0080

};

In general, you should almost always include the eDbShowSecret constant because
it enables access to records marked private on the device. The eDbShowSecret flag
affects how the SyncReadNextRecInCategory and SyncReadNextModifiedRec
InCategory functions (see the “Iterating Over Database Records” section, later
in this chapter) operate. These two functions skip over private records if the
database was opened without the eDbShowSecret flag.

The eDbExclusive flag opens the database in exclusive mode, which prevents
any other application on the handheld from accessing the database while it is
open. This flag is of only limited utility, however, because the Sync Manager
does not allow any applications to run during a HotSync operation anyway.

Including the eDbWrite flag opens a database for writing, and the eDbRead flag
opens a database for reading. You can use both of these flags together to allow
reading and writing to a database in the same open action. For example, to open
a database in read/write mode, with access to private records, pass the following
value for openMode:

(eDbShowSecret | eDbWrite | eDbRead)

The SyncOpenDB function returns a handle to the opened database in its rHandle
parameter, as well as a value of 0 in its return value for a successful opening, or an
error code if the database could not be opened for some reason.

If the database you want to access does not already exist on the handheld, you can
create and open a brand new database using the SyncCreateDB function, which has
the following prototype:

long SyncCreateDB (CDbCreateDB& rDbStats)

The rDbStats parameter is an object of class CDbCreateDB, which looks like this:

class CDbCreateDB
{
public:

BYTE m_FileHandle;
DWORD m_Creator;

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 647

648 Part VI ✦ Synchronizing Data with the Desktop

eDbFlags m_Flags;
BYTE m_CardNo;
char m_Name[SYNC_DB_NAMELEN];
DWORD m_Type;
WORD m_Version;
DWORD m_dwReserved;

};

Table 18-6 describes the data members of the CDbCreateDB class, as they relate to
the SyncCreateDB function.

Table 18-6
CDbCreateDB Data Members

Data Member Description

m_FileHandle Receives a handle to the newly created and opened database when
SyncCreateDB returns.

m_Creator Creator ID for the new database.

m_Flags Database creation flags, a combination of eDbFlags constants.

m_CardNo Number of the card in which to create the database. Use the value 0
for current Palm OS handhelds.

m_Name Null-terminated string containing the name for the new database.

m_Type Four-character type of the new database.

m_Version Database version.

m_dwReserved Reserved for future use.

Although the Sync Manager API contains a number of different classes, none of
these classes contains any actual methods, only data members. You can use them
much in the same way you would use structures in a C application.

The eDbFlags enumerated type, used in the m_Flags member of the CDbCreateDB
class, is defined like this:

enum eDbFlags {
eRecord = 0x0000,
eResource = 0x0001,
eReadOnly = 0x0002,
eAppInfoDirty = 0x0004,
eBackupDB = 0x0008,
eOkToInstallNewer = 0x0010,
eResetAfterInstall = 0x0020,
eCopyPrevention = 0x0040,
eOpenDB = 0x8000

};

Note

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 648

649Chapter 18 ✦ Building Conduits

With the exception of eRecord and eResource, which are mutually exclusive, you
can OR these values together. Table 18-7 describes the individual flags in eDbFlags.

Table 18-7
eDbFlags Enumerated Type

Flag Description

eRecord Creates a record database. This option is the default.

eResource Creates a resource database.

eReadOnly Indicates that the database is read-only, which is usually
indicative of databases stored in ROM.

eAppInfoDirty Indicates that the database’s application info block has
been modified.

eBackupDB Sets the backup flag so the HotSync backup conduit will
back up this database if no other conduit has been assigned
to handle the database’s creator ID.

eOkToInstallNewer Indicates that the backup conduit may install a newer
version of this database with a different name if this
database is currently open. This is primarily used by the
system to update the Graffiti shortcuts database because
it is still open when the user starts a HotSync operation.

eResetAfterInstall Tells the system to perform a soft reset once the sync
operation that installs this database is complete.

eCopyPrevention Prevents the system launcher from beaming this database
to other handhelds.

eOpenDB Indicates that the database is already open. This flag is for
system use only; never pass this flag when creating a database.

The SyncCreateDB function opens the newly created database in exclusive mode
for reading and writing, with private records shown; this is the equivalent of the
conduit having opened the database with SyncOpenDB by passing the following
openMode parameter:

(eDbShowSecret | eDbExclusive | eDbWrite | eDbRead)

Closing databases
When you have finished using a database opened with either SyncOpenDB or
SyncCreateDB, you need to close the database with the SyncCloseDB function,
whose prototype looks like this:

long SyncCloseDB(BYTE fHandle)

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 649

650 Part VI ✦ Synchronizing Data with the Desktop

This function is very simple; it takes only the handle of the database you want to
close as an argument. The SyncCloseDB function returns 0 if it successfully closed
the database and destroyed its handle, or an error code if something went wrong
while closing the database.

The Sync Manager allows you to have only one database open at a time. If you forget
to close a database with SyncCloseDB, you will prevent other conduits from being
able to open their own databases. Be sure to pair every successful SyncOpenDB or
SyncCreateDB call with a call to SyncCloseDB.

Iterating Over Database Records
Most conduits need some way to walk through the records in a database, and
the Sync Manager contains a variety of functions to handle this task. Before
iterating over database records, though, you should call SyncResetRecordIndex
to make sure the record index points at the first record in the database. The
SyncResetRecordIndex function has the following prototype:

long SyncResetRecordIndex(BYTE fHandle)

The fHandle parameter is simply the handle to the database, as it was returned by
the SyncOpenDB or SyncCreateDB function.

The Sync Manager automatically resets the record index when it first opens a
database, so you can skip calling SyncResetRecordIndex if you know for sure
that the database was just opened.

There are three functions for iterating over records using the Sync Manager API:

✦ SyncReadNextModifiedRec retrieves the next modified record from the
database.

✦ SyncReadNextRecInCategory retrieves the next record belonging to a
specific category.

✦ SyncReadNextModifiedRecInCategory retrieves the next modified record
that belongs to a specific category.

The prototypes for these functions look like this:

long SyncReadNextModifiedRec (CRawRecordInfo &rInfo);
long SyncReadNextRecInCategory (CRawRecordInfo &rInfo);
long SyncReadNextModifiedRecInCategory (CRawRecordInfo &rInfo);

All of the functions use the CRawRecordInfo class, which is used by many other
functions in the Sync Manager API that read and write record information. The
definition of CRawRecordInfo looks like this:

class CRawRecordInfo
{

Tip

Caution

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 650

651Chapter 18 ✦ Building Conduits

public:
BYTE m_FileHandle;
DWORD m_RecId;
WORD m_RecIndex;
BYTE m_Attribs;
short m_CatId;
int m_ConduitId;
DWORD m_RecSize;
WORD m_TotalBytes;
BYTE* m_pBytes;
DWORD m_dwReserved;

};

Table 18-8 describes the members of the CRawRecordInfo class. Notice that
some members of the class have subtly different meanings, depending on whether
the function using the CRawRecordInfo class is reading, writing, or iterating
over records.

Table 18-8
CRawRecordInfo Data Members

Data Member Description

m_FileHandle Handle to the database, as returned by SyncOpenDB or
SyncCreateDB.

m_RecId Unique record ID for the record. Supply this value when calling
a function that reads or deletes a record based on its record ID.
Functions that iterate over records return a retrieved record’s ID
in this field.

m_RecIndex The index of a record. Supply this value if you are calling a function
that reads records by index value. Version 2.1 or later of the Sync
Manager API fills in this value with the actual index of a record
retrieved from the handheld.

m_Attribs Record attribute flags, a combination of constants in the
eSyncRecAttrs enumerated type. Supply this value if you
are calling a function that writes a record. Functions that read
a record return the record’s attributes in this field.

m_CatId Category index for a record. Supply this value if you are calling a
function that writes a record. Functions that read a record return
the record’s category index in this field.

m_ConduitId Currently unused.

Continued

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 651

652 Part VI ✦ Synchronizing Data with the Desktop

Table 18-8 (continued)

Data Member Description

m_RecSize Actual amount of data in the record, in bytes. If you are calling a
function to write a record, you must specify this value, and it should
be equal to the m_TotalBytes value. Functions that read a record
return the record’s actual data size in this field. If the data size is
larger than the buffer you allocated to contain the incoming record,
m_RecSize will be larger than m_TotalBytes, and depending on
the version of the Sync Manager API, one of two things may happen.
In 2.1 or later, only m_TotalBytes of data are copied from the
record; in versions earlier than 2.1, nothing is copied at all.

m_TotalBytes Size of a buffer you have allocated for sending data to or receiving
data from a record. If you are writing a record, this field should equal
the size of the record in bytes. If you use a function to read a record,
m_TotalBytes should indicate the size of the buffer pointed to by
m_pBytes, in bytes.

m_pBytes Pointer to a buffer you have allocated for reading or writing records.
You must allocate this buffer before calling any Sync Manager function
that reads or writes records using the CRawRecordInfo class.

m_dwReserved Reserved for future use. Set this field to NULL before passing a
CRawRecordInfo object to one of the Sync Manager functions.

The eSyncRecAttrs enumerated type, used in the m_Attribs member of
CRawRecordInfo, has the following definition:

enum eSyncRecAttrs {eRecAttrDeleted = 0x80,
eRecAttrDirty = 0x40,
eRecAttrBusy = 0x20,
eRecAttrSecret = 0x10,
eRecAttrArchived = 0x08

};

Modifying a database while iterating over its records is not supported by the Sync
Manager. Be sure to structure your conduit so it does not intersperse record modifi-
cation with iteration. The exception to this rule is that the Palm OS version 2.0 and
later supports deletion of records during iteration using the SyncDeleteRec function.

As an example of how to use the Sync Manager iteration functions, the following
function walks through all the modified records in a database, given a handle to an
open database as a parameter:

long WalkThroughModifiedRecs (BYTE myHandle)
{

long retval = 0, err = 0;

Caution

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 652

653Chapter 18 ✦ Building Conduits

CRawRecordInfo rawRecord;

memset(&rawRecord, 0, sizeof(rawRecord));
rawRecord.m_FileHandle = myHandle;
rawRecord.m_RecId = 0;

// Allocate memory for rawRecord data.
rawRecord.m_TotalBytes = 0;
rawRecord.m_pBytes = (BYTE*) new char [8000];
if (rawRecord.m_pBytes) {

rawRecord.m_TotalBytes = wRawRecSize;
memset(rawRecord.m_pBytes, 0, wRawRecSize);

} else
return CONDERR_RAW_RECORD_ALLOCATE;

// Read in each modified remote record one at a time.
while (!err && !retval) {

if (!(err = SyncReadNextModifiedRec(rawRecord))) {

// Do something with each modified record here.

}

// Reset data buffer between each record retrieval.
memset(rawRecord.m_pBytes, 0, rawRecord.m_TotalBytes);

}

// Free the memory allocated for the raw record.
if (rawRecord.m_TotalBytes > 0 && rawRecord.m_pBytes)

delete rawRecord.m_pBytes;

return retval;
}

Reading and Writing Records
If you know the record ID or index of a record, you can retrieve the record directly
using the SyncReadRecordById or SyncReadRecordByIndex functions, which
have the following prototypes:

long SyncReadRecordById(CRawRecordInfo &rInfo);
long SyncReadRecordByIndex(CRawRecordInfo &rInfo);

Before calling these functions, you will need to fill in the m_RecId or m_RecIndex
member of the CRawRecordInfo object that you pass to the functions. Also, just as
in the example above that uses SyncReadNextModifiedRec, you should allocate a
buffer to receive the record’s data and point the CRawRecordInfo object’s
m_pBytes pointer to the buffer.

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 653

654 Part VI ✦ Synchronizing Data with the Desktop

Writing to records may be accomplished using the SyncWriteRec function, whose
prototype looks very similar to all the other record-handling functions in the Sync
Manager API:

long SyncWriteRec(CRawRecordInfo &rInfo)

To write a record, you need to fill a buffer with the record data to write, point the
CRawRecordInfo object’s m_pBytes pointer at the buffer, and set m_RecSize and
m_TotalBytes to the length of the record’s data in bytes.

Deleting Records
The Sync Manager API provides a number of functions for deleting records from
databases. The most basic function, SyncDeleteRec, deletes a single record
from a database given a now-familiar CRawRecordInfo parameter:

long SyncDeleteRec (CRawRecordInfo &rInfo)

All of the Sync Manager deletion functions, whether they begin with SyncDelete
or SyncPurge, immediately and permanently remove a record or records from a
database instead of just marking them for deletion. Be very careful that your
conduit code has properly archived deleted records before removing them from
the handheld.

Aside from deleting a single record, the Sync Manager also provides records for
deleting a whole lot of records at once. The SyncPurgeAllRecs function wipes
out all the records contained in a database, given a handle to the open database:

long SyncPurgeAllRecs(BYTE fHandle)

If you want to be a little more selective in your mass deletions, you can pass a
handle to an open database and a category index to SyncPurgeAllRecsInCategory
to delete all the records contained in a specific category within that database:

long SyncPurgeAllRecsInCategory(BYTE fHandle, short category)

Even more selective, and probably the most useful, is the SyncPurgeDeletedRecs
function, which removes only the records in the database that are marked for
deletion. Typically, you would call this function after archiving records to the
desktop to clean up the handheld database.

long SyncPurgeDeletedRecs(BYTE fHandle)

Caution

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 654

655Chapter 18 ✦ Building Conduits

Maintaining a Connection
If your conduit needs to perform an action that could take a while to finish, such
as retrieving data over a network, you need to ping the Sync Manager every once in
a while so it will keep its connection open and not time out. The SyncYieldCycles
function sends messages that keep the connection alive, and it also gives the
HotSync application a chance to update its progress indicator and process user
events, such as a click on the Cancel button. The prototype for SyncYieldCycles
looks like this:

long SyncYieldCycles(WORD wMaxMiliSecs)

The wMaxMiliSecs parameter specifies the maximum number of milliseconds to
spend servicing events. Because the HotSync application does not need a whole lot
of time to process its events, any value higher than 1 would just be a waste of time;
in fact, the current implementation of SyncYieldCycles just ignores this value,
anyway. Just use a value of 1.

You can call SyncYieldCycles without significantly affecting performance because
there usually are no events in the HotSync application’s queue to process. Palm
Computing recommends calling SyncYieldCycles at least once every seven
seconds during lengthy operations that might cause a timeout. Sprinkling Sync
YieldCycles calls liberally through your code is a good idea.

Summary
In this chapter, you learned how to build conduits using the Palm MFC base classes,
the Palm Generic Conduit base classes, and low-level Sync Manager API calls. After
reading this chapter, you should understand the following:

✦ The Conduit Wizard provides the easiest way to start any conduit project
in Visual C++.

✦ Every conduit must implement certain required entry points, including
OpenConduit, GetConduitInfo, GetConduitName, and GetConduitVersion;
in addition, every conduit should also implement the optional CfgConduit
and ConfigureConduit entry points.

✦ Creating a conduit based on the Palm MFC Base Classes is a matter of sub-
classing the base monitor, table, schema, record, and link converter classes,
then overriding select methods of these classes to produce the desired
behavior in your conduit.

Tip

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 655

656 Part VI ✦ Synchronizing Data with the Desktop

✦ Creating a conduit based on the Palm Generic Conduit Base Classes involves
describing a desktop record format, implementing storage and retrieval of
records on the desktop, implementing conversion of records between your
desktop format and the generic CPalmRecord format, and synchronizing the
application info block.

✦ Among other things, the Sync Manager API provides functions for registering
and unregistering a conduit, opening and closing handheld databases, iterat-
ing over records, reading and writing records, deleting records, and keeping
a connection to the handheld alive.

✦ ✦ ✦

4676-7 ch18.f.qc 9/29/00 12:58 PM Page 656

Programming
in Color

The introduction of color capability in Palm OS 3.5 was
like any other addition Palm Computing has made to the

Palm OS platform: incremental. Instead of leaping ahead into
uncharted territory, Palm Computing carefully added just
enough new features to the operating system to support
color-enabled applications, in the process maintaining excel-
lent backward compatibility. This meticulous attention to
detail means that applications written for earlier versions of
the operating system still work great on color Palm OS hand-
helds, and as an added bonus, writing code to take advantage
of Palm OS color capabilities in new applications, or grafting
color onto existing programs, is very simple.

This chapter details how color works in the Palm OS, as well
as the functions you need to use to add color to your applica-
tions. Throughout the chapter, you will find references to
Color Test, a sample application that shows off some of the
color features in Palm OS 3.5. Because the Color Test applica-
tion is based entirely on Palm OS 3.5 drawing routines, it will
run only on version 3.5 or later of the operating system. Figure
19-1 shows Color Test in action. Note that the actual applica-
tion actually appears in vibrant color in POSE or on and actual
Palm IIIc, not black and white as in this screen shot.

Figure 19-1: The Color Test
sample application

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Determining
color depth

Using color tables
and palettes

Using color bitmaps

Changing user
interface colors

✦ ✦ ✦ ✦

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 659

660 Part VII ✦ Advanced Programming Topics

Source code for the Color Test application is available on the CD-ROM that
accompanies this book.

Determining and Setting Color Depth
Palm OS version 3.5 supports four color depths:

✦ 1-bit black and white, the only mode officially supported in versions of the
Palm OS before 3.5. Every Palm OS device can manage 1-bit color depth.

✦ 2-bit grayscale, which has four colors: white, light gray, dark gray, and black.
Noncolor Palm OS devices that have a non-EZ processor can use this mode,
but nothing fancier.

✦ 4-bit grayscale, which includes sixteen levels of gray from white to black.
Noncolor Palm OS devices with a DragonBall EZ processor can handle
this mode.

✦ 8-bit color, which has a somewhat more complex palette to choose from than
lesser color depths. The first part of the Palm OS color palette is composed of
216 “Web-safe” colors. These colors have red, green, and blue components at
the following levels: 0x00, 0x33, 0x66, 0x99, 0xCC, and 0xFF. Sixteen gray
shades, some already part of the first 216 colors, are also part of the palette,
including 0x111111, 0x222222, and so on, adding another ten colors to the
palette. Six named HTML colors round out the regular part of the Palm OS
palette, for a total of 232 colors: 0x0C0C0C (silver), 0x808080 (gray), 0x800000
(maroon), 0x800080 (purple), 0x008000 (green), and 0x008080 (teal). The last
24 color entries are undefined and filled with black in the release version of the
operating system; on debug ROM images, these 24 slots are filled with some
particularly ugly random colors that are useful for highlighting invalid color
choices while testing an application.

Before attempting to use any color drawing routines, your application should first
query the system to find out what its color capabilities are. To determine what
color depths are available, use the WinScreenMode function, which has the follow-
ing prototype:

Err WinScreenMode (WinScreenModeOperation operation,
UInt32 *widthP, UInt32 *heightP, UInt32 *depthP,
Boolean *enableColorP)

The WinScreenMode function is the Swiss Army knife of Palm OS color programming.
Not only does WinScreenMode allow you to query supported color depths, but it
may also modify screen dimensions and color depth, as well as enable color drawing
mode. The key to the WinScreenMode function’s versatility is its first parameter,
operation, which may be one of the constant values described in Table 19-1.

On the
CD-ROM

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 660

661Chapter 19 ✦ Programming in Color

Table 19-1
WinScreenMode Operation Constants

Constant Description

winScreenModeGet Retrieves the current display settings

winScreenModeGetDefaults Retrieves the default display settings

winScreenModeGetSupportedDepths Returns a value in the depthP parameter
that describes the color depths supported by
the hardware

winScreenModeGetSupportsColor Returns true in the enableColorP
parameter if it is possible to enable color
drawing mode

winScreenModeSet Changes display settings

winScreenModeSetDefaults Changes display settings to their default
values

Depending on the value of operation, the other parameters of WinScreenMode
serve double duty as both input and return parameters. Table 19-2 outlines how
each parameter is used given the operation to be performed; “in” means the
parameter passes a value into the function, “out” means that WinScreenMode
returns a value in the parameter, and “ignored” means that WinScreenMode
ignores the parameter entirely. If you do not wish to change a particular value, or
you are not interested in retrieving that value, you may pass NULL for any of the
widthP, heightP, depthP, or enableColorP parameters.

Table 19-2
WinScreenMode Parameter Use

Operation widthP heightP depthP enableColorP

winScreenModeGet out out out out

winScreenModeGetDefaults out out out out

winScreenModeGetSupported in in out in
Depths

winScreenModeGetSupportsColor in in in out

winScreenModeSet in in in in

winScreenModeSetDefaults ignored ignored ignored ignored

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 661

662 Part VII ✦ Advanced Programming Topics

To find out what color depths the system can handle, pass winScreenModeGet
SupportedDepths for the operation parameter of WinScreenMode, and supply
a pointer for the depthP parameter. For example, the following line from the
Color Test application’s StartApplication routine sets up a global variable,
gSupportedDepths, with the supported color depth information:

WinScreenMode(winScreenModeGetSupportedDepths, NULL, NULL,
&gSupportedDepths, NULL);

The value returned in depthP is actually a binary representation of the supported
color depths. Each bit in the return value represents support for a given depth if
the bit is 1, or no support if the bit is 0. The position of a 1 in the bit field deter-
mines whether a particular color depth is supported, not the decimal numeric
value represented by that bit. For example, a return value of 0x0B, whose binary
representation is 1011, indicates support for 4-bit, 2-bit, and 1-bit color depths,
because its fourth, second, and first bits are set to 1. Another example is 0x8B
(binary 10001011), which indicates support for 8-bit, 4-bit, 2-bit, and 1-bit drawing.

To check whether a specific color depth is supported, use a logical and (&) to com-
pare depthP to a particular bit value. The following sample code tests to see if 8-bit
color is supported, using the gSupportedDepths value obtained by the last exam-
ple (0x80 is 10000000 in binary):

if (0x80 & gSupportedDepths) {
// 8-bit color depth is supported.

}

Retrieving Color Depth
If your application changes the color depth, it is good programming practice to
ensure that it returns the color depth to its original state before exiting. To accom-
plish this, you need to retrieve the color depth when your application starts so it
knows what state to restore when finished. Use the winScreenModeGet operation
with WinScreenMode to retrieve the current depth, as in the following example
from the Color Test application’s StartApplication routine:

WinScreenMode(winScreenModeGet, NULL, NULL, &gOldDepth, NULL);

Because Color Test is not interested in the screen dimensions or availability of
color drawing, NULL values are used for the widthP, heightP, and enableColorP
parameters.

The system automatically sets the color depth back to its default when launching
a new application, but Palm Computing recommends that you restore the color
depth yourself before your application exits.

Note

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 662

663Chapter 19 ✦ Programming in Color

Setting Color Depth
Setting color depth involves passing the winScreenModeSet operation to
WinScreenMode, along with the desired depth in the depthP parameter. As an
example, the Color Test application sets the screen depth when the user selects
one of the color depth push buttons. The MainFormSelectColorDepth function
below is responsible for handling the change in color depth:

static void MainFormSelectColorDepth (UInt16 controlID)
{

FormType *form = FrmGetActiveForm();
UInt32 depth;
UInt32 depthHex;
UInt16 ctlIndex;

// If the push button is already selected, there is nothing
// to do, so return.
if (controlID == gCurrentPushButtonID)

return;

switch (controlID) {
case MainColorDepth1BitPushButton:

depth = 1;
depthHex = 0x01;
break;

case MainColorDepth2BitPushButton:
depth = 2;
depthHex = 0x02;
break;

case MainColorDepth4BitPushButton:
depth = 4;
depthHex = 0x08;
break;

case MainColorDepth8BitPushButton:
depth = 8;
depthHex = 0x80;
break;

default:
ErrFatalDisplay(“Invalid ID”);

}

if (depthHex & gSupportedDepths) {
// Change color depth and refresh the screen.
WinScreenMode(winScreenModeSet, NULL, NULL, &depth,

NULL);

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 663

664 Part VII ✦ Advanced Programming Topics

FrmUpdateForm(MainForm, frmRedrawUpdateCode);
gCurrentPushButtonID = controlID;

// Display the custom palette check box if 8-bit mode
// is selected, or hide it when another color depth is
// selected.
ctlIndex = FrmGetObjectIndex(form,

MainCustomPaletteCheckbox);
if (depth == 8)

FrmShowObject(form, ctlIndex);
else

FrmHideObject(form, ctlIndex);

} else {
// Alert the user that the selected depth is not
// supported.
FrmAlert(UnsupportedDepthAlert);

// Set push button back to where it was.
FrmSetControlGroupSelection(form, 1,

gCurrentPushButtonID);
}

}

The only line in MainFormSelectColorDepth that actually performs the change in
color depth is the call to WinScreenMode; everything else is either code to deter-
mine which push button was selected or code to let the user know that the push
button selected corresponds to a color depth that the system cannot display.

Palm OS 3.0 first introduced the function ScrDisplayMode, which is the direct pre-
decessor to WinScreenMode. The ScrDisplayMode function operates in much
the same fashion as WinScreenMode and allows access to grayscale modes on
devices that are running versions of the Palm OS prior to version 3.5.

Using Color Tables
To provide better performance when drawing, the system uses an indexed color
table to store the available colors. A color table consists of a count of the number of
colors in the table, followed by an array of RGBColorType structures, one for each
color in the table. RGBColorType looks like this:

typedef struct RGBColorType {
UInt8 index;
UInt8 r;
UInt8 g;
UInt8 b;

} RGBColorType;

Note

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 664

665Chapter 19 ✦ Programming in Color

The r, g, and b fields in RGBColorType represent the level of red, green, and blue in
a particular color, respectively. The index value is used differently by various parts
of the system. Most of the drawing routines in the Palm OS use the index instead of
a raw RGB value because it is faster.

Be sure not to confuse a color table, which begins with a count of its entries,
with a simple array of RGBColorType structures. Some functions, such as
BmpGetColorTable, use a full color table, whereas others, such as WinPalette,
use just an array of RGB color values.

If you wish to change the current palette used for drawing in your application, use
the WinPalette function. The most common use for WinPalette is to display bitmaps
that use a different color table from the system default. See the section titled “Using
Color Bitmaps” later in this chapter for more details about color bitmaps.

Like the WinScreenMode function, WinPalette is multipurpose, and its first param-
eter specifies what operation it should perform:

Err WinPalette (UInt8 operation, Int16 startIndex,
UInt16 paletteEntries, RGBColorType *tableP)

Depending on what operation you specify, the tableP pointer to an array of
RGBColorType structures may be used to supply values to WinPalette or to
retrieve values from the function. Table 19-3 describes the operation constants
available for WinPalette.

Table 19-3
WinPalette Operation Constants

Constant Description

winPaletteGet Retrieves the current palette; WinPalette reads entries
from the palette beginning at startIndex and places
them in tableP, starting at index 0.

winPaletteSet Sets entries in the current palette; WinPalette reads
entries from tableP, beginning at index 0, and sets
those entries into the current palette, starting at
startIndex.

winPaletteSetToDefault Sets the current palette to the default system palette;
during this operation, WinPalette does not use the
startIndex or tableP parameters.

Caution

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 665

666 Part VII ✦ Advanced Programming Topics

The paletteEntries parameter controls how many palette entries should be
retrieved or set. Aside from its regular use of indicating the starting index in the
palette, you may also pass the constant value WinUseTableIndexes for the
startIndex parameter. Doing so tells WinPalette to use the individual index val-
ues of each RGBColorType structure in tableP to determine which color slot to get
or set. Specifying anything other than WinUseTableIndexes for the startIndex
parameter causes WinPalette to ignore the index values stored in tableP.

To show WinPalette in action, the Color Test application displays a Use custom
palette check box when it is in 8-bit color depth mode. Checking this box shifts
Color Test into a custom palette, which the application assembles with this code
in its StartApplication routine:

if (0x80 & gSupportedDepths) {
int i;

for (i = 0; i < 256; i++) {
gCustomPalette[i].index = i;
gCustomPalette[i].r = 0;
gCustomPalette[i].g = 255 - i;
gCustomPalette[i].b = 0;

}
}

This custom palette is composed entirely of different shades of green. When the user
taps the Use custom palette check box, Color Test calls its MainFormSwitchPalette
routine to change the palette; MainFormSwitchPalette looks like this:

static void MainFormSwitchPalette (void)
{

FormType *form = FrmGetActiveForm();
ControlType *ctl =

GetObjectPtr(MainCustomPaletteCheckbox);

if (CtlGetValue(ctl) == 1) {
// Switch to the custom palette.
WinPalette(winPaletteSet, 0, 256, gCustomPalette);

} else {
// Switch to the default palette.
WinPalette(winPaletteSetToDefault, NULL, NULL, NULL);

}
}

If the check box is selected, MainFormSwitchPalette uses WinPalette with the
winPaletteSet operation to change every entry in the display palette to an entry
in the custom green palette. When the check box is empty, MainFormSwitchPalette
calls WinPalette with the winPaletteSetToDefault operation to set the palette
back to the default system palette.

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 666

667Chapter 19 ✦ Programming in Color

Even though you can specify more than 16 million different colors using the
RGBColorType structure, in practice the system supports only the 232 colors in
the default palette. If you try to use a color that does not exist in the default
palette, the system automatically finds the nearest color in the system palette and
displays that color instead. This is why the Color Test sample displays only 16
shades of green when the Use custom palette check box is selected; there are
only 16 greens to choose from in the system palette.

Translating RGB to Index Values
Your application may need to convert RGB values to index values in the display
palette, or vice versa. Two functions exist for making these conversions:
WinRGBToIndex and WinIndexToRGB. The prototypes for these functions
look like this:

WinRGBToIndex
IndexedColorType WinRGBToIndex (const RGBColorType *rgbP);

WinIndexToRGB
void WinIndexToRGB (IndexedColorType i, RGBColorType *rgbP);

The IndexedColorType type is simply a typedef for an unsigned 8-bit integer:

typedef UInt8 IndexedColorType;

If the color requested in WinRGBToIndex is not one of the colors present in the
system palette, WinRGBToIndex finds the nearest matching color and returns
its index. If the current display palette is entirely grayscale (1-bit, 2-bit, or 4-bit),
WinRGBToIndex tries to match the luminosity of the color to an entry in the
palette. For a color palette (8-bit), WinRGBToIndex matches a color by looking for
the nearest available RGB value. This kind of shortest-distance algorithm may not
always produce a color that is the closest perceptual match to the requested color,
but it is much faster than a more complex algorithm and works reasonably well,
given that the default system palette contains only 232 usable colors.

Unlike WinRGBToIndex, WinIndexToRGB can always return an exact RGB match
for the requested color index.

Using Color Bitmaps
With color support added to the operating system, you should consider a few extra
things when creating and displaying bitmaps in a Palm OS application. One thing to
keep in mind is the color depth at which you intend to display a bitmap. If your

Note

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 667

668 Part VII ✦ Advanced Programming Topics

application is to run on different Palm OS handhelds, you should define your
bitmap resources as bitmap families to provide support for more than one color
depth in a single image.

A bitmap family is simply a collection of different versions of the same image, each
version intended for a specific color depth. Both Constructor and PilRC allow for
creation of bitmap families. At a minimum, an application intended for both color
and noncolor devices should include a 1-bit (black and white) version of the bitmap
and an 8-bit (color) version.

See Chapter 6, “Creating and Understanding Resources,” for the specifics of using
Constructor and PilRC to create individual bitmaps and bitmap families.

The Color Test sample application has a bitmap family that contains four bitmaps
of the Earth, one for each possible color depth. Color Test also has a bitmap family
containing only one 8-bit color image for comparison.

Even if there is only one image included in a form bitmap, it must be contained in
a bitmap family.

The Bitmap family and Single bitmap push buttons toggle the display between
showing the complete bitmap family with images in all color depths and the single
color bitmap. At 8-bit color depth, both images appear identical, but if you shift
through the other color depths, you will notice that the bitmap images differ
slightly. This is because the system’s drawing routines must convert the single
bitmap image into the lower color depths to display it, and the grayscale approxi-
mations produced by the operating system do not quite match what is contained
in the full bitmap family.

It is more efficient for the system to simply display an image of the appropriate
color depth than to convert an image into another depth, so you should always
provide bitmaps at whatever color depths an application may need to use.

It is possible to include a color table as part of a bitmap resource. There is no way
to attach a color table to a bitmap in Constructor, but PilRC can do so by including
the COLORTABLE option as part of the BITMAPCOLOR or BITMAPFAMILY directives,
as in the following example:

BITMAPCOLOR ID 1000 “color.bmp” COLORTABLE

Unfortunately, including a color table with a bitmap will cause application perfor-
mance to suffer, because the system will convert the bitmap’s colors to the current
display palette before drawing the bitmap. To keep your application running quickly,
use bitmap resources that do not have attached color tables and use the WinPalette
function to adjust the display palette to properly display the bitmaps that have dif-
ferent palette requirements. Better yet, if you can get away with it, make sure the
bitmaps you use are already in the system palette, which will obviate the need for
you to fiddle with the display palette at all.

Tip

Note

Cross-
Reference

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 668

669Chapter 19 ✦ Programming in Color

Coloring the User Interface
Along with the main system color table, the system also keeps lists of colors to use
for various user interface elements, one list for each supported color depth. These
color lists are stored in the system preferences, so that an application could alter
the colors the system uses to draw user interface objects. By default, Palm OS 3.5
offers no way for the user to customize user interface colors.

The system uses a number of constants to refer to each user interface color in the
list. Table 19-4 lists the user interface color constants and describes where each
color is used.

Table 19-4
User Interface Color Constants

Constant Description

UIObjectFrame Border for user interface elements, such
as buttons, selector triggers, menus, and
check boxes.

UIObjectFill Background color for a solid user interface
object.

UIObjectForeground Foreground color for a user interface object;
usually applied to the label on the object.

UIObjectSelectedFill Background color for a selected user interface
object, whether or not the object itself is solid.

UIObjectSelectedForeground Foreground color for a selected user interface
object.

UIMenuFrame Color of the border around a menu.

UIMenuFill Background color of a menu item.

UIMenuForeground Text color in a menu.

UIMenuSelectedFill Background color in a selected menu item.

UIMenuSelectedForeground Text color in a selected menu item.

UIFieldBackground Background color of an editable text field.

UIFieldText Text color in an editable text field.

UIFieldTextLines Underline color in an editable text field.

UIFieldCaret Insertion point cursor color in an editable
text field.

Continued

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 669

670 Part VII ✦ Advanced Programming Topics

Table 19-4 (continued)

Constant Description

UIFieldTextHighlightBackground Background color of highlighted text in an
editable text field.

UIFieldTextHighlightForeground Text color of highlighted text in an editable
text field.

UIFieldFepRawText Text color of unconverted text in the inline
conversion area of a Front End Processor (FEP),
such as that used for the Japanese version of
the Palm OS. If the FEP colors are identical to
normal text field colors (which is usually the
case on a monochrome display), unconverted
text is indicated with a solid underline.

UIFieldFepRawBackground Background color of unconverted text in the
inline conversion area of an FEP.

UIFieldFepConvertedText Text color of converted text in the inline con-
version area of an FEP. If the FEP colors are
identical to normal text field colors, uncon-
verted text is indicated with a double-thick
solid underline.

UIFieldFepConvertedBackground Background color of converted text in the inline
conversion area of an FEP.

UIFieldFepUnderline Underline color used in the inline conversion
area of an FEP.

UIFormFrame Border and title bar color of a form.

UIFormFill Background color of a form. White is usually
the best color to use for UIFormFill because
it provides the best contrast with user interface
elements on the form.

UIDialogFrame Border and title bar color of a modal form.

UIDialogFill Background color of a modal form.

UIAlertFrame Border and title bar color of an alert dialog box.

UIAlertFill Background color of an alert dialog box.

UIOK Color of an information icon.

UICaution Color of a caution icon.

UIWarning Color of a warning icon.

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 670

671Chapter 19 ✦ Programming in Color

Keep in mind that within a table, objects use the UIField colors instead of the
regular UIObject colors. Also, as of this writing, the Palm OS does not use the
UIOK, UICaution, or UIWarning color constants.

In the color debug ROM image for Palm OS 3.5, most of the user interface color con-
stants have a unique color assigned to them from the last 24 entries in the system
palette. These color choices make the screen in POSE look like a fashion designer’s
worst nightmare, because the colors are fairly hideous and seem to be designed to
clash with one another. However, this crime against good taste can actually be a
debugging bonus if your application changes user interface colors, because you can
easily distinguish default system colors from those colors that you assign yourself.
If you design a color application, try it on the debug ROM to make sure it does the
right thing with the user interface colors, and then test it again on the release ver-
sion of the ROM, to make sure it looks okay with the actual default system colors.

Within an application, you can change the user interface colors using the UIColor
SetTableEntry function, which has the following prototype:

Err UIColorSetTableEntry (UIColorTableEntries which,
const RGBColorType *rgbP)

The which parameter is the symbolic color constant from Table 19-4 that you
want to change, and rgbP is a standard RGBColorType structure containing the
RGB color that you wish to assign to the specified user interface element. The
UIColorSetTableEntry function finds the best fit in the current display palette for
the requested color, and then sets the user interface color to the best-fit color.

Be sure that the drawing window is currently on-screen when using UIColor
SetTableEntry. If the drawing window is off-screen, the best-fit algorithm used by
UIColorSetTableEntry might pick a color that is not actually available in the cur-
rent display palette.

To find out what color is currently assigned to a particular user interface element,
use the UIColorGetTableEntryIndex function to retrieve the color’s index in the
display palette or the UIColorGetTableEntryRGB function to retrieve the color’s
actual RGB value in an RGBColorType structure. The prototypes for these two func-
tions look like this:

UIColorGetTableEntryIndex
IndexedColorType UIColorGetTableEntryIndex

(UIColorTableEntries which);

UIColorGetTableEntryRGB
void UIColorGetTableEntryRGB

(UIColorTableEntries which, RGBColorType *rgbP);

Caution

Note

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 671

672 Part VII ✦ Advanced Programming Topics

When the system switches to a new application, it applies the default system user
interface colors, losing any changes your application has made. If you want
changes to user interface colors to stick, you will need to save them as application
preferences and reset the user interface colors when your application starts up
again.

Summary
In this chapter, you learned how the Palm OS 3.5 color system works and how to
exploit it in your own color applications. After reading this chapter, you should
understand the following:

✦ Palm OS 3.5 supports four color depths: 1-bit (black and white), 2-bit (4-color
grayscale), 4-bit (16-color grayscale), and 8-bit (256 colors).

✦ Querying supported color depths, retrieving the current color depth, and set-
ting color depth may all be accomplished with the WinScreenMode function.

✦ The WinPalette function allows you to change the current display palette,
substituting your own colors for the default colors of the system palette.

✦ For maximum compatibility on various Palm OS handhelds, color bitmap
resources should be created as bitmap families, containing different bitmaps
for different color depths.

✦ The system keeps a list of user interface colors, which you may customize
using the UIColorSetTableEntry function.

✦ ✦ ✦

Note

4676-7 ch19.f.qc 9/29/00 12:59 PM Page 672

Odds and Ends

This chapter is a collection of useful Palm OS program-
ming techniques that you may not need to use as fre-

quently as those described elsewhere in this book. Many of
the things mentioned in this chapter are not for the timid, and
you will need to be comfortable with both the Palm OS and
with your development tools before diving too deeply into
this part of the book.

Creating Large Applications
The DragonBall processor used in Palm OS handhelds uses
16-bit memory addresses, which limits it to relative jumps of
32KB. If an application tries to call a function that is located
more than 32KB away within the same code resource, the jump
will fail. For many Palm OS applications, this is not a problem,
because many applications consist of a single code resource
less than 32KB in size. For larger applications, though, it may
be necessary to extend the processor’s jump distance, using
techniques described later in the “Breaking the 32KB Barrier”
section.

Even if you are able to break the 32KB jump limit, the HotSync
architecture puts an absolute limit of slightly under 64KB for
any resource, which includes the code resources that make
up a Palm OS application. If you need to make a Palm OS appli-
cation that is much larger than 64KB, you will need to break
your application into multiple code resources, a process
known as segmenting your application. The “Segmenting
Applications” section later in this chapter describes how to
go about breaking your program into smaller bits to work
around the 64KB limit.

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating large
applications

Using custom fonts

Creating a user
interface dynamically

Localizing
applications

Using the file
streaming API

✦ ✦ ✦ ✦

4676-7 ch20.f.qc 10/16/00 8:32 AM Page 673

674 Part VII ✦ Advanced Programming Topics

The official reference for segmenting applications is CodeWarrior Targeting Palm
OS, which is available in the CodeWarrior Documentation directory of the standard
Metrowerks CodeWarrior for Palm Computing platform installation.

Breaking the 32KB Barrier
An application larger than 32KB in size may generate one or more “16-bit reference
out of range” errors at compile time if one function in the application calls another
that is more than 32KB away in the compiled code. To work around this problem,
you have several options:

✦ Change the link order of the application’s source files.

✦ Rearrange your source code.

✦ Use the Smart code model in CodeWarrior.

✦ Create “code islands” linking pieces of code that are more than 32KB apart.

Changing link order
In CodeWarrior, you may be able to prevent an out of range error by rearranging the
order in which CodeWarrior links your application’s source files. The Segment view
in the project window allows you to change the link order; Figure 20-1 shows the
Segment view for a typical application.

Figure 20-1: The project window’s
Segment view

Note

4676-7 ch20.f.qc 10/16/00 8:32 AM Page 674

675Chapter 20 ✦ Odds and Ends

To figure out which source files to relocate in the Segment view, take a look at the
“16-bit reference out of range” errors produced during compilation. The errors will
let you know which functions are attempting to call functions that are more than
32KB away. Find the source files that contain each of the offending routines and
drag those source files closer to each other in the Segment view.

The same reordering process can be performed using the PRC Tools by shuffling
the order of your source files in the project’s makefile. It might take a bit of experi-
mentation to come up with an order that works, however.

This technique is effective only to a certain point. The larger and more complex
your application is, the greater the chance that you will not be able to resolve out
of range errors by simply rearranging the link order. If that is the case, you will
need to either try one of the other methods in this section or consider segmenting
your application.

Rearranging your source code
It is also possible to work around some jump limitations by simply rearranging your
source code within each source file. Try to group functions that call each other
closer together within a source file.

Like changing the application’s link order, reordering your source code is effective
only to a certain point. Also, this way of circumventing the 32KB jump limit can lead
to code that is hard to maintain. If you or some other developer makes changes to
the source at a later date, the program may suddenly stop compiling for seemingly
mysterious reasons as you shift the source code around in its file.

Using the Smart code model
In CodeWarrior, you can enable the Smart code model option, which tells the com-
piler to use 32-bit jumps for references that are out of range, rather than the usual
16-bit jumps. To accomplish this task, the compiler and linker have to add a fair
amount of code to your application to produce each 32-bit jump, so this option
can lead to code bloat very quickly if your application needs to make a lot of long-
distance jumps.

If your application is hovering just under 64KB in size, this option can actually
bloat the code enough that it will no longer fit in a Palm OS code resource, in
which case you are better off segmenting your application.

To enable the Smart code model, open the project’s target settings panel with the
Edit ➪ target settings menu command, where target is the name of your project.
Under Code Generation in the Target Settings Panels list, select the 68k Processor
list item, which will change the settings panel to look something like Figure 20-2.
In the Code Model drop-down, select Smart to enable the Smart code model.

Caution

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 675

676 Part VII ✦ Advanced Programming Topics

Figure 20-2: Enabling the Smart code model in the Target Settings Panel

Creating code islands
If you have only a few function calls that are out of range, you can work around the
32KB jump limit by creating “code islands,” also known as “jump islands,” in your
application code. A code island is simply a small function, located within 32KB of
both a calling function and the distant function that needs to be called, whose only
purpose is to call the function that is normally out of range. Such code islands give
a long-distance jump a place to “land” before moving on to the actual function the
jump is trying to call.

Just as with rearranging your code, making code islands can become a maintainer’s
nightmare. Be sure to carefully comment both the code island and any calls to the
code island to prevent you or another developer from breaking the jump by adding
excess code between the calling function and the island, or between the island and
the function it calls.

Segmenting Applications
If your application is larger than 64KB, you will need to build it as a multi-segment
application. A multi-segment application is made of more than one code resource,
or segment. Of the two major Palm OS development environments, it is much easier
to create multi-segment applications with CodeWarrior than with the PRC Tools, but
it may be done using either one.

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 676

677Chapter 20 ✦ Odds and Ends

Segmenting applications with CodeWarrior
If you know from the start that you are creating an enormous application to begin
with, you can use CodeWarrior’s project stationery for a multi-segment application.
When you first create a new project, select Palm OS Multi-Segment App from the
New Project dialog box, pictured in Figure 20-3, and CodeWarrior will create a multi-
segment project for you, including all the linker settings required to properly build
the project.

Figure 20-3: CodeWarrior’s
New Project dialog box

The project window’s Segment view is where you can control the different code
resources that make up a large project. Figure 20-4 shows the Segment view for a
typical multi-segment application.

Figure 20-4: The project window’s
Segment view for a typical multi-
segment application

The first segment in a large application is segment 0, which the linker creates to
hold startup data and code that the application uses at run time to set up the other
segments in the application. Segment 0 does not contain any source code that you
can change, so it does not appear in the Segment view.

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 677

678 Part VII ✦ Advanced Programming Topics

Segment 1, which must appear first in the Segment view, is where the source file con-
taining the application’s PilotMain function should go. Also, any functions called
directly from PilotMain during anything other than a sysAppLaunchCmdNormalLaunch
launch code must be part of the first segment.

The requirement that such functions must be in the first segment stems from the
fact that the system keeps pointers to code resources in the application’s global
variable space. When global variables are available, which happens during a
sysAppLaunchCmdNormalLaunch launch code, code outside segment 1 is
accessible. If global variables are not available, there is no way for the system to
access functions outside the first segment. Functions that PilotMain calls when
global variables are not available must, therefore, be part of the first segment,
because without a global variable space, there is no way for the system to call
code outside segment 1.

Along with the source containing PilotMain and its related functions, the first seg-
ment must also contain a reference to the file MSL Runtime Palm OS (xx).lib,
where xx is either 4i or 2i, depending on settings in the 68K Processor panel,
shown earlier in Figure 20-2. If the 4-Byte Ints check box is selected, the 4i library
should be used; otherwise the 2i library should be included.

In a multi-segment application created from the Palm OS Multi-Segment App pro-
ject stationery, segment 1 is labeled in the Segment view with the non-mnemonic
title “Precompiled Headers.” Rest assured, whatever its name, the first segment
listed in the Segment view is actually segment 1.

Later segments in the application may contain any other application code. Palm
Computing recommends that you use each segment to contain code that imple-
ments related features. For example, a form’s event handler and the routines it
calls would fit nicely into a single segment.

To figure out exactly which source files can be located outside segment 1, do the
following:

1. Comment out the code in your PilotMain function that handles the
sysAppLaunchCmdNormalLaunch launch code.

2. Open the target settings dialog box and select 68K Linker from the Target
Settings Panels list to display the 68K Linker panel. Check the Generate Link
Map check box. Click Save and close the dialog box.

3. Rebuild your application.

CodeWarrior will create a file named project.map, where project is the name of
your project, that shows the link map for your application. Within the link map, any
file on a line beginning with Code: must be located in segment 1.

Note

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 678

679Chapter 20 ✦ Odds and Ends

You can ignore functions in the link map that begin and end with a double under-
score (__); these are system functions.

To add another segment to the application, select Project ➪ Create New Segment.
The Segment Info dialog box, shown in Figure 20-5, appears.

Figure 20-5: The Segment Info dialog box

Enter a name for the segment in the Name text box, and then click OK. You can add
source files to a particular segment by selecting the segment in the project window,
and then choosing the Project ➪ Add Files menu command. Moving source files
from one segment to another is a simple matter of clicking on and dragging them
around the project window.

To rename a segment, double-click its name in the Segment view. The Segment
Info dialog box appears, allowing you to change the segment’s name.

Converting a small application to a large application
As you add new features to an application during its lifetime, you may find that
an application that once fit nicely into the 64KB limit has grown too large to be a
single-segment application. Fortunately, it is not very difficult to convert a small
application into a multi-segment application. Follow these steps:

1. Select the Targets tab in the project window to display the Target view.

2. Choose Project ➪ Create New Target. The New Target dialog box, shown in
Figure 20-6, appears. Give the target a name, and choose the option to Clone
an existing target. Pick a target from the existing project from the drop-down
list, and then click OK.

3. In the Target view, pick the newly created target from the drop-down list so it
is the current target for the project.

4. Select Edit ➪ target settings, where target is the name of the target you just cre-
ated, or double-click the new target’s name in the project window.

Tip

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 679

680 Part VII ✦ Advanced Programming Topics

Figure 20-6: CodeWarrior’s
New Target dialog box

5. Select 68K Linker from the Target Settings Panels list. Make sure that the Link
Single Segment check box is not selected. Click the Save button and close the
dialog box.

6. Select the Segments tab in the project window to display the Segment view.

7. Replace the StartupCode.lib library with MSL Runtime Palm OS (4i).lib
or MSL Runtime Palm OS (2i).lib, depending on your project’s 4-Byte Ints
setting in the 68K Processor panel.

8. Add segments to the application and rearrange the source code files in the
project window until you have the code in the desired segments. Keep in mind
that certain files must be located in the first segment in the list: the run-time
library, any source file containing PilotMain, and any source file containing
routines that PilotMain calls when processing any launch code other than
sysAppLaunchCmdNormalLaunch. If PilotMain and its associated function
calls are located in the same source file with other application code, you may
need to create a new source file and separate the code into the new file before
you can rearrange the link order.

Segmenting applications with the PRC Tools
Creating multi-segment applications with the PRC Tools is somewhat more difficult
than it is in CodeWarrior, but it is possible.

The PRC Tools documentation refers to different segments as code sections, which
is more in keeping with the standard GCC section function attribute. This part of
the book will continue to call them segments to avoid muddying the waters any
further, but if you read through the PRC Tools documentation and see references
to code sections, note that segments are being discussed.

Three things are required to build a multi-segment application with the PRC Tools:

✦ A project definition file, which lists the different segments in a multiple
code clause

✦ A section attribute annotation in the declaration of each function that will be
outside the first segment

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 680

681Chapter 20 ✦ Odds and Ends

✦ An assembly language stub file that defines pointers to functions in segments
outside segment 1

A definition file is simply a text file with a .def extension that contains information
about various properties of the project as a whole. The definition file must be the
first file you pass to build-prc when compiling the application. Although there are
many directives you can add to a definition file, the only one that is necessary for
segmenting a large application is multiple code. The syntax for the multiple
code clause looks like this:

multiple code { section ...}

Within the curly braces, list each segment past the first in your application, sepa-
rated by spaces. For example, the following line declares two extra sections, one for
an application’s main form and one for its edit form:

multiple code { mainform editform }

The PRC Tools store only the first eight characters of a section name. If you use
larger section names, they will be truncated, which can lead to all kinds of pain;
keep section names at eight or fewer characters.

The multiple code clause lets build-prc know that there are extra segments in
the application and what those segments are called. Now you need to mark individ-
ual files in your source code so build-prc knows that they belong to these extra
segments. To do this, you must use the section function attribute in the declara-
tions of functions that live outside the first segment. A function declaration with the
section attribute looks like this:

void MyFunc (void) __attribute__ ((section (“section”)));

The section value in double quotes is the name of the segment that the function
belongs to, and that name should match one of the segment names from the defini-
tion file. To make it easier to define many functions as part of an extra segment, you
can #define macros to add to the end of function declarations:

#define MAIN_SECTION __attribute__ ((section (“mainform”)))
#define EDIT_SECTION __attribute__ ((section (“editform”)))

Boolean MainFormHandleEvent(EventPtr event) MAIN_SECTION;
void MainFormInit(FormPtr form) MAIN_SECTION;

...

Boolean EditFormHandleEvent(EventPtr event) EDIT_SECTION;
void EditFormInit(FormPtr form) EDIT_SECTION;
void EditFormSaveData(void) EDIT_SECTION;

Caution

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 681

682 Part VII ✦ Advanced Programming Topics

Once you have all the functions in extra segments marked, you need to make an
assembly language stub file that contains pointers to all these functions. Creating the
assembly stub file is done using the same definition file you created for build-prc,
only this time you need to pass it to a tool called multigen, which also generates a
linker script to properly link the extra-segment functions into the application.

First, to generate the assembly code and linker stub, call multigen with the .def
file as its sole argument. The makefile rule should look something like this:

myapp-sections.s myapp-sections.ld: myapp.def
multigen myapp.def

The multigen tool generates two files, myapp-sections.s and myapp-sections.
ld, where myapp is the name of your application. Compile the myapp_sections.s
file:

myapp-sections.o: myapp-sections.s
m68k-palmos-gcc -c myapp-sections.s

This will result in a myapp-sections.o file, which you should link into your appli-
cation, along with all the other object files that make up the application. At this
time, you should also pass in the myapp_sections.ld linker script so the linker
can place the extra assembly code at the proper addresses:

OBJS = ...list of object files... myapp-sections.o

myapp: $(OBJS) myapp-sections.ld
m68k-palmos-gcc -o myapp $(OBJS) myapp-sections.ld

Along with the rules just outlined, you should also remove the m68k-palmos-
obj-res rule and any mention of the interim .grc resource files. Instead, you
should build the application’s .prc file by passing the compiled executable
directly to build-prc:

myapp.prc: myapp
build-prc myapp.prc “My App” LFlb myapp.def myapp *.bin

Listing 20-1 shows a generic makefile for compiling a multi-segment application. All
you need to do to customize this makefile is replace the variable definitions at the
top with appropriate names for your own application. In particular, make sure you
change the APPID variable to a unique creator ID that you have registered with
Palm Computing.

Listing 20-1: Generic multi-segment makefile

VERSION = 1.0
APP = myapp

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 682

683Chapter 20 ✦ Odds and Ends

ICONTEXT = “My App”
APPID = strt
RCP = $(APP).rcp
PRC = $(APP).prc
DEF = $(APP).def
SRC = $(APP).c $(APP)Section2.c $(APP)Section3.c
SECTIONS = $(APP)-sections

CC = m68k-palmos-gcc
PILRC = pilrc
BUILDPRC = build-prc
MULTIGEN = multigen

Uncomment this if you want to build a GDB-debuggable version
#CFLAGS = -O2 -g
CFLAGS = -O2

all: $(PRC)

$(PRC): $(APP) bin.stamp
$(BUILDPRC) $(PRC) $(ICONTEXT) $(APPID) $(DEF) *.bin
ls -l *.prc

$(APP): $(SRC:.c=.o) $(SECTIONS).ld
$(CC) $(CFLAGS) -o $@ $^

bin.stamp: $(RCP)
$(PILRC) $^ $(BINDIR)
touch $@

%.o: %.c
$(CC) $(CFLAGS) -c $< -o $@

touch $<
Enable the previous line if you want to compile EVERY time.

$(SECTIONS).o: $(SECTIONS).s
$(CC) $(CFLAGS) -c $< -o $@

$(SECTIONS).s $(SECTIONS).ld: $(DEF)
$(MULTIGEN) $(DEF)

depend dep:
$(CC) -M $(SRC) > .dependencies

clean:
rm -rf *.o $(APP) *.bin *.stamp *.s *.ld

veryclean: clean
rm -rf *.prc *.rcp *.bak

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 683

684 Part VII ✦ Advanced Programming Topics

Adding Custom Fonts to Applications
The fonts that come with the Palm OS are normally sufficient for most applications,
but they do have their limitations. For one thing, the default fonts all have propor-
tional spacing, which makes them particularly unsuitable for displaying things such
as computer source code, which is much easier to read in a monospaced font. If
you want some kind of decorative font for use in a game, you are also out of luck
with the default fonts, because they are very simple sans-serif fonts, designed to
be easy to read and, at the same time, occupy as little screen space as possible.

You can create your own custom fonts for the Palm OS, however. A font is a
resource of type NFNT. On Palm OS 3.0 or later, you can use an NFNT resource in
an application by calling FntDefineFont. The FntDefineFont function’s prototype
looks like this:

Err FntDefineFont (FontID font, FontPtr fontP)

The font parameter is an application-specific identification number for the font.
Values less than 128 are reserved for system use, so a custom font must have an ID
of 128 or greater. The fontP parameter takes a pointer to the locked font resource.
As an example, the following lines of code lock a custom font resource and set it up
for use in an application:

#define fntCustom 128

FontType *fontCustom;

fontCustom = MemHandleLock(DmGetResource(‘NFNT’,
MyCustomFont));

FntDefineFont(fntCustom, fontCustom);

Once you have called FntDefineFont to define the custom font’s ID, you may use
that font ID as you would any other font ID. When the application exits, the system
uninstalls the font, so your application will need to reinstall it by calling
FntDefineFont each time the application runs.

You must keep the custom font resource locked until the application either quits
or no longer needs to use the font.

On versions of the Palm OS prior to 3.0, the FntDefineFont function does not exist,
but you can still use custom fonts with a little judicious hacking. By setting the user
interface global variable UICurrentFontPtr, you can trick the system into using
your custom font:

void *fontOld;
void *fontCustom;

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 684

685Chapter 20 ✦ Odds and Ends

// Save the current font.
fontOld = UICurrentFontPtr;

fontCustom = MemHandleLock(DmGetResource(‘NFNT’,
MyCustomfont));

UICurrentFontPtr = fontCustom;

// Perform any drawing operations that use the custom font.

// Unlock the pointer to the custom font.
MemPtrUnlock(fontCustom);

// Restore the original font.
UICurrentFontPtr = fontOld;

There are limitations to using custom fonts. Normally you may use a custom font
only with the various Palm OS text-drawing functions, not as part of any form ele-
ments, because the font is not available at build time. The exception to this is if you
use PilRC to build your application’s resources, and then only in an application that
runs on Palm OS 3.0 or later. See below for more details about using custom fonts to
build forms in PilRC.

Creating a Custom Font
As of this writing, CodeWarrior’s Constructor tool is not able to create custom
fonts, but PilRC can. There are also a few shareware and freeware applications, for
both Windows and the Mac OS, for creating new fonts on the desktop in a graphical
environment, or for converting existing desktop fonts into resources that you can
compile into an application using either CodeWarrior or the PRC Tools.

See Appendix B, “Finding Resources for Palm OS Development,” for more infor-
mation about where to find font creation tools.

Unfortunately, even with a good desktop font creation tool, Constructor still cannot
use custom fonts in form elements. PilRC, on the other hand, is perfectly capable of
building forms that contain custom fonts, provided the font definition comes first in
the .rcp file, before any use of the custom font in a form. Another requirement for
build-time use of custom fonts in PilRC is that the application whose forms contain
the custom fonts must be running on Palm OS 3.0 or later.

The PilRC directive for creating a font resource looks like this:

FONT ID <resourceID> FONTID <fontID>

Cross-
Reference

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 685

686 Part VII ✦ Advanced Programming Topics

The fontID should be the same font ID number that you pass to the FntDefineFont
function (a number between 128 and 255, inclusive), and font file specifies a text
file that defines the font. For example, the following line creates a font resource
from a font definition file called myfont.txt:

FONT ID 1000 FONTID 128 “myfont.txt”

A font definition file is a standard ASCII text file, consisting of some header informa-
tion followed by the definitions for individual characters, or glyphs, that make up
the font. The header for a font looks like this:

fontType 36864
ascent <ascent value>
descent <descent value>
fRectWidth
fRectHeight

The fontType is a magic number that is present in all the default Palm OS fonts.
David Turnbull, the author of the font compiler in PilRC, created the compiler by
reverse-engineering the existing default Palm OS fonts, so the fontType number
is something of a mystery; rest assured, your font should work fine if you include
fontType 36864 at the head of the font definition.

Both ascent and descent are values that you do not have to take on faith. The
ascent value is the number of pixels that make up the part of each glyph above
the font’s baseline, where the bottoms of most characters are. Most characters in
a font sit directly on or above the baseline, but some, such as q and y, have a part
(known in conventional typography as a descender) that dips below the baseline.
The descent value specifies how many pixels are below the baseline in each glyph.
A font’s total height is equal to the ascent plus the descent.

The fRectWidth and fRectHeight values are entirely optional. These two header
lines define the width and height of the font, respectively. If you omit fRectWidth,
PilRC uses the width of the widest character in the font. If you omit fRectHeight,
PilRC uses the height of the first character in the font.

As an example, the following header section defines a font with an ascent of 9 and
a descent of 2, for a total height of 11:

fontType 36864
ascent 9
descent 2

Following the header are the definitions for individual glyphs in the font. Each glyph
definition begins with the word GLYPH, followed by either the ASCII number of the
character this glyph represents, or the actual character itself, surrounded by single

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 686

687Chapter 20 ✦ Odds and Ends

quotes. For example, the following GLYPH statements are equivalent, both repre-
senting a space character:

GLYPH 32

GLYPH ‘ ‘

To define a glyph for the single quote character (‘), use GLYPH 39; using GLYPH
‘’’ will not work.

Following the GLYPH line are several lines that define what the bitmap image of the
glyph looks like. A bitmap line consists of hyphen (-) or period (.) characters to
represent pixels that are turned off, and any other characters to represent pixels
that are turned on. For example, the following glyph defines a letter A:

GLYPH ‘A’

----#-----
---#-#----
---#-#----
--#---#---
--#####---
-#-----#--
-#-----#--
###---###-

Keep in mind that all the glyph definitions in your font should be exactly the same
number of lines high. Even a tiny character, such as a period, needs to have empty
pixels above and below it so its height is the same as that of other glyphs in the font.
For example, the following period glyph would work with the A defined previously:

GLYPH ‘.’

##-
##-

To make a font more readable, include a pixel of blank space to the right of each
glyph to keep the characters from running into each other. You should also leave a
pixel of blank space at the top of each character, so descending parts of glyphs do
not collide with the tops of tall letters on the next line of text.

Tip

Tip

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 687

688 Part VII ✦ Advanced Programming Topics

Creating User Interface Dynamically
For most applications, the user interface elements on a form are static; there is no
need to move them around at run time. Even if you have an element that you want
to hide or show in response to user input, the best way to accomplish this is to
include the element as part of a form’s normal resources, and then make it disap-
pear and reappear at run time by invoking the FrmHideObject or FrmShowObject
functions. Vanishing form elements can be very confusing to a new user and usually
make for a bad user interface.

If your application does need to create new forms at run time or add elements to
existing forms, note that Palm OS version 3.0 and later offers functions for creating
user interface dynamically — while an application is running. An example of an
application where this might be useful would be a database program that allows
the user to create custom input forms.

The FrmNewForm function allows you to create a new form, and it has the follow-
ing prototype:

FormType *FrmNewForm (UInt16 formID, const Char *titleStrP,
Coord x, Coord y, Coord width, Coord height, Boolean modal,
UInt16 defaultButton, UInt16 helpRscID, UInt16 menuRscID)

As a return value, FrmNewForm gives you a pointer to the newly created form, or 0
if the call did not succeed. The most common reason that FrmNewForm, or any of
the dynamic UI functions, might fail is lack of available memory.

Unlike a normal form resource, there is no need to call FrmInitForm with a
dynamically created form.

Table 20-1 describes each of the parameters to FrmNewForm.

Table 20-1
FrmNewForm Parameters

Parameter Description

formID ID to assign to the form.

titleStrP Pointer to a string to use for the form’s title.

x Horizontal coordinate of the form’s upper-left corner.

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 688

689Chapter 20 ✦ Odds and Ends

Parameter Description

y Vertical coordinate of the form’s upper-left corner.

width Width of the form in pixels; must be from 1–160, inclusive.

height Height of the form in pixels, must be from 1–160, inclusive.

modal If true, the form ignores pen events outside its borders.

defaultButton ID of the form’s default button, which the system simulates tapping
if the user switches applications while the form is displayed.

helpRscID ID of a string resource that contains help text for the dialog box; only
modal dialog boxes can have help text.

menuRscID ID of the menu bar resource that should be attached to the form.
Note that you cannot dynamically create menu resources, so if you
want menus for a dynamically generated form, you must attach the
form to pre-existing menu resources.

When creating any form or UI object dynamically, be careful not to use an ID that
already exists for another object. A good way to avoid reusing ID numbers is to
reserve a block of numbers that are used only for dynamic UI. When the applica-
tion starts, set a global variable to the first number in this pool of ID numbers, and
any time you create a new object, increment the variable so you will never use the
same number twice. Here is a quick example:

#define DYNAMIC_UI_START 6000

UInt16 gNextID = DYNAMIC_UI_START;

// When creating a new object, increment gNextID:
newLabelPtr = FrmNewLabel(form, gNextID++, text, x, y,

stdFont);

You may add user interface elements to forms that you create dynamically, or to
existing static forms, using a variety of functions. The only UI element that you can-
not create dynamically is a table. Also, some of the routines for creating user inter-
face elements are restricted to certain versions of the Palm OS. Table 20-2 lists the
functions for creating individual form elements, along with the earliest version of
the Palm OS that supports the function and what element each function creates.

Caution

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 689

690 Part VII ✦ Advanced Programming Topics

Table 20-2
Dynamic UI Element Functions

Minimum
Function Palm OS Version UI Element(s)

CtlNewControl 3.0 Controls: buttons, push buttons,
repeating buttons, check boxes,
pop-up triggers, or selector triggers

CtlNewGraphicControl 3.5 Graphic controls: buttons, push
buttons, repeating buttons, pop-up
triggers, or selector triggers

CtlNewSliderControl 3.5 Slider

FldNewField 3.0 Text field

FrmNewBitmap 3.0 Form bitmap

FrmNewGadget 3.0 Gadget

FrmNewGsi 3.5 Graffiti shift indicator

FrmNewLabel 3.0 Label

LstNewList 3.0 List

As an example of a typical member of this group of functions, here is the prototype
for CtlNewControl:

ControlType *CtlNewControl (void **formPP, UInt16 ID,
ControlStyleType style, const Char *textP, Coord x,
Coord y, Coord width, Coord height, FontID font,
UInt8 group, Boolean leftAnchor)

All of the UI creation functions share the same first parameter: formPP. The formPP
parameter is a pointer to a pointer to the form where the new element should be
installed. Unlike many pointers to pointers in the Palm OS, formPP is not actually a
handle. To accommodate the addition of another user interface element, the system
may need to move the entire form structure in memory, which makes the original
value of formPP, as you pass it to the function, invalid. Fortunately, if the dynamic
UI functions need to move the form, they return the form’s new location in the
formPP parameter. Be sure to always use the new value returned in formPP, and
discard whatever value you originally passed in for the formPP parameter.

A pair of other parameters are shared by all the dynamic UI functions; x and y
always specify the coordinates of the upper-left corner of the user interface ele-
ment, relative to the form that contains it. Most of the functions also have width

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 690

691Chapter 20 ✦ Odds and Ends

and height parameters, which contain the width and height of the element, in pix-
els. Many of the functions also have an ID or id parameter, which is where you
should specify the ID number you will use to refer to the element elsewhere in your
application.

When creating a control with CtlNewControl or CtlNewGraphicControl, you need
to specify exactly what type of control you want by supplying the style parameter.
Values for style come from the ControlStyleType enumerated type, which looks
like this:

enum controlStyles {
buttonCtl,
pushButtonCtl,
checkboxCtl,
popupTriggerCtl,
selectorTriggerCtl,
repeatingButtonCtl,
sliderCtl,
feedbackSliderCtl

};
typedef enum controlStyles ControlStyleType;

Not all of the members of ControlStyleType are available for use with
CtlNewControl or CtlNewGraphicControl. In particular, sliderCtl and
feedbackSliderCtl may be used only with the CtlNewSliderControl function,
and CtlNewGraphicControl cannot have a style type of checkboxCtl.

Before closing a form containing dynamic UI elements, you need to call
FrmRemoveObject to remove each dynamic object. The FrmRemoveObject
function has the following prototype:

Err FrmRemoveObject (FormType **formPP, UInt16 objIndex)

The formPP parameter to FrmRemoveObject works in the same fashion as
the formPP parameter to the UI element creation functions. This formPP is also
not a handle, and you should discard whatever value you pass for formPP in
favor of the value returned in formPP by the FrmRemoveObject function. When
FrmRemoveObject removes a UI element, it does not free any memory associ-
ated with the object itself, such as the string data attached to a text field. The
FrmRemoveObject function does shrink the memory chunk allocated to a form’s
data structure, because the function frees the memory occupied by the object
within the form structure itself.

Also keep in mind that the FrmRemoveObject function’s objIndex parameter
requires the index of an object, not its ID number. As with any user interface object,
you can retrieve the index by passing the object’s ID to the FrmGetObjectIndex
function.

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 691

692 Part VII ✦ Advanced Programming Topics

For more efficient removal of several form objects, remove them in descending
index order; that is, call FrmRemoveObject on objects with higher index values
before removing objects with low index values. Removing objects in this order
reduces the amount of shuffling that FrmRemoveObject must do when filling in
the hole left by the removed object’s data, because higher-indexed objects are at
the end of the form’s data structure.

A common problem when programming dynamic user interface is accidentally
using invalid pointers to controls and forms. During debugging, you can use
CtlValidatePointer and FrmValidatePtr to make sure that pointers are valid
before trying to use them. The prototypes for these two functions look like this:

Boolean CtlValidatePointer (const ControlType *controlP);

Boolean FrmValidatePtr (const FormType *formP);

Both functions return true if the pointer you pass to them is a valid pointer to
a control or a form. You should use these functions only for debugging, though;
leaving them in a released application adds bloat to the code.

Localizing Applications
Creating applications that can display text in multiple languages is easily one of
the most challenging tasks in software development. Not only do you need to be
careful to put display text only in the application’s resources instead of hard-coding
it, but there are also major problems in creating an application that can support
both the standard ASCII text sufficient for display of most Western languages and
the multiple-byte character encoding used for most Asian languages. Besides text
differences, different countries also format numbers and dates differently, further
adding to the confusion.

Fortunately, the folks at Palm Computing have provided tools and functions within
the Palm OS to make the often arduous task of localizing an application much eas-
ier. The text and international managers, available in most versions of the Palm OS
since version 3.1, offer functions for working with localized strings and characters.

Using the Text and International Managers
Since Palm OS 3.1, Palm Computing has included the text and international man-
agers as part of the operating system. Before using any text or international man-
ager functions, check for the existence of the international manager with the FtrGet
function:

UInt32 value;

Err error = FtrGet (sysFtrCreator, sysFtrNumIntlMgr, &value);

Tip

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 692

693Chapter 20 ✦ Odds and Ends

If the international manager is installed, value will be a non-zero value, and the
error return value will be 0. The text and international managers are inseparable
companions, so once you ascertain that the international manager exists, you can
be certain that the text manager is also available.

The international manager detects the character encoding used by the system and
uses this information to set up the text manager. Application code hardly ever inter-
acts with the international manager directly; the manager operates in the back-
ground most of the time.

The text manager provides functions for manipulating strings and character data,
regardless of what character encoding is in use on the system. In particular, text
manager functions allow you to safely deal with both single- and multiple-byte char-
acter sets using the same set of text-handling functions. If you stick with using text
manager calls instead of directly modifying text data, you should not need to
change your application’s code to handle different styles of character encoding.

Many of the “functions” included in the text manager are multiple-byte aware
versions of the C standard library character macros. For example, the text man-
ager’s TxtCharIsDigit macro duplicates the effects of the isdigit macro, but unlike
isdigit, TxtCharIsDigit knows about multiple-byte character encoding, so it can
properly determine whether or not a multiple-byte character is a digit.

For more information about the various character macros, see the “Using Charac-
ter Macros” section in Chapter 10, “Programming System Elements.”

Comparing and finding text
Two particularly useful functions in the text manager are TxtCompare and
TxtCaselessCompare, which allow you to compare the contents of two text buffers.
The TxtCompare function is a case-sensitive comparison, and TxtCaselessCompare
ignores case. The prototypes for TxtCompare are nearly identical; here is the proto-
type for TxtCompare:

Int16 TxtCompare (const Char* s1, UInt16 s1Len,
UInt16* s1MatchLen, const Char* s2, UInt16 s2Len,
UInt16* s2MatchLen)

Both functions return a value less than zero if the text in s1 occurs before the text
in s2 alphabetically. The return value is greater than zero if s2 comes before s1 in
alphabetical order, and the return value is exactly 0 if both text buffers are equal.
Along with the pointers to the two text buffers, you should also supply the lengths
of the respective buffers in the s1Len and s2Len parameters.

Both s1 and s2 must point to the start of a valid character, which means either the
first byte of a multiple-byte character, or a single-byte character. Pointing to the
middle of a multiple-byte character will lead to unpredictable (and messy) results.
This is true of text input parameters for any text manager function.

Note

Cross-
Reference

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 693

694 Part VII ✦ Advanced Programming Topics

The TxtCompare and TxtCaselessCompare functions return the length in bytes of
the text that matches exactly between s1 and s2 in the s1MatchLen and s2MatchLen
parameters. The byte lengths in s1MatchLen and s2MatchLen might differ, because
some character encodings, such as Shift-JIS for the Japanese language, can represent
the same character as both single- and multiple-byte characters. If you are not inter-
ested in the amount of matching text between the two text buffers, pass NULL for
s1MatchLen and s2MatchLen.

Another function in the text manager is TxtFindString, which finds an occurrence of
one string inside another. The search that TxtFindString performs is case-insensitive,
and it makes a fine multiple-byte aware replacement for FindStrInStr when imple-
menting the global find facility.

For more information about implementing global find, take a look at the “Imple-
menting the Global Find Facility” section of Chapter 13, “Manipulating Records.”

The prototype for TxtFindString looks like this:

Boolean TxtFindString (const Char* inSourceStr,
const Char* inTargetStr, UInt32* outPos, UInt16* outLength)

The inSourceStr parameter should point to the string that should be searched,
and inTargetStr should point to the string you want to find in inSourceStr.
If TxtFindString finds inTargetStr within inSourceStr, the function returns
true; otherwise, TxtFindString returns false. On a successful find, TxtFindString
returns the byte offset of the beginning of inTargetStr within inSourceStr
in the outPos parameter, and the length of the matching text in outLength. The
TxtFindString function sets the values of outPos and outLength to 0 on an unsuc-
cessful search.

Modifying text
The TxtTransliterate function allows you to convert all the characters in a text buffer
from one form to another. For example, TxtTransliterate may be used to change all
the characters in a text buffer to uppercase. The prototype for TxtTransliterate looks
like this:

Err TxtTransliterate (const Char* inSrcText,
UInt16 inSrcLength, Char* outDstText,
UInt16* ioDstLength, TranslitOpType inOp)

The inSrcText parameter points to the source text buffer you want to modify, and
inSrcLength specifies the length of that buffer in bytes. You also need to supply a
pointer to an output buffer via outDstText and specify the maximum length of that
buffer in ioDstLength. When TxtTransliterate returns, it modifies the value in
ioDstLength to reflect the actual length of the transformed text in outDstText.

Cross-
Reference

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 694

695Chapter 20 ✦ Odds and Ends

You control exactly what TxtTransliterate does to the text in inSrcText by speci-
fying an operation code in the inOp parameter. Operation codes are specific to
the character encoding currently in use on the handheld, but two operations are
always available: translitOpUpperCase, which converts all the text to uppercase,
and translitOpLowerCase, which converts the text to lowercase. Both case con-
version operations are useful for reducing a string to a single case for faster case-
insensitive comparison with another string. The Palm OS header file TextMgr.h
defines a base number for operations that are character encoding–specific:

#define translitOpCustomBase 1000

Within the header files for specific character encodings, other transliteration opera-
tions use translitOpCustomBase as a base value. For example, the following oper-
ations are defined in CharShiftJIS.h for Shift-JIS encoding:

#define translitOpFullToHalfKatakana (translitOpCustomBase+0)
#define translitOpHalfToFullKatakana (translitOpCustomBase+1)
#define translitOpFullToHalfRomaji (translitOpCustomBase+2)
#define translitOpHalfToFullRomaji (translitOpCustomBase+3)
#define translitOpKatakanaToHiragana (translitOpCustomBase+4)
#define translitOpHiraganaToKatakana (translitOpCustomBase+5)
#define translitOpCombineSoundMark (translitOpCustomBase+6)
#define translitOpDivideSoundMark (translitOpCustomBase+7)
#define translitOpRomajiToHiragana (translitOpCustomBase+8)
#define translitOpHiraganaToRomaji (translitOpCustomBase+9)

Along with the regular operation codes, you may also combine the translitOp
Preprocess mask constant with any code using the bitwise OR operator (|). This
causes TxtTransliterate to find out how much space is required for the transformed
string without actually placing the string in the output buffer; the space required
is returned in the ioDstLength parameter. If you are not sure whether you have
enough space allocated to contain the transliterated text, call TxtTransliterate
using the translitOpPreprocess mask before making the actual call. Here is an
example:

UInt16 buf1Length, buf2Length, outputSize;
Char *buffer1, *buffer2;

// Point buffer1 at the source text, allocate an output buffer,
// and point buffer2 at the output buffer.

buf1Length = StrLen(buffer1);
buf2Length = StrLen(buffer2);
outputSize = buf2Length;

TxtTransliterate(buffer1, buf1Length, &buffer2, &outputSize,
translitOpLowerCase | translitOpPreprocess);

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 695

696 Part VII ✦ Advanced Programming Topics

if (outputSize > buf2Length) {
// Increase the size of the buffer2 buffer so it can hold
// outputSize bytes of data.

}

TxtTransliterate(buffer1, buf1Length, &buffer2, &outputSize,
translitOpLowerCase);

Retrieving characters from a text buffer
It can be difficult to do something as simple as retrieving a single character from a
text buffer if the buffer contains multiple-byte characters. This phenomenon also
makes it difficult to iterate through a text buffer a character at a time, which is nec-
essary to perform many kinds of text modification. With the proper functions from
the text manager, this becomes much easier.

The TxtGetChar function retrieves a single character from a text buffer, given an
offset into the buffer in bytes. Here is the prototype for TxtGetChar:

WChar TxtGetChar (const Char* inText, UInt32 inOffset)

As with other text manager functions, you are responsible for ensuring that the off-
set specified in inOffset points to the beginning of a valid character and not to the
middle of a multiple-byte character.

If you need to iterate through a text buffer, use the TxtGetNextChar and
TxtGetPreviousChar functions, which look like this:

UInt16 TxtGetNextChar (const Char* inText, UInt32 inOffset,
WChar* outChar);

UInt16 TxtGetPreviousChar (const Char* inText, UInt32 inOffset,
WChar* outChar);

These functions start at the offset specified in inOffset and return either the next
or previous character in the outChar parameter. The function return value is the
size in bytes of the appropriate character.

The TxtGetPreviousChar function can be slower than TxtGetNextChar, because
TxtGetPreviousChar sometimes has to work its way backward through the text
buffer byte by byte until it finds an unambiguous beginning of a multi-byte character.

If you want to know only the size of the next or previous character, pass NULL for
the outChar parameter in TxtGetNextChar or TxtGetPreviousChar. Alternatively,
you can use the TxtNextCharSize and TxtPreviousCharSize macros as follows:

TxtNextCharSize (inText, inOffset)
TxtPreviousCharSize (inText, inOffset)

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 696

697Chapter 20 ✦ Odds and Ends

Like the TxtGetNextChar and TxtGetPreviousChar functions, TxtNextCharSize
and TxtPreviousCharSize return a UInt16 value indicating the size in bytes of the
appropriate character.

The nature of multiple-byte characters also makes it difficult to find where you need
to truncate a text buffer to fit within a certain size. Use the TxtGetTruncationOffset
function to determine where a text buffer should be chopped so it will fit a given
number of bytes of memory:

UInt32 TxtGetTruncationOffset (const Char* inText,
UInt32 inOffset)

The return value from TxtGetTruncationOffset is the offset into inText where the
buffer may be safely truncated at an intercharacter boundary; the return value is
always less than or equal to the inOffset parameter’s value.

Finally, the TxtWordBounds function is an easy way to find the beginning and end
of an actual word in the middle of a text buffer, given an offset into the buffer that
points to the beginning of a valid character. The prototype for TxtWordBounds
looks like this:

Boolean TxtWordBounds (const Char* inText, UInt32 inLength,
UInt32 inOffset, UInt32* outStart, UInt32* outEnd)

The inText parameter points to the start of the text buffer, inLength indicates the
length of the buffer, and inOffset is the offset around which you want to find a
word. The function returns true if it finds a word at inOffset, or false if inOffset
is at a punctuation or whitespace character. For example, if you have a string (in
ASCII encoding) that contains the string Find me a word., passing an offset of 6 to
TxtWordBounds will result in outStart and outEnd values that point to the start
and end of the word me, because the offset of 6 points to the e in me.

Determining character encoding
The text manager also contains functions for determining the minimum required
encoding to represent a particular character or string. The TxtCharEncoding func-
tion finds the minimum required encoding system necessary to represent a given
character, and TxtStrEncoding finds the encoding required to represent a string.
Prototypes for these functions look like this:

TxtCharEncoding
CharEncodingType TxtCharEncoding (WChar inChar);

TxtStrEncoding
CharEncodingType TxtStrEncoding (const Char* inStr);

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 697

698 Part VII ✦ Advanced Programming Topics

The CharEncodingType return value from these functions is an enumerated type
defined in the Palm OS header file TextMgr.h as follows:

typedef enum {
charEncodingUnknown = 0, // Unknown to this version of

// the Palm OS

charEncodingAscii, // ISO 646-1991
charEncodingISO8859_1, // ISO 8859 Part 1
charEncodingPalmLatin, // Palm OS version of CP1252
charEncodingShiftJIS, // Encoding for 0208-1990 + 1-byte

// katakana
charEncodingPalmSJIS, // Palm OS version of CP932
charEncodingUTF8, // Encoding for Unicode
charEncodingCP1252, // Windows variant of 8859-1
charEncodingCP932 // Windows variant of ShiftJIS

} CharEncodingType;

The minimum coding required for a character is the encoding that requires the
fewest bytes. Also, the Palm OS supports only a single character encoding at a time,
so TxtCharEncoding and TxtStrEncoding will always return a value equal to or less
than the current encoding used by the system, or charEncodingUnknown if the
character is completely unrecognizable to the current system.

These functions are not a reliable way to determine the current encoding that the
system is using. For that purpose, use FtrGet to retrieve the current encoding:

UInt16 encoding;

Err error = FtrGet(sysFtrCreator, sysFtrNumEncoding,
&encoding);

The error value should be 0, and encoding will contain the CharEncoding
Type value for the system’s current character encoding.

Compiling with the PalmOSGlue library
Even though the text and international managers are not built into the Palm OS until
version 3.1, you can add these useful managers to applications that support earlier
versions of the Palm OS, as early as version 2.0. The way to add text and interna-
tional manager support is to link the PalmOSGlue library into your application.

You need to link the PalmOSGlue.lib file into your application in CodeWarrior, or
the libPalmOSGlue.a file if you are building the application with the PRC Tools.
The PalmOSGlue library contains all the functions in the text manager, but they

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 698

699Chapter 20 ✦ Odds and Ends

are named differently. Any function beginning with Txt in the text manager starts
with TxtGlue in the PalmOSGlue library. For example, an application using the
PalmOSGlue library should call TxtGlueCompare, not TxtCompare.

PalmOSGlue is a link library, not a shared library, so it will increase the size of your
compiled .prc file. The amount of the increase varies depending on how many
glue functions your application actually calls.

When an application compiled with PalmOSGlue calls one of the glue functions, the
Palm OS first tries to use the text and international managers contained in ROM. If
those managers do not exist on the system, the system executes a simple ASCII
equivalent of the requested function.

Using the File Streaming API
Although the 64KB limit on database size in the Palm OS is not a problem for most
applications, it can pose a bit of a challenge for applications that must deal with
large amounts of data, such as image viewers or long document readers. For appli-
cations that need to handle arbitrarily long data, the Palm OS provides the file
streaming API, which is available in version 3.0 and later of the operating system.

A file stream is a block of data with no upper limit on its size, other than the available
memory on the handheld. File streams are similar to files on a desktop computer, and
they provide permanent storage for data, because the mechanism underlying the file
streaming API uses standard Palm OS databases for storage. However, the HotSync
Manager cannot transfer file streams to the desktop computer during a HotSync oper-
ation; you must first convert the file stream data to regular records.

The performance of the file streaming API is considerably slower than the perfor-
mance of the data manager. If your application makes extensive use of individual
records within its database, the file streaming API may be too slow to provide
acceptable performance. File streaming does not work well for data that contains
many records because of the overhead of parsing the file stream for those records.

The file streaming functions are based on the stdio functions from the C standard
library, so if you are used to using stdio for handling files, most of the file stream-
ing API will operate exactly as you expect it to. Although there are differences
between the file streaming functions and those in the stdio library, many of the
functions in the file streaming API have direct analogs in stdio. Table 20-3 shows
the connections between file streaming functions and their counterparts in stdio.

Note

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 699

700 Part VII ✦ Advanced Programming Topics

Table 20-3
File Streaming API and stdio Correspondences

File Streaming Function stdio Analog

FileClearError clearerr

FileClose fclose

FileEOF feof

FileError ferror

FileOpen fopen

FileRead fread

FileRewind rewind

FileSeek fseek

FileTell ftell

FileWrite fwrite

Opening File Streams
To open an existing file stream or create a brand new one, call FileOpen. The
FileOpen function has the following prototype:

FileHand FileOpen (UInt16 cardNo, Char* nameP, UInt32 type,
UInt32 creator, UInt32 openMode, Err* errP)

On a successful call, FileOpen returns a handle to the newly opened or created file
stream. This handle should be used with other file streaming functions to perform
other operations on the file stream. You can pass a pointer to a variable to receive
any errors generated by FileOpen in the errP parameter. If you are not interested
in receiving error values, pass NULL for the errP parameter. You can also retrieve
errors produced by FileOpen using the FileError function, which is described later
in this chapter in the section “Retrieving File Stream Errors.”

The cardNo parameter is the number of the card containing the file stream; use 0
for this parameter, because currently no Palm OS handheld actually supports more
than one memory card. Point the nameP parameter at a string that holds the name
of the file stream. This file name follows the same rules as regular Palm OS database
names; it may be a maximum of 31 characters in length, and it should be unique
among all the database names on the handheld.

You can use the type and creator parameters to specify a database type and cre-
ator ID for the file stream. Unlike a regular database, type and creator ID are not
required for file streams; you can use them to restrict FileOpen to opening only
existing file streams that were created with a specific type and creator ID. If you

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 700

701Chapter 20 ✦ Odds and Ends

pass 0 for the type and creator parameters, FileOpen treats them as wildcards
when opening an existing file stream.

When you’re creating a new permanent file stream, a 0 value for type will result
in a file stream with the constant value sysFileTFileStream (defined as strm in
the Palm OS header file SystemResources.h) for its database type. If you specify
fileModeTemporary for openMode and 0 for type when creating a new file stream,
FileOpen creates the new file stream with a database type of sysFileTTemp
instead, which is defined as temp in SystemResources.h.

A 0 value for creator when FileOpen is creating a new file stream causes the func-
tion to use the current application’s creator ID as the new file stream’s creator ID.

The openMode parameter is where you tell FileOpen what mode it should use when
opening a file stream. Possible values for openMode may be a one primary mode
constant, combined using a bitwise OR operator (|) with one or more secondary
mode constants. Table 20-4 outlines the primary mode constants, and Table 20-5
shows the secondary mode constants and what they mean.

Table 20-4
Primary Open Mode Constants

Constant Description

fileModeReadOnly Opens a file stream for read-only access

fileModeReadWrite Opens or creates a file stream for read/write access, first deleting
any existing file stream that has the same name as the new file
stream

fileModeUpdate Opens or creates a file stream for read/write access, preserving
any existing version of the file stream

fileModeAppend Opens or creates a file stream for read/write access, writing new
data to the end of the file stream

Table 20-5
Secondary Open Mode Constants

Constant Description

fileModeDontOverwrite Prevents the fileModeReadWrite mode from throwing
away any existing file stream with the same name as the
new file stream. This constant may be used only with the
fileModeReadWrite primary mode constant.

fileModeLeaveOpen Leaves the file stream open when the application exits.
Most applications should not use this option.

Continued

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 701

702 Part VII ✦ Advanced Programming Topics

Table 20-5 (continued)

Constant Description

fileModeExclusive Prevents other applications from opening the stream until
this application has closed it.

fileModeAnyTypeCreator Ignores the type and creator parameters when
opening or replacing an existing file stream.

fileModeTemporary Automatically deletes the file stream when it is closed.

As an example, the following code creates a new file stream and opens it for reading
and writing, discarding any existing file stream that has the same name as the new
file stream:

FileHand newStream;

newStream = FileOpen(0, “MyNewFileStream”, 0, 0,
fileModeReadWrite, NULL);

This call to FileOpen opens a file stream for updating, which prevents the removal
of an existing file stream with the same name as the new file stream. The file is also
opened in exclusive mode to prevent other applications from modifying the file
stream until the current application closes the stream:

newStream = FileOpen(0, “MyUpdatedFileStream”, 0, 0,
fileModeUpdate | fileModeExclusive, NULL);

Finally, this example creates a temporary file stream, suitable for use in situations
where you need a place to cache large amounts of data that will not fit within the
system’s dynamic memory space:

newStream = FileOpen(0, “MyTempFileStream”, 0, 0,
fileModeReadWrite | fileModeTemporary,
NULL);

Closing File Streams
When you have finished using a file stream, close it with FileClose. The FileClose
function has the following prototype:

Err FileClose (FileHand stream)

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 702

703Chapter 20 ✦ Odds and Ends

The stream parameter is the same handle returned from FileOpen when it opens
the stream. Not only does FileClose close a file stream, but it also destroys the
stream’s handle for you. If you specified the fileModeTemporary secondary mode
constant when opening the file stream, FileClose deletes the file stream as well.
The FileClose function returns 0 if it successfully closes the file stream, or one
of the error codes described in the next section if there is an error.

Retrieving File Stream Errors
The FileError function allows you to retrieve read and write errors for a particular
file stream. Whenever an error occurs, an error indicator remains set on the file
stream until it is closed by FileClose. You can use FileError, which has the follow-
ing prototype, to test for read and write errors:

Err FileError (FileHand stream)

The FileError function returns 0 if there is currently no error set on the file stream,
or it returns an error code describing the error. Several file streaming error codes
specify everything from a lack of memory to a generic I/O error.

For a complete list of file streaming error codes, see Appendix A, “Palm OS API
Quick Reference.”

Instead of calling FileError, you can also use FileGetLastError to retrieve an
error code:

Err FileGetLastError (FileHand stream)

The major difference between FileError and FileGetLastError is that the latter
function clears the error code value, unless the error is an end of file or I/O error.

You can also explicitly clear the error value with the FileClearerr function:

Err FileClearerr (FileHand stream)

The FileClearerr function clears any file stream error, including those that
FileGetLastError cannot clear.

Deleting File Streams
To delete a file stream, call the FileDelete function:

Err FileDelete (UInt16 cardNo, Char* nameP)

You may use FileDelete to remove a closed file stream only.

Cross-
Reference

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 703

704 Part VII ✦ Advanced Programming Topics

If you want to just truncate a file stream at a certain length, use FileTruncate:

Err FileTruncate (FileHand stream, Int32 newSize)

The newSize parameter specifies how large the truncated file stream should be.
Be sure to keep newSize smaller than the current total size of the file stream.

Setting Position in a File Stream
Every file stream has a current position, which is an offset into the stream that is
used for reading and writing data. If you need to change the current position, use
the FileSeek function, whose prototype looks like this:

Err FileSeek (FileHand stream, Int32 offset,
FileOriginEnum origin)

The offset is the number of bytes to seek, relative to whatever origin you specify.
The origin may be one of the following constants:

✦ fileOriginBeginning: Beginning of the file stream

✦ fileOriginCurrent: Current position in the file stream

✦ fileOriginEnd: End of the file stream; this position is one byte past the last
byte in the file stream

If you need to find out where the current position is within a file stream, call the
FileTell function:

Int32 FileTell (FileHand stream, Int32* fileSizeP, Err* errP)

The return value from FileTell is the current position, expressed as the offset in
bytes from the start of the file stream. If you provide a pointer for the fileSizeP
parameter, you can also retrieve the current total size of the file stream in bytes.
Pass NULL for fileSizeP to ignore the file stream size information.

You can also reset the position in a file stream back to the beginning of the stream
with the FileRewind function:

Err FileRewind (FileHand stream)

The FileRewind function also has the side effect of clearing all error codes from the
file stream, allowing you to start with a clean slate.

Reading and Writing File Stream Data
Reading data from a file stream may be accomplished by calling the FileRead func-
tion, which reads data into a buffer:

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 704

705Chapter 20 ✦ Odds and Ends

Int32 FileRead (FileHand stream, void* bufP, Int32 objSize,
Int32 numObj, Err* errP)

The bufP parameter points to the beginning of a buffer you have allocated to
receive data from the file stream. The FileRead function reads data in discrete
objects, each of which is objSize bytes long. You specify the total number of
objects to read in the numObj parameter. When FileRead returns, it places the
total number of whole objects read from the file stream in its return value.

You may use FileRead to read data into a buffer only. If you want to read data
from a file stream directly into a memory chunk or record, use FileDmRead,
described later in this section.

As FileRead reads in data, it moves the current position in the file by the number of
bytes actually read. If insufficient data is left in the file stream to meet the amount
you specified using the objSize and numObj parameters, FileRead will result in a
fileErrEOF error code, indicating that the end of the file has been reached. You
can retrieve this error value from the errP parameter, or by calling FileError,
FileGetLastError, or FileEOF.

The FileEOF function specifically checks the error status for the fileErrEOF error,
indicating that the current position in the file stream is at the end of the file. The
prototype for FileEOF looks like this:

Err FileEOF (FileHand stream)

If the current position is at the end of the file, FileEOF returns a non-zero value;
otherwise, FileEOF returns 0.

Typically, FileEOF is used with FileRead as part of a loop, allowing data retrieval
until the end of the file stream is reached. As an example, the following code loops
through a file stream, reading data from the stream ten characters at a time until
FileRead hits the end of the file:

while(! FileEOF(stream)) {
count = FileRead(stream, buffer, sizeof(Char), 10, NULL);
buffer += count;

// Total up actual bytes read.
total += count;

}

If you want to read data from a file stream directly into a memory chunk or record
in a database, use the FileDmRead function:

Int32 FileDmRead (FileHand stream, void* startOfDmChunkP,
Int32 destOffset, Int32 objSize, Int32 numObj, Err* errP)

Note

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 705

706 Part VII ✦ Advanced Programming Topics

The startOfDmChunkP parameter points to the start of the memory chunk you
want to write data to, and destOffset indicates the offset in bytes within that
chunk at which FileDmRead should begin writing data. Otherwise, FileDmRead
operates exactly like FileRead.

Writing to a file stream requires use of the FileWrite function:

Int32 FileWrite (FileHand stream, void* dataP, Int32 objSize,
Int32 numObj, Err* errP)

Similar to FileRead, the objSize and numObj parameters tell FileWrite how large
each write it makes should be and how many writes to attempt. The dataP param-
eter is a pointer to a buffer containing the data to write to the file stream. The
FileWrite function returns the number of whole objects written to the file stream.

If not enough storage space is available to contain all of the data FileWrite has been
requested to write, the function writes as much data as possible before quitting,
which means that the last object written to the stream might be cut off in the middle.

Summary
In this chapter, you got to see some of the less often-used parts of the Palm OS and
how to program them. After reading this chapter, you should know the following:

✦ Applications larger than 32KB may require some programming or linking
tricks to avoid the 16-bit jump limit built into the processor.

✦ Because no single resource in the Palm OS may be larger than 64KB, you must
segment really large applications in order to compile and run them properly.

✦ You may create and add custom fonts to applications, but you need to use the
PRC Tools if you want to use custom fonts in a program’s forms at build time.

✦ It is possible to create forms and most user interface elements at run time,
though for most applications, it is completely unnecessary, not to mention
more difficult to code than using resources created at build time.

✦ The text and international managers provide a wealth of functions and macros
to help you deal with localizing an application to use different methods of
character encoding, particularly multi-byte character sets.

✦ If you need to store data in larger amounts than the usual 64KB database limit,
you can use the file streaming API, which provides functions similar to those
in the stdio C standard library for reading and writing data to a file stream.

✦ ✦ ✦

4676-7 ch20.f.qc 10/16/00 8:33 AM Page 706

Palm OS API
Quick Reference

This appendix serves as a quick reference for the func-
tions, data structures, and constants that make up the

Palm OS application programming interface (API). Within
Appendix A, you will find the following sections:

✦ Functional Guide. A listing of functions, data structures,
and constants used in Palm OS programming

✦ Events. A guide to the events that the Palm OS uses
within an application

✦ Launch Codes. The launch codes that an application
may receive from the system, and what each code
means

This appendix is only a quick guide to the parts of the Palm
OS API that are mentioned in this book; there are other
less frequently used parts of the API. For a complete refer-
ence to everything in the Palm OS, see the Palm OS SDK
Reference, which is available from Palm, Inc., both by itself
and as part of the Palm OS SDK.

Functional Guide
Palm OS functions are divided into logical groups called man-
agers. Each manager is designed to provide a particular ser-
vice, such as alarm handling or string manipulation. Almost all
the functions in a particular manager begin with the same pre-
fix; for example, Memory Manager functions begin with Mem,
and Alarm Manager functions begin with Alm.

There are also many functions in the Palm OS that do not
belong to a specific manager, but do fall within a common
group, such as functions devoted to handling forms or other
user interface objects. Like the manager functions, functions
within a group tend to share the same prefix.

Note

AAA P P E N D I X

✦ ✦ ✦ ✦

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 707

708 Appendixes

Table A-1 lists the managers and function groups described in this book with their
prefixes, and the table also briefly describes the purpose of each manager or func-
tion group.

Table A-1
Palm OS Managers and Function Groups

Manager or Group Prefix Description

Alarm Manager Alm Sets or retrieves information about an
application’s alarms

Categories Category Implements user-defined categories in an
application

Clipboard Clipboard Handles moving data to and from the system
clipboard

Controls Ctl Provides routines for interacting with form
controls, including buttons, push buttons, check
boxes, pop-up triggers, selector triggers,
repeating buttons, sliders, and feedback sliders

Data and Resource Dm Handles storage and retrieval of data and
Manager resources

Date and Time Select Displays date and time selector dialogs
Selector

Error Manager Err Provides facilities for adding debugging code to
your application

Exchange Manager Exg Handles high-level IR beaming

Feature Manager Ftr Allows publishing and retrieval of special data
that persists even after an application quits

Fields Fld Handles text field objects

File Streaming File Provides support for reading and writing
arbitrarily long blocks of data

Find Find Implements the global find feature

Fonts Fnt Provides utility functions for handling fonts

Forms Frm Provides routines for interacting with form
objects

Lists Lst Handles list objects

Memory Manager Mem Handles allocation and manipulation of memory

Menus Menu Deals with menus and menu bars

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 708

709Appendix A ✦ Palm OS API Quick Reference

Manager or Group Prefix Description

Miscellaneous none Contains functions that do not fall into any other
group

New Serial Manager Srm Controls serial I/O. This manager adds functions
to the original Serial Manager and will eventually
take its place.

Password Pwd Manipulates the system password

Preferences Pref Sets and retrieves system and application
preference data

Private Records Sec Displays dialogs to allow the user to change
whether private records are shown, hidden, or
masked

Rectangles Rct Provides functions for manipulating rectangle
structures

Scroll Bars Scl Manages scroll bars

Serial Manager Ser Controls serial I/O. This manager will be phased
out in favor of the New Serial Manager.

Sound Manager Snd Makes sounds through the system speaker and
plays standard MIDI files

String Manager Str Handles manipulation of strings

System Dialogs Sys Displays various system dialogs

System Event Manager Evt Directly manipulates the event queue

System Manager Sys Allows direct access to many low-level system
functions

Tables Tbl Provides routines for managing tables and their
contents

Text Manager Txt Manipulates text in a localization-friendly
manner

Time Manager Date, Tim Deals with the system clock and converting
between different units of time

UI Color List UIColor Allows applications to set and retrieve user
interface colors

UI Controls UI Displays various dialogs for changing user
interface settings, such as brightness, contrast,
or color

Windows Win Handles display and manipulation of windows,
as well as drawing in those windows

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 709

710 Appendixes

The rest of this section follows the structure in the table. Each manager or function
group has its own major section, arranged alphabetically. Within each major sec-
tion, there are one or two subsections, “Functions” and sometimes “Structures.”
The “Functions” subsection lists the functions that make up the manager or group.
Each function listing includes a short description, the function’s prototype, and any
compatibility information, such as the minimum version of the Palm OS that sup-
ports the function.

The “Structures” subsection lists a group’s associated data structures and enumer-
ated types.

Alarm Manager Functions
The Alarm Manager functions set or retrieve information about an application’s
alarms.

✦ AlmGetAlarm: Returns the date and time of an application’s current alarm,
if one has been set.

UInt32 AlmGetAlarm (UInt16 cardNo, LocalID dbID, UInt32
*refP)

✦ AlmSetAlarm: Sets or cancels an application’s current alarm.

Err AlmSetAlarm (UInt16 cardNo, LocalID dbID, UInt32 ref,
UInt32 alarmSeconds, Boolean quiet)

Category Functions
The Category functions implement user-defined categories in an application.

✦ CategoryEdit: Displays a dialog that allows the user to edit categories; called
by CategorySelect when the user chooses the “Edit Categories” item from the
category list.

Boolean CategoryEdit (DmOpenRef db, UInt16 *category,
UInt32 titleStrID, UInt8 numUneditableCategories)

Available only on Palm OS 3.0 or later.

✦ CategoryEditV20: Allows the user to edit categories; called by CategorySelect
when the user chooses the “Edit Categories” item from the category list.

Boolean CategoryEditV20 (DmOpenRef db, UInt16 *category,
UInt32 titleStrID)

For backward compatibility with Palm OS 2.0 only.

✦ CategoryEditV10: Allows the user to edit categories; called by CategorySelect
when the user chooses the “Edit Categories” item from the category list.

Boolean CategoryEditV10 (DmOpenRef db, UInt16 *category)

For backward compatibility with Palm OS 1.0 only.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 710

711Appendix A ✦ Palm OS API Quick Reference

✦ CategoryGetName: Returns the name of a category, given its index.

void CategoryGetName (DmOpenRef db, UInt16 index, Char *name)

✦ CategoryGetNext: Returns the index of the next category, given a category
index.

UInt16 CategoryGetNext (DmOpenRef db, UInt16 index)

✦ CategoryInitialize: Initializes the application info block with category names
stored in an app info string.

void CategoryInitialize (AppInfoPtr appInfoP,
UInt16 localizedAppInfoStrID)

Available only on Palm OS 2.0 or later.

✦ CategorySelect: Displays a pop-up list to allow the user to select a category.

Boolean CategorySelect (DmOpenRef db, const FormType *frm,
UInt16 ctlID, UInt16 lstID, Boolean title,
UInt16 *categoryP, Char *categoryName,
UInt8 numUneditableCategories, UInt32 editingStrID)

Available only on Palm OS 2.0 or later.

✦ CategorySelectV10: Displays a pop-up list to allow the user to select a
category.

Boolean CategorySelectV10 (DmOpenRef db, const FormType *frm,
UInt16 ctlID, UInt16 lstID, Boolean title,
UInt16 *categoryP, Char *categoryName)

For backward compatibility with Palm OS 1.0 only.

✦ CategorySetName: Sets a category’s name or deletes a category
programmatically.

void CategorySetName (DmOpenRef db, UInt16 index,
const Char *nameP)

Available only on Palm OS 2.0 or later.

Category Structure
The category functions use one structure to keep track of an application’s category
information.

✦ AppInfoType: Data structure that should be present at the head of an applica-
tion info block if an application uses the various Category functions to man-
age and display categories.

typedef struct {
UInt16 renamedCategories;
Char categoryLabels [dmRecNumCategories]

[dmCategoryLength];
UInt8 categoryUniqIDs[dmRecNumCategories];
UInt8 lastUniqID;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 711

712 Appendixes

UInt8 padding;
} AppInfoType;

typedef AppInfoType *AppInfoPtr;

Clipboard Functions
The clipboard functions allow an application to communicate with the system
clipboard.

✦ ClipboardAddItem: Adds an item to the clipboard.

void ClipboardAddItem (const ClipboardFormatType format,
const void *ptr, UInt16 length)

✦ ClipboardAppendItem: Appends data to the item currently on the clipboard.

Err ClipboardAppendItem (const ClipboardFormatType format,
const void *ptr, UInt16 length)

Available only on Palm OS 3.2 or later.

✦ ClipboardGetItem: Returns a handle to the contents of the clipboard.

MemHandle ClipboardGetItem (const ClipboardFormatType format,
UInt16 *length)

Clipboard Structure
The clipboard functions use an enumerated type to identify data that may be
passed to or from the clipboard.

✦ ClipboardFormatType: Specifies the type of data to add to or retrieve from
the clipboard.

enum clipboardFormats {
clipboardText,
clipboardInk,
clipboardBitmap

};

typedef enum clipboardFormats ClipboardFormatType;

Control Functions
The Control functions provide routines for interacting with form controls, including
buttons, push buttons, check boxes, pop-up triggers, selector triggers, repeating
buttons, sliders, and feedback sliders.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 712

713Appendix A ✦ Palm OS API Quick Reference

✦ CtlDrawControl: Draws a control object on the screen.

void CtlDrawControl (ControlType *controlP)

✦ CtlEnabled: Returns true if the control is enabled.

Boolean CtlEnabled (const ControlType *controlP)

✦ CtlGetLabel: Returns a pointer to a control’s text label.

const Char *CtlGetLabel (const ControlType *controlP)

✦ CtlGetSliderValues: Returns the current values associated with a slider or
feedback slider control.

void CtlGetSliderValues(const ControlType *ctlP,
UInt16 *minValueP, UInt16 *maxValueP, UInt16 *pageSizeP,
UInt16 *valueP)

Available only on Palm OS 3.5 or later.

✦ CtlGetValue: Retrieves the value of a control.

Int16 CtlGetValue (const ControlType *controlP)

✦ CtlHandleEvent: Handles an event in a control object; normally, the system
calls this function for you to provide default handling of control events.

Boolean CtlHandleEvent (ControlType *controlP,
EventType *pEvent)

✦ CtlHitControl: Simulates tapping a control by adding a ctlSelectEvent to
the event queue.

void CtlHitControl (const ControlType *controlP)

✦ CtlNewControl: Dynamically creates a new control object.

ControlType *CtlNewControl (void **formPP, UInt16 ID,
ControlStyleType style, const Char *textP, Coord x,
Coord y, Coord width, Coord height, FontID font,
UInt8 group, Boolean leftAnchor)

Available only on Palm OS 3.0 or later.

✦ CtlNewGraphicControl: Dynamically creates a new graphic control object.

GraphicControlType *CtlNewGraphicControl (void **formPP,
UInt16 ID, ControlStyleType style, DmResID bitmapID,
DmResID selectedBitmapID, Coord x, Coord y, Coord width,
Coord height, UInt8 group, Boolean leftAnchor)

Available only on Palm OS 3.5 or later.

✦ CtlNewSliderControl: Dynamically creates a new slider or feedback slider
control object.

SliderControlType *CtlNewSliderControl (void **formPP,
UInt16 ID, ControlStyleType style, DmResID thumbID,

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 713

714 Appendixes

DmResID backgroundID, Coord x, Coord y, Coord width,
Coord height, UInt16 minValue, UInt16 maxValue,
UInt16 pageSize, UInt16 value)

Available only on Palm OS 3.5 or later.

✦ CtlSetEnabled: Enables or disables a control.

void CtlSetEnabled (ControlType *controlP, Boolean usable)

✦ CtlSetGraphics: Sets the bitmaps for a graphic control and redraws the
control if it is visible.

void CtlSetGraphics (ControlType *ctlP, DmResID newBitmapID,
DmResID newSelectedBitmapID)

Available only on Palm OS 3.5 or later.

✦ CtlSetLabel: Sets the text label for a control and redraws the control if it is
visible.

void CtlSetLabel (ControlType *controlP, const Char
*newLabel)

✦ CtlSetSliderValues: Sets the values associated with a slider or feedback slider
control.

void CtlSetSliderValues(ControlType *ctlP,
const UInt16 *minValueP, const UInt16 *maxValueP,
const UInt16 *pageSizeP, const UInt16 *valueP)

Available only on Palm OS 3.5 or later.

✦ CtlSetUsable: Sets a control to usable or not usable.

void CtlSetUsable (ControlType *controlP, Boolean usable)

✦ CtlSetValue: Sets the value of a control and redraws the control if it is visible.

void CtlSetValue (ControlType *controlP, Int16 newValue)

✦ CtlValidatePointer: Returns true if passed a valid control pointer.

Boolean CtlValidatePointer (const ControlType *controlP)

For debugging only; do not use in released applications.

Control Structures
The control functions use a number of structures to keep track of all the data asso-
ciated with controls.

✦ ButtonFrameType: Specifies the border style for a button; used in the frame
field of the ControlAttrType structure.

enum buttonFrames {
noButtonFrame,
standardButtonFrame,
boldButtonFrame,

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 714

715Appendix A ✦ Palm OS API Quick Reference

rectangleButtonFrame
};

typedef enum buttonFrames ButtonFrameType;

✦ ControlAttrType: Bit field defining various attributes of a control.

typedef struct {
UInt8 usable :1;
UInt8 enabled :1;
UInt8 visible :1;
UInt8 on :1;
UInt8 leftAnchor :1;
UInt8 frame :3;
UInt8 drawnAsSelected :1;
UInt8 graphical :1;
UInt8 vertical :1;
UInt8 reserved :5;

} ControlAttrType;

The drawnAsSelected, graphical, and vertical fields are present only in
Palm OS 3.5 or later.

✦ ControlStyleType: Specifies the type of a particular control (button, push
button, check box, and so on); used in the style field of the ControlType
structure.

enum controlStyles {
buttonCtl,
pushButtonCtl,
checkboxCtl,
popupTriggerCtl,
selectorTriggerCtl,
repeatingButtonCtl,
sliderCtl,
feedbackSliderCtl

};

typedef enum controlStyles ControlStyleType;

The sliderCtl and feebackSliderCtl values do not exist prior to Palm
OS 3.5.

✦ ControlType: Defines a control object.

typedef struct ControlType {
UInt16 id;
RectangleType bounds;
Char *text;
ControlAttrType attr;
ControlStyleType style;
FontID font;
UInt8 group;
UInt8 reserved;

} ControlType;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 715

716 Appendixes

✦ GraphicControlType: Defines a graphic control object. You may cast a
pointer to a GraphicControlType structure as a pointer to a ControlType
structure for passing to any Ctl function.

typedef struct GraphicControlType {
UInt16 id;
RectangleType bounds;
DmResID bitmapID;
DmResID selectedBitmapID;
ControlAttrType attr;
ControlStyleType style;
FontID unused;
UInt8 group;
UInt8 reserved;

} GraphicControlType;

Available only on Palm OS 3.5 or later.

✦ SliderControlType: Defines a slider or feedback slider object. You may cast
a pointer to a SliderControlType as a pointer to a ControlType structure
for passing to any Ctl function.

typedef struct SliderControlType {
UInt16 id;
RectangleType bounds;
DmResID thumbID;
DmResID backgroundID;
ControlAttrType attr;
ControlStyleType style;
UInt8 reserved;
Int16 minValue;
Int16 maxValue;
Int16 pageSize;
Int16 value;
MemPtr activeSliderP;

} SliderControlType;

Available only on Palm OS 3.5 or later.

Data and Resource Manager Functions
The Data and Resource Manager functions handle storage and retrieval of data and
resources.

✦ DmArchiveRecord: Archives a record by setting its delete bit but leaving its
data intact.

Err DmArchiveRecord (DmOpenRef dbP, UInt16 index)

✦ DmAttachRecord: Attaches a chunk of memory to a database as a new record.

Err DmAttachRecord (DmOpenRef dbP, UInt16 *atP, MemHandle newH,
MemHandle *oldHP)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 716

717Appendix A ✦ Palm OS API Quick Reference

✦ DmAttachResource: Attaches a chunk of memory to a database as a new
resource.

Err DmAttachResource (DmOpenRef dbP, MemHandle newH,
DmResType resType, DmResID resID)

✦ DmCloseDatabase: Closes an open database.

Err DmCloseDatabase (DmOpenRef dbP)

✦ DmComparF: Application-defined callback function that compares two
records in a database.

typedef Int16 DmComparF (void *rec1, void *rec1, Int16 other,
SortRecordInfoPtr rec1SortInfo,
SortRecordInfoPtr rec2SortInfo, MemHandle appInfoH);

✦ DmCreateDatabase: Creates a new database.

Err DmCreateDatabase (UInt16 cardNo, const Char *nameP,
UInt32 creator, UInt32 type, Boolean resDB)

✦ DmDatabaseInfo: Retrieves information about a database.

Err DmDatabaseInfo (UInt16 cardNo, LocalID dbID, Char *nameP,
UInt16 *attributesP, UInt16 *versionP, UInt32 *crDateP,
UInt32 *modDateP, UInt32 *bckUpDateP, UInt32 *modNumP,
LocalID *appInfoIDP, LocalID *sortInfoIDP, UInt32 *typeP,
UInt32 *creatorP)

✦ DmDatabaseProtect: Increments or decrements a database’s protection
count.

Err DmDatabaseProtect (UInt16 cardNo, LocalID dbID,
Boolean protect)

✦ DmDatabaseSize: Retrieves the size of a database and the number of records
it contains.

Err DmDatabaseSize (UInt16 cardNo, LocalID dbID,
UInt32 *numRecordsP, UInt32 *totalBytesP,
UInt32 *dataBytesP)

✦ DmDeleteCategory: Deletes all the records in a particular category.

Err DmDeleteCategory (DmOpenRef dbR, UInt16 categoryNum)

Available only on Palm OS 2.0 or later.

✦ DmDeleteDatabase: Deletes a database and everything in it.

Err DmDeleteDatabase (UInt16 cardNo, LocalID dbID)

✦ DmDeleteRecord: Deletes a record by setting its delete bit and destroying its
data chunk.

Err DmDeleteRecord (DmOpenRef dbP, UInt16 index)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 717

718 Appendixes

✦ DmDetachRecord: Orphans a record from its database, leaving its data chunk
intact so it may be reattached to another database.

Err DmDetachRecord (DmOpenRef dbP, UInt16 index,
MemHandle *oldHP)

✦ DmDetachResource: Orphans a resource from its database, leaving its data
chunk intact so it may be reattached to another database.

Err DmDetachResource (DmOpenRef dbP, UInt16 index,
MemHandle *oldHP)

✦ DmFindDatabase: Returns the local ID of a database, given its memory card
and name.

LocalID DmFindDatabase (UInt16 cardNo, const Char *nameP)

✦ DmFindRecordByID: Retrieves the index of a record, given its unique ID.

Err DmFindRecordByID (DmOpenRef dbP, UInt32 uniqueID,
UInt16 *indexP)

✦ DmFindResource: Looks in an open database for a resource and returns its
index, given the resource’s type and ID, or a handle to the resource.

UInt16 DmFindResource (DmOpenRef dbP, DmResType resType,
DmResID resID, MemHandle resH)

✦ DmFindResourceType: Looks in an open database for a resource and returns
its index, given the resource’s type and type index.

UInt16 DmFindResourceType (DmOpenRef dbP, DmResType resType,
UInt16 typeIndex)

✦ DmFindSortPosition: Returns the index where a record should be sorted in a
database, using a callback comparison function to compare records.

UInt16 DmFindSortPosition (DmOpenRef dbP, void *newRecord,
SortRecordInfoPtr newRecordInfo, DmComparF *compar,
Int16 other)

Available only on Palm OS 2.0 or later.

✦ DmFindSortPositionV10: Returns the index where a record should be sorted
in a database, using a callback comparison function to compare records.

UInt16 DmFindSortPositionV10 (DmOpenRef dbP, void *newRecord,
DmComparF *compar, Int16 other)

For backward compatibility with Palm OS 1.0 only.

✦ DmGet1Resource: Returns a handle to a resource from the most recently
opened resource database, given the resource’s type and ID.

MemHandle DmGet1Resource (DmResType type, DmResID resID)

✦ DmGetDatabase: Returns the local ID of a database, given its memory card
and index.

LocalID DmGetDatabase (UInt16 cardNo, UInt16 index)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 718

719Appendix A ✦ Palm OS API Quick Reference

✦ DmGetDatabaseLockState: Retrieves the number of locked and busy records
in a database.

void DmGetDatabaseLockState (DmOpenRef dbR, UInt8 *highest,
UInt32 *count, UInt32 *busy)

Available only on Palm OS 3.2 or later.

✦ DmGetLastErr: Returns the error code generated by the last unsuccessful
Data Manager call.

Err DmGetLastErr (void)

✦ DmGetNextDatabaseByTypeCreator: Retrieves the local ID and memory card
of the next database that matches a given type and creator ID combination;
may be called successively to return all the databases on the device that have
the specified type and creator ID.

Err DmGetNextDatabaseByTypeCreator (Boolean newSearch,
DmSearchStatePtr stateInfoP, UInt32 type, UInt32 creator,
Boolean onlyLatestVers, UInt16 *cardNoP, LocalID *dbIDP)

✦ DmGetRecord: Returns a handle to a record, given its index.

MemHandle DmGetRecord (DmOpenRef dbP, UInt16 index)

✦ DmGetResource: Returns a handle to a resource, searching through all open
resource databases for a given type and ID.

MemHandle DmGetResource (DmResType type, DmResID resID)

✦ DmGetResourceIndex: Returns a handle to a resource, given its index.

MemHandle DmGetResourceIndex (DmOpenRef dbP, UInt16 index)

✦ DmInsertionSort: Sorts records in a database using an insertion sort
algorithm.

Err DmInsertionSort (DmOpenRef dbR, DmComparF *compar,
Int16 other)

✦ DmMoveCategory: Changes the category of all records in a given category to
another category.

Err DmMoveCategory (DmOpenRef dbP, UInt16 toCategory,
UInt16 fromCategory, Boolean dirty)

✦ DmMoveRecord: Moves a record from one index to another within a
database.

Err DmMoveRecord (DmOpenRef dbP, UInt16 from, UInt16 to)

✦ DmNewHandle: Allocates a new chunk of memory from the same memory
card where a given database’s header is located.

MemHandle DmNewHandle (DmOpenRef dbP, UInt32 size)

✦ DmNewRecord: Allocates space for a new record in a database and returns its
handle.

MemHandle DmNewRecord (DmOpenRef dbP, UInt16 *atP, UInt32 size)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 719

720 Appendixes

✦ DmNewResource: Allocates space for a new resource in a database and
returns its handle.

MemHandle DmNewResource (DmOpenRef dbP, DmResType resType,
DmResID resID, UInt32 size)

✦ DmNumDatabases: Returns the number of databases on a given memory card.

UInt16 DmNumDatabases (UInt16 cardNo)

✦ DmNumRecords: Returns the number of records in a database.

UInt16 DmNumRecords (DmOpenRef dbP)

✦ DmNumRecordsInCategory: Returns the number of records in a database
that are part of a given category.

UInt16 DmNumRecordsInCategory (DmOpenRef dbP, UInt16
category)

✦ DmNumResources: Returns the number of resources in a database.

UInt16 DmNumResources (DmOpenRef dbP)

✦ DmOpenDatabase: Opens a database and returns a reference to it.

DmOpenRef DmOpenDatabase (UInt16 cardNo, LocalID dbID,
UInt16 mode)

✦ DmOpenDatabaseByTypeCreator: Opens the most recent version of a
database that matches a given type and creator ID.

DmOpenRef DmOpenDatabaseByTypeCreator (UInt32 type,
UInt32 creator, UInt16 mode)

✦ DmOpenDatabaseInfo: Retrieves information about an open database.

Err DmOpenDatabaseInfo (DmOpenRef dbP, LocalID *dbIDP,
UInt16 *openCountP, UInt16 *modeP, UInt16 *cardNoP,
Boolean *resDBP)

✦ DmPositionInCategory: Returns the position of a record within a given
category.

UInt16 DmPositionInCategory (DmOpenRef dbP, UInt16 index,
UInt16 category)

✦ DmQueryNextInCategory: Returns a handle to the next record in a given
category for read-only access.

MemHandle DmQueryNextInCategory (DmOpenRef dbP, UInt16
*indexP,

UInt16 category)

✦ DmQueryRecord: Returns a handle to a record for read-only access.

MemHandle DmQueryRecord (DmOpenRef dbP, UInt16 index)

✦ DmQuickSort: Sorts records in a database using a quicksort algorithm.

Err DmQuickSort (DmOpenRef dbP, DmComparF *compar, Int16 other)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 720

721Appendix A ✦ Palm OS API Quick Reference

✦ DmRecordInfo: Retrieves information about a record.

Err DmRecordInfo (DmOpenRef dbP, UInt16 index, UInt16 *attrP,
UInt32 *uniqueIDP, LocalID *chunkIDP)

✦ DmReleaseRecord: Releases a record marked busy by DmGetRecord or
DmNewRecord.

Err DmReleaseRecord (DmOpenRef dbP, UInt16 index,
Boolean dirty)

✦ DmReleaseResource: Releases a resource acquired by DmGetResource.

Err DmReleaseResource (MemHandle resourceH)

✦ DmRemoveRecord: Removes a record from a database completely, disposing
of its data chunk.

Err DmRemoveRecord (DmOpenRef dbP, UInt16 index)

✦ DmRemoveResource: Removes a resource from a database.

Err DmRemoveResource (DmOpenRef dbP, UInt16 index)

✦ DmRemoveSecretRecords: Removes from a database all records marked
private.

Err DmRemoveSecretRecords (DmOpenRef dbP)

✦ DmResizeRecord: Resizes a record.

MemHandle DmResizeRecord (DmOpenRef dbP, UInt16 index,
UInt32 newSize)

✦ DmResizeResource: Resizes a resource.

MemHandle DmResizeResource (MemHandle resourceH,
UInt32 newSize)

✦ DmResourceInfo: Retrieves information about a resource.

Err DmResourceInfo (DmOpenRef dbP, UInt16 index,
DmResType *resTypeP, DmResID *resIDP,
LocalID *chunkLocalIDP)

✦ DmSearchRecord: Searches through all open record databases for a record
with a given handle.

UInt16 DmSearchRecord (MemHandle recH, DmOpenRef *dbPP)

✦ DmSearchResource: Searches through all open resource databases for a
resource of a given type and ID, or with a given handle.

UInt16 DmSearchResource (DmResType resType, DmResID resID,
MemHandle resH, DmOpenRef *dbPP)

✦ DmSeekRecordInCategory: Retrieves the index of the record closest to a
given offset from a given record’s index, searching only through records of
a given category.

Err DmSeekRecordInCategory (DmOpenRef dbP, UInt16 *indexP,
Int16 offset, Int16 direction, UInt16 category)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 721

722 Appendixes

✦ DmSet: Sets a specified number of bytes in a record to a given byte value.

Err DmSet (void *recordP, UInt32 offset, UInt32 bytes,
UInt8 value)

✦ DmSetDatabaseInfo: Sets information about a database.

Err DmSetDatabaseInfo (UInt16 cardNo, LocalID dbID,
const Char *nameP, UInt16 *attributesP, UInt16 *versionP,
UInt32 *crDateP, UInt32 *modDateP,UInt32 *bckUpDateP,
UInt32 *modNumP, LocalID *appInfoIDP, LocalID

*sortInfoIDP,
UInt32 *typeP, UInt32 *creatorP)

✦ DmSetRecordInfo: Sets information about a record.

Err DmSetRecordInfo (DmOpenRef dbP, UInt16 index,
UInt16 *attrP, UInt32 *uniqueIDP)

✦ DmSetResourceInfo: Sets information about a resource.

Err DmSetResourceInfo (DmOpenRef dbP, UInt16 index,
DmResType *resTypeP, DmResID *resIDP)

✦ DmStrCopy: Copies a null-terminated string into a record at a given offset.

Err DmStrCopy (void *recordP, UInt32 offset,
const Char *srcP)

✦ DmWrite: Writes a specified number of bytes of data into a record at a given
offset.

Err DmWrite (void *recordP, UInt32 offset, const void *srcP,
UInt32 bytes)

✦ DmWriteCheck: Checks that the parameters of a DmWrite operation will be
successful, without actually writing any data to the record.

Err DmWriteCheck (void *recordP, UInt32 offset, UInt32 bytes)

Data and Resource Manager Structures
The Data and Resource Manager functions use a number of structures to identify
database references, resource types, and sorting information.

✦ DmOpenRef: A pointer to an open database, used by functions that need
access to an open database.

typedef void *DmOpenRef

✦ DmResID: Identifier for a resource; resource ID numbers greater than 10000
are reserved for use by the system.

typedef UInt16 DmResID;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 722

723Appendix A ✦ Palm OS API Quick Reference

✦ DmResType: Four-character code specifying a resource type.

typedef UInt32 DmResType;

✦ SortRecordInfoType: Specifies information about a record that may be use-
ful when an application tries to find a record’s proper place in sort order.

typedef struct {
UInt8 attributes;
UInt8 uniqueID[3];

} SortRecordInfoType;

typedef SortRecordInfoType *SortRecordInfoPtr;

Date and Time Selector Functions
The Date and Time Selector functions display date and time selector dialogs.

✦ SelectDay: Displays a date selection dialog.

Boolean SelectDay (const SelectDayType selectDayBy,
Int16 *month, Int16 *day, Int16 *year, const Char *title)

Available only on Palm OS 2.0 or later.

✦ SelectDayV10: Displays a date selection dialog.

Boolean SelectDay (Int16 *month, Int16 *day, Int16 *year,
const Char title)

For backward compatibility with Palm OS 1.0 only.

✦ SelectOneTime: Displays a selection dialog for picking a single time value.

Boolean SelectOneTime (Int16 *hour, Int16 *minute,
const Char *titleP)

Available only on Palm OS 3.1 or later.

✦ SelectTime: Displays a selection dialog for picking start and end times.

Boolean SelectTime (TimeType *startTimeP, TimeType *endTimeP,
Boolean untimed, const Char *titleP, Int16 startOfDay,
Int16 endOfDay, Int16 startOfDisplay)

Available only on Palm OS 3.5 or later.

✦ SelectTimeV33: Displays a selection dialog for picking start and end times.

Boolean SelectTimeV33 (TimeType *startTimeP,
TimeType *EndTimeP, Boolean untimed, Char *title,
Int16 startOfDay)

For backward compatibility with Palm OS 3.3 only.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 723

724 Appendixes

Date and Time Selector Structure
The date and time selector functions use an enumerated type to identify different
ways in which the day selection dialog box may appear.

✦ SelectDayType: Indicates the type of day selection dialog box to display.

typedef enum {
selectDayByDay,
selectDayByWeek,
selectDayByMonth

} SelectDayType;

Error Manager Functions
The Error Manager functions provide facilities for adding debugging code to your
application.

✦ ErrAlert: Macro that displays an alert dialog containing an error string from
either the system or an application’s tSTL resource.

ErrAlert (err)

Available only on Palm OS 3.2 or later.

✦ ErrDisplay: Macro that displays an alert dialog containing a text string.

ErrDisplay (msg)

✦ ErrDisplayFileLineMsg: Displays an alert dialog containing a source code
file name, line number, and text string; called by ErrFatalDisplayIf and
ErrNonFatalDisplayIf.

void ErrDisplayFileLineMsg (const Char *const filename,
UInt16 lineno, const Char *const msg)

✦ ErrFatalDisplayIf: Macro that displays an alert dialog if a given condition is
true and error checking is set to either partial or full.

ErrFatalDisplayIf (condition, msg)

✦ ErrNonFatalDisplayIf: Macro that displays an alert dialog if a given condition
is true and error checking is set to full.

ErrNonFatalDisplayIf (condition, msg)

Exchange Manager Functions
The Exchange Manager functions handle high-level IR beaming.

✦ DeleteProc: Application-defined callback function used by ExgDBRead when
a database already exists that shares a name with an incoming database;
DeleteProc can delete, rename, or move the existing database to resolve
the conflict.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 724

725Appendix A ✦ Palm OS API Quick Reference

Boolean DeleteProc (const char *nameP, UInt16 version,
UInt16 cardNo, LocalID dbID, void *userDataP)

✦ ExgAccept: Accepts an IR beaming connection from a remote device.

Err ExgAccept (ExgSocketPtr socketP)

Available only on Palm OS 3.0 or later.

✦ ExgDBRead: Reads a Palm OS database from its desktop .prc or .pdb format
and writes it to storage using a callback function.

Err ExgDBRead (ExgDBReadProcPtr readProcP,
ExgDBDeleteProcPtr deleteProcP, void *userDataP,
LocalID *dbIDP, UInt16 cardNo, Boolean *needResetP,
Boolean keepDates)

Available only on Palm OS 3.0 or later.

✦ ExgDBWrite: Reads a Palm OS database from its internal format on the hand-
held and writes it to the desktop .prc or .pdb format, using a callback func-
tion to perform special write operations, such as beaming the database.

Err ExgDBWrite (ExgDBWriteProcPtr writeProcP, void
*userDataP,

const char *nameP, LocalID dbID, UInt16 cardNo)

Available only on Palm OS 3.0 or later.

✦ ExgDisconnect: Disconnects an IR beaming connection with a remote device.

Err ExgDisconnect(ExgSocketPtr socketP, Err error)

Available only on Palm OS 3.0 or later.

✦ ExgDoDialog: Displays a dialog box to allow the user to accept or reject
incoming beamed data.

Boolean ExgDoDialog (ExgSocketPtr socketP,
ExgDialogInfoType *infoP, Err *errP)

Available only on Palm OS 3.5 or later.

✦ ExgPut: Initiates data transfer to a remote device.

Err ExgPut (ExgSocketPtr socketP)

Available only on Palm OS 3.0 or later.

✦ ExgReceive: Receives data from a remote device.

UInt32 ExgReceive (ExgSocketPtr socketP, void *bufP,
const UInt32 bufLen, Err *err)

Available only on Palm OS 3.0 or later.

✦ ExgRegisterData: Registers an application to receive specific types of data.

Err ExgRegisterData (const UInt32 creatorID, const UInt16 id,
const Char *const dataTypesP)

Available only on Palm OS 3.0 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 725

726 Appendixes

✦ ExgSend: Sends data to a remote device.

UInt32 ExgSend (ExgSocketPtr socketP, const void *const bufP,
const UInt32 bufLen, Err *err)

Available only on Palm OS 3.0 or later.

✦ ReadProc: Application-defined callback function that ExgDBRead calls to
read in a database.

Err ReadProc (void *dataP, UInt32 *sizeP, void *userDataP)

✦ WriteProc: Application-defined callback function that ExgDBWrite calls to
write out a database.

Err WriteProc (const void *dataP, UInt32 *sizeP,
void *userDataP)

Exchange Manager Structures
The Exchange Manager uses a few structures to keep track of important values dur-
ing infrared beaming operations.

✦ ExgAskResultType: Defines the possible values for the result field of a
sysAppLaunchCmdExgAskUser launch code.

typedef enum {
exgAskDialog,
exgAskOk,
exgAskCancel

} ExgAskResultType;

✦ ExgGoToType: Contains information about which record should be displayed
once a transfer has been completed.

typedef struct {
UInt16 dbCardNo;
LocalID dbID;
UInt16 recordNum;
UInt32 uniqueID;
UInt32 matchCustom;

} ExgGoToType;

typedef ExgGoToType *ExgGoToPtr;

✦ ExgSocketType: Holds information about a connection and the type of data
being transferred.

typedef struct ExgSocketType {
UInt16 libraryRef;
UInt32 socketRef;
UInt32 target;
UInt32 count;
UInt32 length;
UInt32 time;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 726

727Appendix A ✦ Palm OS API Quick Reference

UInt32 appData;
UInt32 goToCreator;
ExgGoToType goToParams;
UInt16 localMode:1;
UInt16 packetMode:1;
UInt16 noGoTo:1;
UInt16 noStatus:1;
UInt16 reserved:12;
Char *description;
Char *type;
Char *name;

} ExgSocketType;

typedef ExgSocketType *ExgSocketPtr;

Feature Manager Functions
The Feature Manager functions allow publishing and retrieval of special data that
persists even after an application quits.

✦ FtrGet: Retrieves a feature value.

Err FtrGet (UInt32 creator, UInt16 featureNum, UInt32 *valueP)

✦ FtrGetByIndex: Retrieves a feature, given an index.

Err FtrGetByIndex (UInt16 index, Boolean romTable,
UInt32 *creatorP, UInt16 *numP, UInt32 *valueP)

✦ FtrPtrFree: Releases memory allocated with FtrPtrNew.

Err FtrPtrFree (UInt32 creator, UInt16 featureNum)

Available only on Palm OS 3.1 or later.

✦ FtrPtrNew: Allocates a chunk of feature memory.

Err FtrPtrNew (UInt32 creator, UInt16 featureNum, UInt32 size,
void **newPtrP)

Available only on Palm OS 3.1 or later.

✦ FtrPtrResize: Resizes feature memory.

Err FtrPtrResize (UInt32 creator, UInt16 featureNum,
UInt32 newSize, void **newPtrP)

Available only on Palm OS 3.1 or later.

✦ FtrSet: Sets a feature value.

Err FtrSet (UInt32 creator, UInt16 featureNum, UInt32 newValue)

✦ FtrUnregister: Unregisters a feature.

Err FtrUnregister (UInt32 creator, UInt16 featureNum)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 727

728 Appendixes

Field Functions
The Field functions handle text field objects.

✦ FldCalcFieldHeight: Calculates how many lines tall a field needs to be to
contain a given string.

UInt16 FldCalcFieldHeight (const Char *chars, UInt16
maxWidth)

✦ FldCompactText: Compacts the memory chunk containing a field’s text to
free up unused space.

void FldCompactText (FieldType *fldP)

✦ FldCopy: Copies the currently selected text to the clipboard.

void FldCopy (const FieldType *fldP)

✦ FldCut: Cuts the currently selected text to the clipboard.

void FldCut (FieldType *fldP)

✦ FldDelete: Deletes a range of characters from a text field.

void FldDelete (FieldType *fldP, UInt16 start, UInt16 end)

✦ FldDirty: Returns true if a field’s text has been modified.

Boolean FldDirty (const FieldType *fldP)

✦ FldDrawField: Draws the text of a field.

void FldDrawField (FieldType *fldP)

✦ FldEraseField: Erases a field’s text and turns off the insertion point.

void FldEraseField (FieldType *fldP)

✦ FldFreeMemory: Releases the memory that holds a field’s text and the
memory containing the field’s word-wrapping information.

void FldFreeMemory (FieldType *fldP)

✦ FldGetAttributes: Returns a text field’s attributes.

void FldGetAttributes (const FieldType *fldP,
FieldAttrPtr attrP)

✦ FldGetBounds: Returns the rectangle occupied by a field.

void FldGetBounds (const FieldType *fldP, RectanglePtr rect)

✦ FldGetFont: Returns the font ID currently used by a text field.

FontID FldGetFont (const FieldType *fldP)

✦ FldGetInsPtPosition: Returns the position of a text field’s insertion point.

UInt16 FldGetInsPtPosition (const FieldType *fldP)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 728

729Appendix A ✦ Palm OS API Quick Reference

✦ FldGetMaxChars: Returns the maximum number of bytes that a text field may
contain.

UInt16 FldGetMaxChars (const FieldType *fldP)

✦ FldGetNumberOfBlankLines: Returns the number of blank lines displayed at
the bottom of a text field.

UInt16 FldGetNumberOfBlankLines (const FieldType *fldP)

✦ FldGetScrollPosition: Returns the offset of the first character in the first
visible line of a text field.

UInt16 FldGetScrollPosition (const FieldType *fldP)

✦ FldGetScrollValues: Retrieves values from a text field for updating a scroll bar.

void FldGetScrollValues (const FieldType *fldP,
UInt16 *scrollPosP, UInt16 *textHeightP,
UInt16 *fieldHeightP)

✦ FldGetSelection: Retrieves the start and end points of a text field’s selected text.

void FldGetSelection (const FieldType *fldP,
UInt16 *startPosition, UInt16 *endPosition)

✦ FldGetTextHandle: Returns a handle to the memory chunk that contains a
field’s text.

MemHandle FldGetTextHandle (const FieldType *fldP)

✦ FldGetTextHeight: Returns the height of a field’s text in pixels, skipping
empty lines at the end of the field.

UInt16 FldGetTextHeight (const FieldType *fldP)

✦ FldGetTextLength: Returns the length of a field’s text in bytes.

UInt16 FldGetTextLength (const FieldType *fldP)

✦ FldGetTextPtr: Returns a locked pointer to a field’s text.

Char *FldGetTextPtr (FieldType *fldP)

✦ FldGetVisibleLines: Returns the number of lines in a text field that are visible
at the same time.

UInt16 FldGetVisibleLines (const FieldType *fldP)

✦ FldGrabFocus: Turns the insertion point on and displays a blinking cursor in
the given field; usually, you should use FrmSetFocus instead.

void FldGrabFocus (FieldType *fldP)

✦ FldHandleEvent: Handles events for a text field object; normally, the system
calls this function for you to provide default handling of field events.

Boolean FldHandleEvent (FieldType *fldP, EventType *eventP)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 729

730 Appendixes

✦ FldInsert: Replaces the currently selected text in a field with a given string
and redraws the field.

Boolean FldInsert (FieldType *fldP, const Char *insertChars,
UInt16 insertLen)

✦ FldMakeFullyVisible: Expands a resizable field’s height to display all its text.

Boolean FldMakeFullyVisible (FieldType *fldP)

✦ FldNewField: Dynamically creates a new text field object.

FieldType *FldNewField (void **formPP, UInt16 id, Coord x,
Coord y, Coord width, Coord height, FontID font,
UInt32 maxChars, Boolean editable, Boolean underlined,
Boolean singleLine, Boolean dynamicSize,
JustificationType justification, Boolean autoShift,
Boolean hasScrollBar, Boolean numeric)

Available only on Palm OS 3.0 or later.

✦ FldPaste: Writes the current contents of the clipboard into a text field, over-
writing selected text, if any.

void FldPaste (FieldType *fldP)

✦ FldRecalculateField: Updates the word-wrapping information for a text field.

void FldRecalculateField (FieldType *fldP, Boolean redraw)

✦ FldScrollable: Returns true if a text field is scrollable in a given direction.

Boolean FldScrollable (const FieldType *fldP,
WinDirectionType direction)

✦ FldScrollField: Scrolls a text field up or down a given number of lines.

void FldScrollField (FieldType *fldP, UInt16 linesToScroll,
WinDirectionType direction)

✦ FldSetAttributes: Sets attributes for a text field.

void FldSetAttributes (FieldType *fldP,
const FieldAttrPtr attrP)

✦ FldSetDirty: Sets or clears a text field’s dirty bit.

void FldSetDirty (FieldType *fldP, Boolean dirty)

✦ FldSetFont: Sets the font for a text field, updates the field’s word-wrapping
information, and redraws the field if it is visible.

void FldSetFont (FieldType *fldP, FontID fontID)

✦ FldSetInsertionPoint: Sets the location of a text field’s insertion point without
scrolling the field to make the new position visible.

void FldSetInsertionPoint (FieldType *fldP, UInt16 pos)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 730

731Appendix A ✦ Palm OS API Quick Reference

✦ FldSetInsPtPosition: Sets the location of a text field’s insertion point, scrolling
the field to make the new position visible.

void FldSetInsPtPosition (FieldType *fldP, UInt16 pos)

✦ FldSetMaxChars: Sets the maximum number of bytes’ worth of characters
that a text field can hold.

void FldSetMaxChars (FieldType *fldP, UInt16 maxChars)

✦ FldSetScrollPosition: Scrolls a text field so the character at a given offset is
visible, redrawing the field if necessary.

void FldSetScrollPosition (FieldType *fldP, UInt16 pos)

✦ FldSetSelection: Sets the start and end points of the selected text in a field.

void FldSetSelection (FieldType *fldP, UInt16 startPosition,
UInt16 endPosition)

✦ FldSetText: Sets a field’s text string without updating the display, allowing for
in-place editing of text in a database.

void FldSetText (FieldType *fldP, MemHandle textHandle,
UInt16 offset, UInt16 size)

✦ FldSetTextHandle: Sets a field’s text string without updating the display, using
an entire memory chunk for the source string.

void FldSetTextHandle (FieldType *fldP, MemHandle textHandle)

✦ FldSetUsable: Makes a text field usable or unusable.

void FldSetUsable (FieldType *fldP, Boolean usable)

✦ FldUndo: Undoes the last change made to a text field.

void FldUndo (FieldType *fldP)

✦ FldWordWrap: Returns the number of bytes of characters of a given string
that may be displayed within a certain width in the current font.

UInt16 FldWordWrap (const Char *chars, Int16 maxWidth)

Field Structures
The field functions use a few structures to hold information about text field objects.

✦ FieldAttrType: Bit field that defines the attributes for a text field object;
used in the FieldType structure.

typedef struct {
UInt16 usable :1;
UInt16 visible :1;
UInt16 editable :1;
UInt16 singleLine :1;
UInt16 hasFocus :1;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 731

732 Appendixes

UInt16 dynamicSize :1;
UInt16 insPtVisible :1;
UInt16 dirty :1;
UInt16 underlined :2;
UInt16 justification :2;
UInt16 autoShift :1;
UInt16 hasScrollBar :1;
UInt16 numeric :1;

} FieldAttrType;

✦ FieldType: Defines a text field object.

typedef struct FieldType {
UInt16 id;
RectangleType rect;
FieldAttrType attr;
Char *text;
MemHandle textHandle;
LineInfoPtr lines;
UInt16 textLen;
UInt16 textBlockSize;
UInt16 maxChars;
UInt16 selFirstPos;
UInt16 selLastPos;
UInt16 insPtXPos;
UInt16 insPtYPos;
FontID fontID;
UInt8 reserved;

} FieldType;

✦ LineInfoType: Describes a single line in a form object’s lines array.

typedef struct {
UInt16 start;
UInt16 length;

} LineInfoType;

File Streaming Functions
The File Streaming functions provide support for reading and writing arbitrarily
long blocks of data.

✦ FileClearerr: Clears the file streaming error status.

Err FileClearerr (FileHand stream)

Available only on Palm OS 3.0 or later.

✦ FileClose: Closes a file stream and destroys its handle.

Err FileClose (FileHand stream)

Available only on Palm OS 3.0 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 732

733Appendix A ✦ Palm OS API Quick Reference

✦ FileDelete: Deletes a closed file stream.

Err FileDelete (UInt16 cardNo, Char *nameP)

Available only on Palm OS 3.0 or later.

✦ FileDmRead: Reads data from a file stream directly into a memory chunk,
record, or resource.

Int32 FileDmRead (FileHand stream, void *startOfDmChunkP,
Int32 destOffset, Int32 objSize, Int32 numObj, Err *errP)

Available only on Palm OS 3.0 or later.

✦ FileEOF: Returns 0 if a file stream’s read/write position is not at end of file.

Err FileEOF (FileHand stream)

Available only on Palm OS 3.0 or later.

✦ FileError: Returns the current I/O error status for a file stream.

Err FileError (FileHand stream)

Available only on Palm OS 3.0 or later.

✦ FileGetLastError: Returns the last file stream error code and clears the error
status unless the error is end of file or an I/O error.

Err FileGetLastError (FileHand stream)

Available only on Palm OS 3.0 or later.

✦ FileOpen: Opens or creates a file stream.

FileHand FileOpen (UInt16 cardNo, Char *nameP, UInt32 type,
UInt32 creator, UInt32 openMode, Err *errP)

Available only on Palm OS 3.0 or later.

✦ FileRead: Reads data from a file stream into a buffer.

Int32 FileRead (FileHand stream, void *bufP, Int32 objSize,
Int32 numObj, Err *errP)

Available only on Palm OS 3.0 or later.

✦ FileRewind: Sets a file stream’s read/write position back to the start of the
stream and clears all file streaming errors.

Err FileRewind (FileHand stream)

Available only on Palm OS 3.0 or later.

✦ FileSeek: Sets the current read/write position within a file stream.

Err FileSeek (FileHand stream, Int32 offset,
FileOriginEnum origin)

Available only on Palm OS 3.0 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 733

734 Appendixes

✦ FileTell: Returns a file stream’s current read/write position, and optionally
retrieves the size of the stream in bytes.

Int32 FileTell (FileHand stream, Int32 *fileSizeP, Err *errP)

Available only on Palm OS 3.0 or later.

✦ FileTruncate: Truncates a file stream to a given number of bytes in size.

Err FileTruncate (FileHand stream, Int32 newSize)

Available only on Palm OS 3.0 or later.

✦ FileWrite: Writes data to a file stream.

Int32 FileWrite (FileHand stream, void *dataP, Int32 objSize,
Int32 numObj, Err *errP)

Available only on Palm OS 3.0 or later.

Find Functions
The Find routines help implement the global find feature.

✦ FindDrawHeader: Draws the header line that separates the list of found
records into different database groupings.

Boolean FindDrawHeader (FindParamsPtr findParams,
Char const *title)

✦ FindGetLineBounds: Retrieves the rectangle defining the next available
screen region for drawing a match in the Find Results dialog.

void FindGetLineBounds (const FindParamsType *findParams,
RectanglePtr r)

✦ FindSaveMatch: Saves the record and text offset within the record of a match-
ing text string, allowing later navigation back to that record.

Boolean FindSaveMatch (FindParamsPtr findParams,
UInt16 recordNum, UInt16 pos, UInt16 fieldNum,
UInt32 appCustom, UInt16 cardNo, LocalID dbID)

✦ FindStrInStr: Performs a case-insensitive search to find one string within
another string, matching only the beginnings of words.

Boolean FindStrInStr (Char const *strToSearch,
Char const *strToFind, UInt16 *posP)

Font Functions
The Font functions provide utilities for handling fonts.

✦ FntAverageCharWidth: Returns the average width in pixels of characters in
the current font.

Int16 FntAverageCharWidth (void)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 734

735Appendix A ✦ Palm OS API Quick Reference

✦ FntBaseLine: Returns the distance in pixels from the top of a character cell to
its baseline for the current font.

Int16 FntBaseLine (void)

✦ FntCharHeight: Returns the height in pixels of characters in the current font.

Int16 FntCharHeight (void)

✦ FntCharsInWidth: Determines the number of bytes of characters in a given
string that will fit within a certain pixel width using the current font.

void FntCharsInWidth (Char const *string, Int16
*stringWidthP,

Int16 *stringLengthP, Boolean *fitWithinWidth)

✦ FntCharsWidth: Returns the width in pixels of a string drawn in the current
font.

Int16 FntCharsWidth (Char const *chars, Int16 len)

✦ FntCharWidth: Returns the width in pixels of a given character in the cur-
rent font.

Int16 FntCharWidth (Char ch)

✦ FntDefineFont: Makes a custom font available to an application.

Err FntDefineFont (FontID font, FontPtr fontP)

Available only on Palm OS 3.0 or later.

✦ FntDescenderHeight: Returns the height in pixels between the baseline and
the bottom of the character cell in the current font.

Int16 FntDescenderHeight (void)

✦ FntGetFont: Returns the ID of the current font.

FontID FntGetFont (void)

✦ FntGetFontPtr: Returns a pointer to the current font.

FontPtr FntGetFontPtr (void)

✦ FntGetScrollValues: Retrieves values for updating a scroll bar from a string,
based on the position within the string.

void FntGetScrollValues (Char const *chars, UInt16 width,
UInt16 scrollPos, UInt16 *linesP, UInt16 *topLine)

Available only on Palm OS 2.0 or later.

✦ FntLineHeight: Returns the height in pixels of a line of text in the current font.

Int16 FntLineHeight (void)

✦ FntLineWidth: Returns the width in pixels of a line of text, taking tab charac-
ters into account.

Int16 FntLineWidth (Char const *pChars, UInt16 length)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 735

736 Appendixes

✦ FntSetFont: Sets the current font, returning the ID of the current font before
making the change.

FontID FntSetFont (FontID font)

✦ FntWidthToOffset: Returns the offset of a character within a string located at
a given pixel position.

Int16 FntWidthToOffset (Char const *pChars, UInt16 length,
Int16 pixelWidth, Boolean *leadingEdge, Int16

*truncWidth)

Available only on Palm OS 3.1 or later.

✦ FntWordWrap: Returns the number of bytes of text that can be displayed
within a specified width, using the current font.

UInt16 FntWordWrap (Char const *chars, UInt16 maxWidth)

Available only on Palm OS 2.0 or later.

✦ FontSelect: Displays a dialog for font selection.

FontID FontSelect (FontID fontID)

Available only on Palm OS 3.0 or later.

Form Functions
The Form functions provide routines for interacting with form objects.

✦ FormCheckResponseFunc: Application-defined callback function used by
FrmCustomResponseAlert to initialize and perform cleanup of a custom
response alert dialog, as well as to process and validate user input in the
alert’s text field.

Boolean FormCheckResponseFunc (Int16 button, Char *attempt)

Available only on Palm OS 3.5 or later.

✦ FormEventHandler: Application-defined callback function that handles
events for a particular form; FrmSetEventHandler installs this callback as
a form’s event handler.

Boolean FormEventHandlerType (EventType *eventP)

✦ FormGadgetHandler: Application-defined callback function that handles
events for a particular gadget; FrmSetGadgetHandler installs this callback
as an extended gadget’s event handler.

Boolean (FormGadgetHandlerType)
(struct FormGadgetType *gadgetP, UInt16 cmd, void

*paramP)

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 736

737Appendix A ✦ Palm OS API Quick Reference

✦ FrmAlert: Displays an alert dialog.

UInt16 FrmAlert (UInt16 alertId)

✦ FrmCloseAllForms: Sends a frmCloseEvent to all open forms.

void FrmCloseAllForms (void)

✦ FrmCopyLabel: Copies a string into a label.

void FrmCopyLabel (FormType *formP, UInt16 labelID,
const Char *newLabel)

✦ FrmCopyTitle: Copies a string into a form’s title bar.

void FrmCopyTitle (FormType *formP, const Char *newTitle)

✦ FrmCustomAlert: Displays an alert dialog, substituting placeholders in the
alert resource with string values.

UInt16 FrmCustomAlert (UInt16 alertId, const Char *s1,
const Char *s2, const Char *s3)

✦ FrmCustomResponseAlert: Displays an alert dialog with a text field, allowing
the user to enter text before dismissing the dialog.

UInt16 FrmCustomResponseAlert (UInt16 alertId, const Char *s1,
const Char *s2, const Char *s3, Char *entryStringBuf,
Int16 entryStringBufLength,
FormCheckResponseFuncPtr callback)

Available only on Palm OS 3.5 or later.

✦ FrmDeleteForm: Releases the memory allocated to a form.

void FrmDeleteForm (FormType *formP)

✦ FrmDispatchEvent: Dispatches an event to a form’s event handler.

Boolean FrmDispatchEvent (EventType *eventP)

✦ FrmDoDialog: Displays a modal dialog and retrieves the resource ID of the
button used to dismiss the dialog.

UInt16 FrmDoDialog (FormType *formP)

✦ FrmDrawForm: Draws a form, its border, and all the objects within it.

void FrmDrawForm (FormType *formP)

✦ FrmEraseForm: Erases a form from the display.

void FrmEraseForm (FormType *formP)

✦ FrmGetActiveForm: Returns a pointer to the current active form.

FormType *FrmGetActiveForm (void)

✦ FrmGetActiveFormID: Returns the ID of the current active form.

UInt16 FrmGetActiveFormID (void)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 737

738 Appendixes

✦ FrmGetControlGroupSelection: Returns the index of the selected control in
an exclusive group of push buttons or check boxes.

UInt16 FrmGetControlGroupSelection (FormType *formP,
UInt8 groupNum)

✦ FrmGetControlValue: Returns the value of a control.

Int16 FrmGetControlValue (const FormType *formP,
UInt16 controlID)

✦ FrmGetFirstForm: Returns a pointer to the first form in the window list.

FormType *FrmGetFirstForm (void)

✦ FrmGetFocus: Returns the index of the object in a form that has the focus.

UInt16 FrmGetFocus (const FormType *formP)

✦ FrmGetFormBounds: Retrieves a rectangle defining the bounds of a form,
including its border.

void FrmGetFormBounds (const FormType *formP,
RectangleType *rP)

✦ FrmGetFormId: Returns the resource ID of a form, given a pointer to the form.

UInt16 FrmGetFormId (FormType *formP)

✦ FrmGetFormPtr: Returns a pointer to a form, given the form’s ID.

FormType *FrmGetFormPtr (UInt16 formId)

✦ FrmGetGadgetData: Retrieves the value stored in a gadget.

void *FrmGetGadgetData (const FormType *formP, UInt16 objIndex)

✦ FrmGetLabel: Returns a pointer to a label’s text.

const Char *FrmGetLabel (FormType *formP, UInt16 labelID)

✦ FrmGetNumberOfObjects: Returns the number of objects contained by
a form.

UInt16 FrmGetNumberOfObjects (const FormType *formP)

✦ FrmGetObjectBounds: Retrieves a rectangle defining an object’s bounds
within a form.

void FrmGetObjectBounds (const FormType *formP,
UInt16 ObjIndex, RectangleType *rP)

✦ FrmGetObjectId: Returns the resource ID of an object in a form, given the
object’s index.

UInt16 FrmGetObjectId (const FormType *formP, UInt16 objIndex)

✦ FrmGetObjectIndex: Returns the index of an object in a form, given the
object’s ID.

UInt16 FrmGetObjectIndex (const FormType *formP, UInt16 objID)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 738

739Appendix A ✦ Palm OS API Quick Reference

✦ FrmGetObjectPosition: Retrieves the coordinates of the upper-left corner of
an object, relative to the form it occupies.

void FrmGetObjectPosition (const FormType *formP,
UInt16 objIndex, Coord *x, Coord *y)

✦ FrmGetObjectPtr: Returns a pointer to an object in a form, given the object’s
index.

void *FrmGetObjectPtr (const FormType *formP, UInt16 objIndex)

✦ FrmGetObjectType: Returns the type of an object.

FormObjectKind FrmGetObjectType (const FormType *formP,
UInt16 objIndex)

✦ FrmGetTitle: Returns a pointer to a form’s title bar string.

const Char *FrmGetTitle (const FormType *formP)

✦ FrmGotoForm: Closes the current form and opens another.

void FrmGotoForm (UInt16 formId)

✦ FrmHelp: Displays a help message in a modal dialog.

void FrmHelp (UInt16 helpMsgId)

✦ FrmHideObject: Erases an object from the display and sets it unusable.

void FrmHideObject (FormType *formP, UInt16 objIndex)

✦ FrmInitForm: Loads and initializes a form resource.

FormType *FrmInitForm (UInt16 rscID)

✦ FrmNewBitmap: Creates a new form bitmap at run time.

FormBitmapType *FrmNewBitmap (FormType **formPP, UInt16 ID,
UInt16 rscID, Coord x, Coord y)

Available only on Palm OS 3.0 or later.

✦ FrmNewForm: Creates a new form at run time.

FormType *FrmNewForm (UInt16 formID, const Char *titleStrP,
Coord x, Coord y, Coord width, Coord height, Boolean modal,
UInt16 defaultButton, UInt16 helpRscID, UInt16 menuRscID)

Available only on Palm OS 3.0 or later.

✦ FrmNewGadget: Creates a new gadget at run time.

FormGadgetType *FrmNewGadget (FormType **formPP, UInt16 id,
Coord x, Coord y, Coord width, Coord height)

Available only on Palm OS 3.0 or later.

✦ FrmNewGsi: Creates a new Graffiti shift indicator at run time.

FrmGraffitiStateType *FrmNewGsi (FormType **formPP, Coord x,
Coord y)

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 739

740 Appendixes

✦ FrmNewLabel: Creates a new label at run time.

FormLabelType *FrmNewLabel (FormType **formPP, UInt16 ID,
const Char *textP, Coord x, Coord y, FontID font)

Available only on Palm OS 3.0 or later.

✦ FrmPointInTitle: Returns true if a given coordinate is within a form’s title bar.

Boolean FrmPointInTitle (const FormType *formP, Coord x,
Coord y)

Available only on Palm OS 2.0 or later.

✦ FrmPopupForm: Displays a new form without first closing the current form.

void FrmPopupForm (UInt16 formId)

✦ FrmRemoveObject: Removes an object from a form.

Err FrmRemoveObject (FormType **formPP, UInt16 objIndex)

✦ FrmRestoreActiveState: Macro that restores the window and form state, as
saved by the FrmSaveActiveState macro.

FrmRestoreActiveState (stateP)

Available only on Palm OS 3.0 or later.

✦ FrmReturnToForm: Erases and deletes the active form and makes another
form active.

void FrmReturnToForm (UInt16 formId)

✦ FrmSaveActiveState: Macro that saves the window and form state before
dynamically displaying a new modal form.

FrmSaveActiveState (stateP)

Available only on Palm OS 3.0 or later.

✦ FrmSaveAllForms: Sends a frmSaveEvent to all open forms.

void FrmSaveAllForms (void)

✦ FrmSetActiveForm: Sets the active form.

void FrmSetActiveForm (FormType *formP)

✦ FrmSetCategoryLabel: Sets the category label displayed on the title line of
a form.

void FrmSetCategoryLabel (FormType *formP, UInt16 objIndex,
Char *newLabel)

✦ FrmSetControlGroupSelection: Sets the selected control in an exclusive
group of push buttons or check boxes.

void FrmSetControlGroupSelection (const FormType *formP,
UInt8 groupNum, UInt16 controlID)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 740

741Appendix A ✦ Palm OS API Quick Reference

✦ FrmSetControlValue: Sets the value of a control and redraws the control if it
is visible.

void FrmSetControlValue (const FormType *formP,
UInt16 objIndex, Int16 newValue)

✦ FrmSetEventHandler: Sets the event handler callback function for a form.

void FrmSetEventHandler (FormType *formP,
FormEventHandlerType *handler)

✦ FrmSetFocus: Sets a form’s focus to a given object.

void FrmSetFocus (FormType *formP, UInt16 fieldIndex)

✦ FrmSetGadgetData: Sets a gadget’s data value.

void FrmSetGadgetData (FormType *formP, UInt16 objIndex,
const void *data)

✦ FrmSetGadgetHandler: Sets the event handler for an extended gadget.

void FrmSetGadgetHandler (FormType *formP, UInt16 objIndex,
FormGadgetHandlerType *attrP)

Available only on Palm OS 3.5 or later.

✦ FrmSetMenu: Sets a form’s active menu bar.

void FrmSetMenu (FormType *formP, UInt16 menuRscID)

Available only on Palm OS 2.0 or later.

✦ FrmSetObjectBounds: Sets an object’s bounds or position based on a given
rectangle.

void FrmSetObjectBounds (FormType *formP, UInt16 objIndex,
const RectangleType *bounds)

Available only on Palm OS 2.0 or later.

✦ FrmSetObjectPosition: Sets the window-relative coordinates of an object’s
upper-left corner.

void FrmSetObjectPosition (FormType *formP, UInt16 objIndex,
Coord x, Coord y)

✦ FrmSetTitle: Sets the title for a form, redrawing the title if the form is visible.

void FrmSetTitle (FormType *formP, Char *newTitle)

✦ FrmShowObject: Sets an object to usable, drawing it if the form it occupies is
visible.

void FrmShowObject (FormType *formP, UInt16 objIndex)

✦ FrmUpdateForm: Sends a frmUpdateEvent to a given form.

void FrmUpdateForm (UInt16 formId, UInt16 updateCode)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 741

742 Appendixes

✦ FrmUpdateScrollers: Shows, hides, or grays out scroll arrows given a specific
scroll state.

void FrmUpdateScrollers (FormType *formP, UInt16 upIndex,
UInt16 downIndex, Boolean scrollableUp,
Boolean scrollableDown)

✦ FrmValidatePtr: Returns true if the given pointer references a valid form.

Boolean FrmValidatePtr (const FormType *formP)

Available only on Palm OS 3.0 or later. For debugging only; do not use in
released applications.

✦ FrmVisible: Returns true if a form is visible.

Boolean FrmVisible (const FormType *formP)

Form Structures
The form functions use several structures to keep track of information about form
objects.

✦ FormAttrType: Bit field that describes a form’s attributes; used by the
FormType structure.

typedef struct {
UInt16 usable :1;
UInt16 enabled :1;
UInt16 visible :1;
UInt16 dirty :1;
UInt16 saveBehind :1;
UInt16 graffitiShift :1;
UInt16 globalsAvailable :1;
UInt16 doingDialog :1;
UInt16 exitDialog :1;
UInt16 reserved :7;
UInt16 reserved2;

} FormAttrType;

✦ FormBitmapType: Describes a bitmap object.

typedef struct {
FormObjAttrType attr;
PointType pos;
UInt16 rscID;

} FormBitmapType;

✦ FormGadgetAttrType: Bit field that describes a gadget object’s attributes;
used by the FormGadgetType structure.

typedef struct {
UInt16 usable :1;
UInt16 extended :1;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 742

743Appendix A ✦ Palm OS API Quick Reference

UInt16 visible :1;
UInt16 reserved :13;

} FormGadgetAttrType;

✦ FormGadgetType: Describes a gadget object.

typedef struct {
UInt16 id;
FormGadgetAttrType attr;
RectangleType rect;
const void *data;
FormGadgetHandlerType *handler;

} FormGadgetType;

✦ FormLabelType: Describes a label object.

typedef struct {
UInt16 id;
PointType pos;
FormObjAttrType attr;
FontID fontID;
UInt8 reserved;
Char *text;

} FormLabelType;

✦ FormObjAttrType: Bit field that describes an object’s attributes; used by
the FormObjectType union.

typedef struct {
UInt16 usable :1;
UInt16 reserved :15;

} FormObjAttrType;

✦ FormObjectKind: Specifies the kinds of objects that may be contained in
a form.

enum formObjects {
frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObj,
frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleObj,
frmPopupObj,
frmGraffitiStateObj,
frmGadgetObj,
frmScrollBarObj

};

typedef enum formObjects FormObjectKind;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 743

744 Appendixes

✦ FormObjectType: Describes an object on a form.

typedef union {
void *ptr;
FieldType *field;
ControlType *control;
GraphicControlType *graphicControl;
SliderControlType *sliderControl;
ListType *list;
TableType *table;
FormBitmapType *bitmap;
FormLabelType *label;
FormTitleType *title;
FormPopupType *popup;
FrmGraffitiStateType *grfState;
FormGadgetType *gadget;
ScrollBarType *scrollBar;

} FormObjectType;

✦ FormObjListType: Describes one member of a form’s object list, which is
stored in a FormType structure’s objects field.

typedef struct {
FormObjectKind objectType;
UInt8 reserved;
FormObjectType object;

} FormObjListType;

✦ FormPopupType: Describes a pop-up list object.

typedef struct {
UInt16 controlID;
UInt16 listID;

} FormPopupType;

✦ FormTitleType: Describes a form’s title.

typedef struct {
RectangleType rect;
Char *text;

} FormTitleType;

✦ FormType: Describes a form.

typedef struct {
WindowType window;
UInt16 formId;
FormAttrType attr;
WinHandle bitsBehindForm;
FormEventHandlerType *handler;
UInt16 focus;
UInt16 defaultButton;
UInt16 helpRscId;
UInt16 menuRscId;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 744

745Appendix A ✦ Palm OS API Quick Reference

UInt16 numObjects;
FormObjListType *objects;

} FormType;

✦ FrmGraffitiStateType: Describes a Graffiti shift indicator.

typedef struct {
PointType pos;

} FrmGraffitiStateType;

List Functions
The List functions handle list objects.

✦ LstDrawDataFunc: Application-defined callback function for performing
special drawing within each item in a list.

void ListDrawDataFunc (Int16 itemNum, RectangleType *bounds,
Char **itemsText)

✦ LstDrawList: Draws a list object if it is usable.

void LstDrawList (ListType *listP)

✦ LstEraseList: Erases a list object from the display.

void LstEraseList (ListType *listP)

✦ LstGetNumberOfItems: Returns the number of items in a list.

Int16 LstGetNumberOfItems (const ListType *listP)

✦ LstGetSelection: Returns the item number of the currently selected list item.

Int16 LstGetSelection (const ListType *listP)

✦ LstGetSelectionText: Returns a pointer to the text of the selected list item, or
NULL if there is no selection.

Char *LstGetSelectionText (const ListType *listP,
Int16 itemNum)

✦ LstGetVisibleItems: Returns the number of visible items in a list.

Int16 LstGetVisibleItems (const ListType *listP)

Available only on Palm OS 2.0 or later.

✦ LstHandleEvent: Handles an event in a list object; normally, the system calls
this function for you to provide default handling of list events.

Boolean LstHandleEvent (ListType *listP,
const EventType *eventP)

✦ LstMakeItemVisible: Scrolls a list to make a given item visible, preferably at
the top of the list.

void LstMakeItemVisible (ListType *listP, Int16 itemNum)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 745

746 Appendixes

✦ LstNewList: Dynamically creates a new list object.

Err LstNewList (void **formPP, UInt16 id, Coord x, Coord y,
Coord width, Coord height, FontID font, Int16

visibleItems,
Int16 triggerId)

Available only on Palm OS 3.0 or later.

✦ LstPopupList: Displays a pop-up list and returns the item number of the item
the user selects.

Int16 LstPopupList (ListType *listP)

✦ LstScrollList: Scrolls a list by a given number of items.

Boolean LstScrollList (ListType *listP,
WinDirectionType direction, Int16 itemCount)

Available only on Palm OS 2.0 or later.

✦ LstSetDrawFunction: Sets a callback function to perform special drawing
tasks within each member of a list.

void LstSetDrawFunction (ListType *listP,
ListDrawDataFuncPtr func)

✦ LstSetHeight: Sets the number of visible items in a list.

void LstSetHeight (ListType *listP, Int16 visibleItems)

✦ LstSetListChoices: Sets the items in a list to a given array of strings, without
affecting the display of the list.

void LstSetListChoices (ListType *listP, Char **itemsText,
UInt16 numItems)

✦ LstSetPosition: Sets the coordinates of the upper-left corner of a list.

void LstSetPosition (ListType *listP, Coord x, Coord y)

✦ LstSetSelection: Sets the selection in a list.

void LstSetSelection (ListType *listP, Int16 itemNum)

✦ LstSetTopItem: Makes a given list item the top item in the list, unless that item
is on the last visible page of the list.

void LstSetTopItem (ListType *listP, Int16 itemNum)

List Structures
The list functions use a pair of structures to hold list object data.

✦ ListAttrType: Bit field that describes a list’s attributes; used by the
ListType structure.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 746

747Appendix A ✦ Palm OS API Quick Reference

typedef struct {
UInt16 usable :1;
UInt16 enabled :1;
UInt16 visible :1;
UInt16 poppedUp :1;
UInt16 hasScrollBar :1;
UInt16 search :1;
UInt16 reserved :2;

} ListAttrType;

✦ ListType: Describes a list object.

typedef struct ListType {
UInt16 id;
RectangleType bounds;
ListAttrType attr;
Char **itemsText;
Int16 numItems;
Int16 currentItem;
Int16 topItem;
FontID font;
UInt8 reserved;
WinHandle popupWin;
ListDrawDataFuncPtr drawItemsCallback;

} ListType;

Memory Manager Functions
The Memory Manager functions handle allocation and manipulation of memory.

✦ MemCardInfo: Returns information about a memory card.

Err MemCardInfo (UInt16 cardNo, Char *cardNameP,
Char *manufNameP, UInt16 *versionP, UInt32 *crDateP,
UInt32 *romSizeP, UInt32 *ramSizeP, UInt32 *freeBytesP)

✦ MemCmp: Compares two blocks of memory.

Int16 MemCmp (const void *s1, const void *s2, Int32 numBytes)

✦ MemHandleFree: Disposes of a movable memory chunk.

Err MemHandleFree (MemHandle h)

✦ MemHandleLock: Locks a movable memory chunk and returns a pointer to
the chunk’s data.

MemPtr MemHandleLock (MemHandle h)

✦ MemHandleNew: Allocates a new movable memory chunk and returns a han-
dle to the chunk.

MemHandle MemHandleNew (UInt32 size)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 747

748 Appendixes

✦ MemHandleResize: Resizes a movable memory chunk.

Err MemHandleResize (MemHandle h, UInt32 newSize)

✦ MemHandleSetOwner: Sets the application that owns a movable memory
chunk.

Err MemHandleSetOwner (MemHandle h, UInt16 owner)

✦ MemHandleSize: Returns the number of bytes allocated for a movable
memory chunk.

UInt32 MemHandleSize (MemHandle h)

✦ MemHandleUnlock: Unlocks a movable memory chunk.

Err MemHandleUnlock (MemHandle h)

✦ MemMove: Moves one range of memory to another range in the dynamic
storage area.

Err MemMove (void *dstP, const void *sP, Int32 numBytes)

✦ MemPtrFree: Macro that disposes of an unmovable memory chunk.

Err MemPtrFree (MemPtr p)

✦ MemPtrNew: Allocates a new unmovable memory chunk and returns a
pointer to the chunk’s data.

MemPtr MemPtrNew (UInt32 size)

✦ MemPtrRecoverHandle: Returns a handle to a movable memory chunk, given
a pointer to the chunk’s data.

MemHandle MemPtrRecoverHandle (MemPtr p)

✦ MemPtrResize: Resizes a memory chunk, given a pointer to the chunk’s data.

Err MemPtrResize (MemPtr p, UInt32 newSize)

✦ MemPtrSetOwner: Sets the application that owns a memory chunk, given a
pointer to the chunk’s data.

Err MemPtrSetOwner (MemPtr p, UInt16 owner)

✦ MemPtrSize: Returns the size of a memory chunk.

UInt32 MemPtrSize (MemPtr p)

✦ MemPtrUnlock: Unlocks a memory chunk, given a pointer to the chunk’s data.

Err MemPtrUnlock (MemPtr p)

✦ MemSet: Sets a given range of memory to a given byte value.

Err MemSet (void *dstP, Int32 numBytes, UInt8 value)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 748

749Appendix A ✦ Palm OS API Quick Reference

Menu Functions
The Menu functions deal with menus and menu bars.

✦ MenuAddItem: Adds an item to the active menu.

Err MenuAddItem (UInt16 positionId, UInt16 id,
Char cmd, const Char *textP)

✦ MenuCmdBarAddButton: Adds a button to the menu command toolbar.

Err MenuCmdBarAddButton (UInt8 where, UInt16 bitmapId,
MenuCmdBarResultType resultType, UInt32 result,
Char *nameP)

Available only on Palm OS 3.5 or later.

✦ MenuCmdBarDisplay: Displays the menu command toolbar.

void MenuCmdBarDisplay (void)

Available only on Palm OS 3.5 or later.

✦ MenuCmdBarGetButtonData: Retrieves information about a button in the
menu command toolbar.

Boolean MenuCmdBarGetButtonData (Int16 buttonIndex,
UInt16 *bitmapIdP, MenuCmdBarResultType *resultTypeP,
UInt32 *resultP, Char *nameP)

Available only on Palm OS 3.5 or later.

✦ MenuEraseStatus: Erases the menu command status message or menu com-
mand toolbar.

void MenuEraseStatus (MenuBarType *menuP)

✦ MenuHandleEvent: Handles an event in a menu object; normally, the system
calls this function for you to provide default handling of menu events.

Boolean MenuHandleEvent (MenuBarType *menuP, EventType *event,
Uint16 *error)

✦ MenuHideItem: Hides a menu item.

Boolean MenuHideItem (UInt16 id)

Available only on Palm OS 3.5 or later.

✦ MenuShowItem: Shows a hidden menu item.

Boolean MenuShowItem (UInt16 id)

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 749

750 Appendixes

Menu Structures
The menu functions use several structures to hold information about menu objects.

✦ MenuBarAttrType: Bit field that defines attributes values for a menu bar;
used by the MenuBarType structure.

typedef struct {
UInt16 visible :1;
UInt16 commandPending :1;
UInt16 insPtEnabled :1;
UInt16 needsRecalc :1;

} MenuBarAttrType;

✦ MenuBarType: Defines a menu bar.

typedef struct {
WinHandle barWin;
WinHandle bitsBehind;
WinHandle savedActiveWin;
WinHandle bitsBehindStatus;
MenuBarAttrType attr;
Int16 curMenu;
Int16 curItem;
Int32 commandTick;
Int16 numMenus;
MenuPullDownPtr menus;

} MenuBarType;

✦ MenuCmdBarButtonType: Defines a button in a menu command toolbar.

typedef struct {
UInt16 bitmapId;
Char name[menuCmdBarMaxTextLength];
MenuCmdBarResultType resultType;
UInt8 reserved;
UInt32 result;

} MenuCmdBarButtonType;

Available only on Palm OS 3.5 or later.

✦ MenuCmdBarResultType: Specifies the different values for resultType in
the MenuCmdBarButtonType structure.

typedef enum {
menuCmdBarResultNone,
menuCmdBarResultChar,
menuCmdBarResultMenuItem,
menuCmdBarResultNotify

} MenuCmdBarResultType;

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 750

751Appendix A ✦ Palm OS API Quick Reference

✦ MenuCmdBarType: Defines a menu command toolbar.

typedef struct {
WinHandle bitsBehind;
Int32 timeoutTick;
Coord top;
Int16 numButtons;
Boolean insPtWasEnabled;
Boolean gsiWasEnabled;
Boolean feedbackMode;
MenuCmdBarButtonType *buttonsData;

} MenuCmdBarType;

Available only on Palm OS 3.5 or later.

✦ MenuItemType: Defines an item in a menu.

typedef struct {
UInt16 id;
Char command;
UInt8 hidden :1;
UInt8 reserved :7;
Char *itemStr;

} MenuItemType;

✦ MenuPullDownType: Defines a menu pulldown.

typedef struct {
WinHandle menuWin;
RectangleType bounds;
WinHandle bitsBehind;
RectangleType titleBounds;
Char *title;
UInt16 hidden :1;
UInt16 numItems :15;
MenuItemType *items;

} MenuPullDownType;

Miscellaneous Functions
The Miscellaneous group contains functions that do not fall into any other group.

✦ LocGetNumberSeparators: Retrieves localized number separators.

void LocGetNumberSeparators (NumberFormatType numberFormat,
Char *thousandSeparator, Char *decimalSeparator)

Available only on Palm OS 2.0 or later.

✦ PhoneNumberLookup: Looks up a phone number in the Address Book
application.

void PhoneNumberLookup (FieldType *fldP)

Available only on Palm OS 2.0 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 751

752 Appendixes

New Serial Manager Functions
The New Serial Manager functions control serial I/O. This manager adds functions
to the original Serial Manager and will eventually take its place.

✦ SrmClearErr: Clears the serial port of line errors.

Err SrmClearErr(UInt16 portId)

Available only if the New Serial Manager feature set is present.

✦ SrmClose: Closes the serial port.

Err SrmClose(UInt16 portID)

Available only if the New Serial Manager feature set is present.

✦ SrmControl: Retrieves or sets various serial communications values.

Err SrmControl(UInt16 portId, UInt16 op, void *valueP,
UInt16 *valueLenP)

Available only if the New Serial Manager feature set is present.

✦ SrmGetDeviceCount: Returns the number of serial devices available.

Err SrmGetDeviceCount(UInt16 *numOfDevicesP)

Available only if the New Serial Manager feature set is present.

✦ SrmGetDeviceInfo: Retrieves information about a serial device.

Err SrmGetDeviceInfo(UInt32 deviceID,
DeviceInfoType *deviceInfoP)

Available only if the New Serial Manager feature set is present.

✦ SrmGetStatus: Retrieves the status of the serial hardware.

Err SrmGetStatus(UInt16 portId, UInt32 *statusFieldP,
UInt16 *lineErrsP)

Available only if the New Serial Manager feature set is present.

✦ SrmOpen: Opens a serial port with a foreground connection.

Err SrmOpen(UInt32 port, UInt32 baud, UInt16 *newPortIdP)

Available only if the New Serial Manager feature set is present.

✦ SrmOpenBackground: Opens a serial port with a background connection.

Err SrmOpenBackground(UInt32 port, UInt32 baud,
UInt16 *newPortIdP)

Available only if the New Serial Manager feature set is present.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 752

753Appendix A ✦ Palm OS API Quick Reference

✦ SrmReceive: Receives data from the serial port.

UInt32 SrmReceive(UInt16 portId, void *rcvBufP, UInt32 count,
Int32 timeout, Err *errP)

Available only if the New Serial Manager feature set is present.

✦ SrmReceiveCheck: Retrieves the number of bytes in the serial receive queue.

Err SrmReceiveCheck(UInt16 portId, UInt32 *numBytesP)

Available only if the New Serial Manager feature set is present.

✦ SrmReceiveFlush: Flushes the serial receive queue.

Err SrmReceiveFlush(UInt16 portId, Int32 timeout)

Available only if the New Serial Manager feature set is present.

✦ SrmReceiveWait: Waits until a given number of bytes have accumulated in the
receive queue, and then returns.

Err SrmReceiveWait(UInt16 portId, UInt32 bytes, Int32 timeout)

Available only if the New Serial Manager feature set is present.

✦ SrmSend: Sends data through the serial port.

UInt32 SrmSend(UInt16 portId, void *bufP, UInt32 count,
Err *errP)

Available only if the New Serial Manager feature set is present.

✦ SrmSendCheck: Retrieves the number of bytes in the serial send queue.

Err SrmSendCheck(UInt16 portId, UInt32 *numBytesP)

Available only if the New Serial Manager feature set is present.

✦ SrmSendFlush: Flushes the serial send queue.

Err SrmSendFlush(UInt16 portId)

Available only if the New Serial Manager feature set is present.

✦ SrmSendWait: Waits until the data in the serial send queue has all been sent
and then returns.

Err SrmSendWait(UInt16 portId)

Available only if the New Serial Manager feature set is present.

✦ SrmSetReceiveBuffer: Installs a new buffer for the serial receive queue.

Err SrmSetReceiveBuffer(UInt16 portId, void *bufP,
UInt16 bufSize)

Available only if the New Serial Manager feature set is present.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 753

754 Appendixes

New Serial Manager Structures
The New Serial Manager uses a pair of structures to store data for use with serial
port transfers.

✦ DeviceInfoType: Holds information about a serial device; returned by the
SrmGetDeviceInfo function.

typedef struct DeviceInfoType {
UInt32 serDevCreator;
UInt32 serDevFtrInfo;
UInt32 serDevMaxBaudRate;
UInt32 serDevHandshakeBaud;
Char *serDevPortInfoStr;
UInt8 reserved[8];

} DeviceInfoType;

Available only if the New Serial Manager feature set is present.

✦ SrmCtlEnum: Specifies the different operations available to the SrmControl
function.

typedef enum SrmCtlEnum {
srmCtlFirstReserved = 0,
srmCtlSetBaudRate,
srmCtlGetBaudRate,
srmCtlSetFlags,
srmCtlGetFlags,
srmCtlSetCtsTimeout,
srmCtlGetCtsTimeout,
srmCtlStartBreak,
srmCtlStopBreak,
srmCtlStartLocalLoopback,
srmCtlStopLocalLoopback,
srmCtlIrDAEnable,
srmCtlIrDADisable,
srmCtlRxEnable,
srmCtlRxDisable,
srmCtlEmuSetBlockingHook,
srmCtlUserDef,
srmCtlGetOptimalTransmitSize,
srmCtlSetDTRAsserted,
srmCtlGetDTRAsserted,
srmCtlLAST

} SrmCtlEnum;

Available only if the New Serial Manager feature set is present.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 754

755Appendix A ✦ Palm OS API Quick Reference

Password Functions
The Password functions manipulate the system password.

✦ PwdExists: Returns true if the system password is set.

Boolean PwdExists ()

✦ PwdRemove: Removes the system password.

void PwdRemove (void)

✦ PwdSet: Sets the system password.

void PwdSet (Char *oldPassword, Char *newPassword)

✦ PwdVerify: Returns true if a given string matches the system password.

Boolean PwdVerify (Char *string)

Preferences Functions
The Preferences functions set and retrieve system and application preference data.

✦ PrefGetAppPreferences: Retrieves an application’s preference data.

Int16 PrefGetAppPreferences (UInt32 creator, UInt16 id,
void *prefs, UInt16 *prefsSize, Boolean saved)

Available only on Palm OS 2.0 or later.

✦ PrefGetAppPreferencesV10: Retrieves an application’s preference data.

Boolean PrefGetAppPreferencesV10 (UInt32 type, Int16 version,
void *prefs, UInt16 prefsSize)

For backward compatibility with Palm OS 1.0 only.

✦ PrefGetPreference: Returns a single system preference.

UInt32 PrefGetPreference (SystemPreferencesChoice choice)

Available only on Palm OS 2.0 or later.

✦ PrefGetPreferences: Retrieves all system preferences.

void PrefGetPreferences (SystemPreferencesPtr p)

✦ PrefSetAppPreferences: Sets an application’s preference data.

void PrefSetAppPreferences (UInt32 creator, UInt16 id,
Int16 version, void *prefs, UInt16 prefsSize,
Boolean saved)

Available only on Palm OS 2.0 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 755

756 Appendixes

✦ PrefSetAppPreferencesV10: Sets an application’s preference data.

void PrefSetAppPreferencesV10 (UInt32 creator, Int16 version,
void *prefs, UInt16 prefsSize)

For backward compatibility with Palm OS 1.0 only.

✦ PrefSetPreference: Sets a single system preference.

void PrefSetPreference (SystemPreferencesChoice choice,
UInt32 value)

Available only on Palm OS 2.0 or later.

✦ PrefSetPreferences: Sets all system preferences.

void PrefSetPreferences (SystemPreferencesPtr p)

Preferences Structure
The preferences functions use an enumerated type to identify all the preferences
that the system maintains.

✦ SystemPreferencesChoice: Specifies the available system preferences.

typedef enum
{

prefVersion,
prefCountry,
prefDateFormat,
prefLongDateFormat,
prefWeekStartDay,
prefTimeFormat,
prefNumberFormat,
prefAutoOffDuration,
prefSysSoundLevelV20,
prefGameSoundLevelV20,
prefAlarmSoundLevelV20,
prefHidePrivateRecordsV33,
prefDeviceLocked,
prefLocalSyncRequiresPassword,
prefRemoteSyncRequiresPassword,
prefSysBatteryKind,
prefAllowEasterEggs,
prefMinutesWestOfGMT,
prefDaylightSavings,
prefRonamaticChar,
prefHard1CharAppCreator,
prefHard2CharAppCreator,
prefHard3CharAppCreator,
prefHard4CharAppCreator,
prefCalcCharAppCreator,

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 756

757Appendix A ✦ Palm OS API Quick Reference

prefHardCradleCharAppCreator,
prefLauncherAppCreator,
prefSysPrefFlags,
prefHardCradle2CharAppCreator,
prefAnimationLevel,

// Additions for Palm OS 3.0:
prefSysSoundVolume,
prefGameSoundVolume,
prefAlarmSoundVolume,
prefBeamReceive,
prefCalibrateDigitizerAtReset,
prefSystemKeyboardID,
prefDefSerialPlugIn,

// Additions for Palm OS 3.1:
prefStayOnWhenPluggedIn,
prefStayLitWhenPluggedIn,

// Additions for Palm OS 3.2:
prefAntennaCharAppCreator,

// Additions for Palm OS 3.3:
prefMeasurementSystem,

// Additions for Palm OS 3.5:
prefShowPrivateRecords,
prefAutoOffDurationSecs

} SystemPreferencesChoice;

Private Records Functions
The Private Records functions display dialogs to allow the user to change whether
private records are shown, hidden, or masked.

✦ SecSelectViewStatus: Displays a dialog asking the user whether to show, hide,
or mask private records, then returns the user’s selection from the dialog.

privateRecordViewEnum SecSelectViewStatus (void)

Available only on Palm OS 3.5 or later.

✦ SecVerifyPW: Displays a dialog prompting the user for the system password.

Boolean SecVerifyPW (privateRecordViewEnum newSecLevel)

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 757

758 Appendixes

Private Records Structure
The private records functions use an enumerated type to identify the different
types of record security.

✦ privateRecordViewEnum: Specifies different levels of record security.

typedef enum {
showPrivateRecords = 0x00,
maskPrivateRecords,
hidePrivateRecords

} privateRecordViewEnum;

Available only on Palm OS 3.5 or later.

Rectangle Functions
The Rectangle function group provides routines for manipulating rectangle
structures.

✦ RctCopyRectangle: Copies a rectangle structure’s values into another rect-
angle structure.

void RctCopyRectangle (const RectangleType *srcRectP,
RectangleType *dstRectP)

✦ RctGetIntersection: Retrieves a rectangle that represents the intersection of
two other rectangles.

void RctGetIntersection (const RectangleType *r1P,
const RectangleType *r2P, RectangleType *r3P)

✦ RctInsetRectangle: Expands or contracts a rectangle by a given number of
pixels.

void RctInsetRectangle (RectangleType *rP, Coord insetAmt)

✦ RctOffsetRectangle: Moves a rectangle to a different screen position without
changing its width and height.

void RctOffsetRectangle (RectangleType *rP, Coord deltaX,
Coord deltaY)

✦ RctPtInRectangle: Returns true if a given point is within the boundaries of a
given rectangle.

Boolean RctPtInRectangle (Coord x, Coord y,
const RectangleType *rP)

✦ RctSetRectangle: Sets a rectangle structure’s values.

void RctSetRectangle (RectangleType *rP, Coord left, Coord top,
Coord width, Coord height)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 758

759Appendix A ✦ Palm OS API Quick Reference

Rectangle Structures
✦ PointType: Defines a point.

typedef struct PointType {
Coord x;
Coord y;

} PointType;

✦ RectangleType: Defines a rectangle.

typedef struct RectangleType {
PointType topLeft;
PointType extent;

} RectangleType;

Scroll Bar Functions
The Scroll Bar functions manage scroll bars.

✦ SclDrawScrollBar: Draws a scroll bar.

void SclDrawScrollBar (const ScrollBarPtr bar)

Available only on Palm OS 2.0 or later.

✦ SclGetScrollBar: Retrieves a scroll bar’s values.

void SclGetScrollBar (const ScrollBarPtr bar, Int16 *valueP,
Int16 *minP, Int16 *maxP, Int16 *pageSizeP)

Available only on Palm OS 2.0 or later.

✦ SclHandleEvent: Handles an event in a scroll bar object; normally, the system
calls this function for you to provide default handling of scroll bar events.

Boolean SclHandleEvent (const ScrollBarPtr bar,
const EventType *event)

Available only on Palm OS 2.0 or later.

✦ SclSetScrollBar: Sets a scroll bar’s values.

void SclSetScrollBar (const ScrollBarPtr bar, Int16 value,
const Int16 min, const Int16 max, const Int16 pageSize)

Available only on Palm OS 2.0 or later.

Scroll Bar Structures
✦ ScrollBarAttrType: Bit field that defines a scroll bar’s attributes; used in

the ScrollBarType structure.

typedef struct {
UInt16 usable :1;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 759

760 Appendixes

UInt16 visible :1;
UInt16 hilighted :1;
UInt16 shown :1;
UInt16 activeRegion :4;

} ScrollBarAttrType;

Available only on Palm OS 2.0 or later.

✦ ScrollBarType: Defines a scroll bar object.

typedef struct {
RectangleType bounds;
UInt16 id;
ScrollBarAttrType attr;
Int16 value;
Int16 minValue;
Int16 maxValue;
Int16 pageSize;
Int16 penPosInCar;
Int16 savePos;

} ScrollBarType;

Available only on Palm OS 2.0 or later.

Serial Manager Functions
The Serial Manager functions control serial I/O. This manager will be phased out in
favor of the New Serial Manager.

✦ SerClearErr: Clears the serial port of line errors.

Err SerClearErr (UInt16 refNum)

✦ SerClose: Closes the serial port.

Err SerClose (UInt16 refNum)

✦ SerControl: Retrieves or sets various serial communications values, and also
performs special serial port operations.

Err SerControl (UInt16 refNum, UInt16 op, void *valueP,
UInt16 *valueLenP)

Available only on Palm OS 2.0 or later.

✦ SerGetSettings: Retrieves information about the serial port.

Err SerGetSettings (UInt16 refNum, SerSettingsPtr settingsP)

✦ SerGetStatus: Retrieves the status of the serial hardware.

UInt16 SerGetStatus (UInt16 refNum, Boolean *ctsOnP,
Boolean *dsrOnP)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 760

761Appendix A ✦ Palm OS API Quick Reference

✦ SerOpen: Opens a serial port with a foreground connection.

Err SerOpen (UInt16 refNum, UInt16 port, UInt32 baud)

✦ SerReceive: Receives data from the serial port.

UInt32 SerReceive (UInt16 refNum, void *bufP, UInt32 count,
Int32 timeout, Err *errP)

Available only on Palm OS 2.0 or later.

✦ SerReceive10: Receives data from the serial port.

Err SerReceive10 (UInt16 refNum, void *bufP, UInt32 bytes,
Int32 timeout)

For backward compatibility with Palm OS 1.0 only.

✦ SerReceiveCheck: Retrieves the number of bytes in the serial receive queue.

Err SerReceiveCheck (UInt16 refNum, UInt32 *numBytesP)

✦ SerReceiveFlush: Flushes the serial receive queue.

void SerReceiveFlush (UInt16 refNum, Int32 timeout)

✦ SerReceiveWait: Waits until a given number of bytes have accumulated in the
receive queue, and then returns.

Err SerReceiveWait (UInt16 refNum, UInt32 bytes, Int32 timeout)

✦ SerSend: Sends data through the serial port.

UInt32 SerSend (UInt16 refNum, void *bufP, UInt32 count,
Err *errP

Available only on Palm OS 2.0 or later.

✦ SerSend10: Sends data through the serial port.

Err SerSend10 (UInt16 refNum, void *bufP, UInt32 size)

For backward compatibility with Palm OS 1.0 only.

✦ SerSendFlush: Flushes the serial send queue.

Err SerSendFlush (UInt16 refNum)

✦ SerSendWait: Waits until the data in the serial send queue has all been sent,
and then returns.

Err SerSendWait (UInt16 refNum, Int32 timeout)

✦ SerSetReceiveBuffer: Installs a new buffer for the serial receive queue.

Err SerSetReceiveBuffer (UInt16 refNum, void *bufP,
UInt16 bufSize)

✦ SerSetSettings: Sets information about the serial port.

Err SerSetSettings (UInt16 refNum, SerSettingsPtr settingsP)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 761

762 Appendixes

Serial Manager Structures
✦ SerCtlEnum: Specifies the control operations available for the SerControl

function.

typedef enum SerCtlEnum {
serCtlFirstReserved = 0,
serCtlStartBreak,
serCtlStopBreak,
serCtlBreakStatus,
serCtlStartLocalLoopback,
serCtlStopLocalLoopback,
serCtlMaxBaud,
serCtlHandshakeThreshold,
serCtlEmuSetBlockingHook,
serCtlIrDAEnable,
serCtlIrDADisable,
serCtlIrScanningOn,
serCtlIrScanningOff,
serCtlRxEnable,
serCtlRxDisable,
serCtlLAST

} SerCtlEnum;

Available only on Palm OS 2.0 or later.

✦ SerSettingsType: Defines a structure used by SerGetSettings and SerSet
Settings to hold information about the serial port.

typedef struct SerSettingsType {
UInt32 baudRate;
UInt32 flags;
Int32 ctsTimeout;

} SerSettingsType;

Sound Manager Functions
The Sound Manager functions produce sounds through the system speaker and
play standard MIDI files.

✦ SndDoCmd: Plays sounds through the system speaker.

Err SndDoCmd (void *channelP, SndCommandPtr cmdP,
Boolean noWait)

✦ SndGetDefaultVolume: Retrieves the current volume settings.

void SndGetDefaultVolume (UInt16 *alarmAmpP,
UInt16 *sysAmpP, UInt16 *masterAmpP)

✦ SndPlaySystemSound: Plays a standard system sound.

void SndPlaySystemSound (SndSysBeepType beepID)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 762

763Appendix A ✦ Palm OS API Quick Reference

Sound Manager Structures
✦ SndCmdIDType: Specifies a command to perform for the SndCommandType

structure.

typedef enum {
sndCmdFreqDurationAmp = 1,
sndCmdNoteOn,
sndCmdFrqOn,
sndCmdQuiet

} SndCmdIDType;

✦ SndCommandType: Defines a sound command for use with the SndDoCmd
function.

typedef struct SndCommandType {
SndCmdIDType cmd;
UInt8 reserved;
Int32 param1;
UInt16 param2;
UInt16 param3;

} SndCommandType;

String Manager Functions
The String Manager functions handle manipulation of strings.

✦ StrAToI: Converts a string to an integer value.

Int32 StrAToI (const Char *str)

✦ StrCaselessCompare: Performs a case-insensitive comparison of two strings.

Int16 StrCaselessCompare (const Char *s1, const Char *s2)

✦ StrCat: Concatenates a string with another string.

Char* StrCat (Char *dst, const Char *src)

✦ StrChr: Looks for a given character within a string.

Char* StrChr (const Char *str, WChar chr)

✦ StrCompare: Performs a case-sensitive comparison of two strings.

Int16 StrCompare (const Char *s1, const Char *s2)

✦ StrCopy: Copies one string into another.

Char* StrCopy (Char *dst, const Char *src)

✦ StrDelocalizeNumber: Converts a number from a localized representation to
use the standard U.S. notation (comma for thousands separator, period for
decimal point).

Char *StrDelocalizeNumber (Char *s, Char thousandSeparator,
Char decimalSeparator)

Available only on Palm OS 2.0 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 763

764 Appendixes

✦ StrIToA: Converts an integer value to a string.

Char* StrIToA (Char *s, Int32 i)

✦ StrIToH: Converts an integer value to a string containing the number’s hex-
adecimal representation.

Char* StrIToH (Char *s, UInt32 i)

✦ StrLen: Returns the length in bytes of a string.

UInt16 StrLen (const Char *src)

✦ StrLocalizeNumber: Converts a number to a localized format, using the given
thousands separator and decimal point characters.

Char* StrLocalizeNumber (Char *s, Char thousandSeparator,
Char decimalSeparator)

Available only on Palm OS 2.0 or later.

✦ StrNCaselessCompare: Performs a case-insensitive comparison of the first n
bytes of two strings.

Int16 StrNCaselessCompare (const Char *s1, const Char *s2,
Int32 n)

Available only on Palm OS 2.0 or later.

✦ StrNCat: Concatenates one string with another string, truncating the resulting
string to n bytes in length.

Char* StrNCat (Char *dst, const Char *src, Int16 n)

Available only on Palm OS 2.0 or later.

✦ StrNCompare: Performs a case-sensitive comparison of the first n bytes of
two strings.

Int16 StrNCompare (const Char *s1, const Char *s2, UInt32 n)

Available only on Palm OS 2.0 or later.

✦ StrNCopy: Copies up to n bytes from a string to another string.

Char* StrNCopy (Char *dst, const Char *src, Int16 n)

Available only on Palm OS 2.0 or later.

✦ StrPrintF: Writes formatted output to a string.

Int16 StrPrintF (Char *s, const Char *formatStr, ...)

✦ StrStr: Finds a string within another string.

Char* StrStr (const Char *str, const Char *token)

✦ StrToLower: Converts a string to lowercase.

Char*.StrToLower (Char *dst, const Char *src)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 764

765Appendix A ✦ Palm OS API Quick Reference

✦ StrVPrintF: Writes formatted output to a string, given a variable number of
arguments.

Int16 StrVPrintF (Char *s, const Char *formatStr,
_Palm_va_list argParam)

Available only on Palm OS 2.0 or later.

System Dialog Functions
The System Dialog functions display various system dialogs.

✦ SysFatalAlert: Displays a fatal alert dialog.

UInt16 SysFatalAlert (const Char *msg)

✦ SysGraffitiReferenceDialog: Displays the Graffiti reference dialog.

void SysGraffitiReferenceDialog (ReferenceType referenceType)

Available only on Palm OS 2.0 or later.

✦ SysKeyboardDialog: Displays the system keyboard dialog.

void SysKeyboardDialog (KeyboardType kbd)

Available only on Palm OS 2.0 or later.

✦ SysKeyboardDialogV10: Displays the system keyboard dialog.

void SysKeyboardDialogV10 ()

For backward compatibility with Palm OS 1.0 only.

System Event Manager Functions
The System Event Manager functions directly manipulate the event queue.

✦ EvtAddEventToQueue: Queues a new event.

void EvtAddEventToQueue (const EventType *event)

✦ EvtAddUniqueEventToQueue: Queues an event, replacing an existing event in
the queue that has the same type and ID as the specified event.

void EvtAddUniqueEventToQueue (const EventType *eventP,
UInt32 id, Boolean inPlace)

Available only on Palm OS 2.0 or later.

✦ EvtCopyEvent: Copies an event structure into another event structure.

void EvtCopyEvent (const EventType *source, EventType *dest)

✦ EvtEventAvail: Returns true if a high-level event is available in the event queue.

Boolean EvtEventAvail (void)

Available only on Palm OS 2.0 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 765

766 Appendixes

✦ EvtGetEvent: Retrieves the next available event from the event queue.

void EvtGetEvent (EventType *event, Int32 timeout)

✦ EvtResetAutoOffTimer: Resets the auto off timer to prevent the device from
entering sleep mode.

Err EvtResetAutoOffTimer (void)

✦ EvtSetAutoOffTimer: Explicitly sets the auto off timer to a specific value.

Err EvtSetAutoOffTimer(EvtSetAutoOffCmd cmd,
UInt16 timeoutSecs)

Available only on Palm OS 3.5 or later.

✦ EvtSysEventAvail: Returns true if a low-level system event is available in the
event queue.

Boolean EvtSysEventAvail (Boolean ignorePenUps)

Available only on Palm OS 2.0 or later.

System Event Manager Structures
✦ EventType: The EventType structure, used by many of the System Event

Manager functions, is described later in this appendix in the “Events” section.

✦ EvtSetAutoOffCmd: Specifies different commands used by the EvtSetAutoOff
Timer function.

typedef enum
{

SetAtLeast,
SetExactly,
SetAtMost,
SetDefault,
ResetTimer

} EvtSetAutoOffCmd;

Available only on Palm OS 3.5 or later.

System Manager Functions
The System Manager routines allow direct access to many low-level system functions.

✦ SysAppLaunch: Launches an application as a subroutine of the calling
application.

Err SysAppLaunch (UInt16 cardNo, LocalID dbID,
UInt16 launchFlags, UInt16 cmd, MemPtr cmdPBP, UInt32 *resultP)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 766

767Appendix A ✦ Palm OS API Quick Reference

✦ SysBatteryInfo: Retrieves battery information.

UInt16 SysBatteryInfo (Boolean set, UInt16 *warnThresholdP,
UInt16 *criticalThresholdP, UInt16 *maxTicksP,
SysBatteryKind *kindP, Boolean *pluggedIn, UInt8

*percentP)

Available only on Palm OS 3.0 or later.

✦ SysBatteryInfoV20: Retrieves battery information.

UInt16 SysBatteryInfoV20 (Boolean set, UInt16 *warnThresholdP,
UInt16 *criticalThresholdP, UInt16 *maxTicksP,
SysBatteryKind *kindP, Boolean *pluggedIn)

For backward compatibility with Palm OS 2.0 only.

✦ SysBinarySearch: Performs a binary search of a sorted array for a specific
value, using a callback comparison function.

Boolean SysBinarySearch (void const *baseP,
const UInt16 numOfElements, const Int16 width,
SearchFuncPtr searchF, void const *searchData,
const Int32 other, Int32 *position,
const Boolean findFirst)

Available only on Palm OS 2.0 or later.

✦ SysBroadcastActionCode: Sends a launch code to the latest version of every
installed application.

Err SysBroadcastActionCode (UInt16 cmd, MemPtr cmdPBP)

✦ SysCopyStringResource: Copies a string resource into a string.

void SysCopyStringResource (Char *string, Int16 theID)

✦ SysFormPointerArrayToStrings: Converts a packed block of strings into an
array of pointers to strings.

MemHandle SysFormPointerArrayToStrings (Char *c,
Int16 stringCount)

✦ SysGetOSVersionString: Returns a string containing the version of the Palm OS.

Char* SysGetOSVersionString()

Available only on Palm OS 3.0 or later.

✦ SysGetROMToken: Retrieves a value from ROM.

Err SysGetROMToken (UInt16 cardNo, UInt32 token, UInt8 **dataP,
UInt16 *sizeP)

Available only on Palm OS 3.0 or later.

✦ SysHandleEvent: Performs default processing of system events.

Boolean SysHandleEvent (EventPtr eventP)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 767

768 Appendixes

✦ SysInsertionSort: Sorts elements of an array using an insertion sort and a call-
back comparison function.

void SysInsertionSort (void *baseP, Int16 numOfElements,
Int16 width, const CmpFuncPtr comparF, const Int32 other)

✦ SysLibFind: Retrieves a reference to a loaded library.

Err SysLibFind (const Char *nameP, UInt16 *refNumP)

✦ SysLibLoad: Loads a library.

Err SysLibLoad (UInt32 libType, UInt32 libCreator,
UInt16 *refNumP)

Available only on Palm OS 2.0 or later.

✦ SysLibRemove: Unloads a library loaded with SysLibLoad.

Err SysLibRemove (UInt16 refNum)

Available only on Palm OS 2.0 or later.

✦ SysQSort: Sorts elements of an array using a quicksort algorithm and a call-
back comparison function.

void SysQSort (void *baseP, Int16 numOfElements, Int16 width,
const CmpFuncPtr comparF, const Int32 other)

✦ SysRandom: Returns a random number between 0 and sysRandomMax.

Int16 SysRandom (UInt32 newSeed)

✦ SysReset: Performs a soft reset.

void SysReset (void)

✦ SysStringByIndex: Copies a string out of a string list resource, given the
string’s index within the string list.

Char* SysStringByIndex (UInt16 resID, UInt16 index, Char *strP,
UInt16 maxLen)

Available only on Palm OS 2.0 or later.

✦ SysTaskDelay: Puts the processor in doze mode for a given number of
system ticks.

Err SysTaskDelay (Int32 delay)

✦ SysTicksPerSecond: Returns the number of system ticks per second.

UInt16 SysTicksPerSecond (void)

Available only on Palm OS 2.0 or later.

✦ SysUIAppSwitch: Quits the current application and launches another.

Err SysUIAppSwitch (UInt16 cardNo, LocalID dbID, UInt16 cmd,
MemPtr cmdPBP)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 768

769Appendix A ✦ Palm OS API Quick Reference

Table Functions
The Table function group provides routines for managing tables and their contents.

✦ TableDrawItemFuncType: Application-defined callback function that draws a
custom table item.

void TableDrawItemFuncType (void *tableP, Int16 row,
Int16 column, RectangleType *bounds)

✦ TableLoadDataFuncType: Application-defined callback function that loads
data into a table’s text fields.

Err TableLoadDataFuncType (void *tableP, Int16 row,
Int16 column, Boolean editable, MemHandle *dataH,
Int16 *dataOffset, Int16 *dataSize, FieldPtr fld)

✦ TableSaveDataFuncType: Application-defined callback function that saves
data from a table’s text fields.

Boolean TableSaveDataFuncType (void *tableP, Int16 row,
Int16 column)

✦ TblDrawTable: Draws a table object.

void TblDrawTable (TableType *tableP)

✦ TblEditing: Returns true if a given table is in editing mode.

Boolean TblEditing (const TableType *tableP)

✦ TblEraseTable: Erases a table object from the display.

void TblEraseTable (TableType *tableP)

✦ TblFindRowData: Retrieves the row index from a table that contains a given
value.

Boolean TblFindRowData (const TableType *tableP, UInt32 data,
Int16 *rowP)

✦ TblFindRowID: Retrieves the row index from a table that has a given ID.

Boolean TblFindRowID (const TableType *tableP, UInt16 id,
Int16 *rowP)

✦ TblGetBounds: Retrieves a rectangle defining the bounds of a table.

void TblGetBounds (const TableType *tableP, RectangleType *r)

✦ TblGetColumnSpacing: Returns the spacing in pixels after a given column.

Coord TblGetColumnSpacing (const TableType *tableP,
Int16 column)

✦ TblGetColumnWidth: Returns the width in pixels of a given column.

Coord TblGetColumnWidth (const TableType *tableP, Int16 column)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 769

770 Appendixes

✦ TblGetCurrentField: Returns a pointer to the field within a table that the user
is currently editing.

FieldPtr TblGetCurrentField (const TableType *tableP)

✦ TblGetItemBounds: Retrieves a rectangle defining the bounds of a table item.

void TblGetItemBounds (const TableType *tableP, Int16 row,
Int16 column, RectangleType *r)

✦ TblGetItemFont: Returns the ID of the font assigned to a given table item.

FontID TblGetItemFont (const TableType *tableP, Int16 row,
Int16 column)

Available only on Palm OS 3.0 or later.

✦ TblGetItemInt: Returns the integer value stored in a table item.

Int16 TblGetItemInt (const TableType *tableP, Int16 row,
Int16 column)

✦ TblGetItemPtr: Returns a pointer to the value stored in a table item.

void * TblGetItemPtr (const TableType *tableP, Int16 row,
Int16 column)

Available only on Palm OS 3.5 or later.

✦ TblGetLastUsableRow: Returns the index of the last visible row in a table.

Int16 TblGetLastUsableRow (const TableType *tableP)

✦ TblGetNumberOfRows: Returns the maximum number of visible rows in a
table.

Int16 TblGetNumberOfRows (const TableType *tableP)

✦ TblGetRowData: Returns the data value of a given row.

UInt32 TblGetRowData (const TableType *tableP, Int16 row)

✦ TblGetRowHeight: Returns the height in pixels of a given row.

Coord TblGetRowHeight (const TableType *tableP, Int16 row)

✦ TblGetRowID: Returns the ID of a row, given the row’s index.

UInt16 TblGetRowID (const TableType *tableP, Int16 row)

✦ TblGetSelection: Retrieves the row and column of the currently selected table
item and returns true if that item is highlighted.

Boolean TblGetSelection (const TableType *tableP, Int16 *rowP,
Int16 *columnP)

✦ TblGrabFocus: Sets the table in editing mode.

void TblGrabFocus (TableType *tableP, Int16 row, Int16 column)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 770

771Appendix A ✦ Palm OS API Quick Reference

✦ TblHandleEvent: Handles an event in a table object; normally, the system
calls this function for you to provide default handling of table events.

Boolean TblHandleEvent (TableType *tableP, EventType *event)

✦ TblHasScrollBar: Sets the hasScrollBar attribute of a table object.

void TblHasScrollBar (TableType *tableP, Boolean hasScrollBar)

Available only on Palm OS 2.0 or later.

✦ TblInsertRow: Inserts a row into a table before a given row.

void TblInsertRow (TableType *tableP, Int16 row)

✦ TblMarkRowInvalid: Marks a row invalid so it will be redrawn by the next
TblRedrawTable call.

void TblMarkRowInvalid (TableType *tableP, Int16 row)

✦ TblMarkTableInvalid: Marks the entire table invalid so it will be redrawn by
the next TblRedrawTable call.

void TblMarkTableInvalid (TableType *tableP)

✦ TblRedrawTable: Redraws rows in the table that have been marked invalid.

void TblRedrawTable (TableType *tableP)

✦ TblReleaseFocus: Releases focus from the table.

void TblReleaseFocus (TableType *tableP)

✦ TblRemoveRow: Removes a given row from a table.

void TblRemoveRow (TableType *tableP, Int16 row)

✦ TblRowInvalid: Returns true if a given row is marked invalid.

Boolean TblRowInvalid (const TableType *tableP, Int16 row)

✦ TblRowMasked: Returns true if a given row is masked.

Boolean TblRowMasked (const TableType *tableP, Int16 row)

Available only on Palm OS 3.5 or later.

✦ TblRowSelectable: Returns true if a given row highlights when tapped.

Boolean TblRowSelectable (const TableType *tableP, Int16 row)

✦ TblRowUsable: Returns true if a given row is usable.

Boolean TblRowUsable (const TableType *tableP, Int16 row)

✦ TblSelectItem: Highlights the given table item, unhighlighting any currently
highlighted table item.

void TblSelectItem (TableType *tableP, Int16 row, Int16 column)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 771

772 Appendixes

✦ TblSetBounds: Sets a table’s bounds.

void TblSetBounds (TableType *tableP, const RectangleType *rP)

Available only on Palm OS 2.0 or later.

✦ TblSetColumnEditIndicator: Sets whether a given column highlights when a
table is in editing mode.

void TblSetColumnEditIndicator (TableType *tableP,
Int16 column, Boolean editIndicator)

Available only on Palm OS 2.0 or later.

✦ TblSetColumnMasked: Specifies whether a given column should be masked
when private records are set to be masked on the handheld.

void TblSetColumnMasked (TableType *tableP, Int16 column,
Boolean masked)

Available only on Palm OS 3.5 or later.

✦ TblSetColumnSpacing: Sets the spacing in pixels after a given column.

void TblSetColumnSpacing (TableType *tableP, Int16 column,
Coord spacing)

✦ TblSetColumnUsable: Sets a column to usable or unusable.

void TblSetColumnUsable (TableType *tableP, Int16 column,
Boolean usable)

✦ TblSetColumnWidth: Sets a column’s width in pixels.

void TblSetColumnWidth (TableType *tableP, Int16 column,
Coord width)

✦ TblSetCustomDrawProcedure: Sets a callback function for drawing custom
table items in a given column.

void TblSetCustomDrawProcedure (TableType *tableP,
Int16 column, TableDrawItemFuncPtr drawCallback)

✦ TblSetItemFont: Sets the font for a given table item.

void TblSetItemFont (TableType *tableP, Int16 row,
Int16 column, FontID fontID)

✦ TblSetItemInt: Sets the integer value of a table item.

void TblSetItemInt (TableType *tableP, Int16 row,
Int16 column, Int16 value)

✦ TblSetItemPtr: Sets the data pointer of a table item.

void TblSetItemPtr (TableType *tableP, Int16 row,
Int16 column, void *value)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 772

773Appendix A ✦ Palm OS API Quick Reference

✦ TblSetItemStyle: Sets the type of item to display in a given table item.

void TblSetItemStyle (TableType *tableP, Int16 row,
Int16 column, TableItemStyleType type)

✦ TblSetLoadDataProcedure: Sets a callback function for loading data into text
fields in a given column.

void TblSetLoadDataProcedure (TableType *tableP, Int16 column,
TableLoadDataFuncPtr loadDataCallback)

✦ TblSetRowData: Sets the integer value for a given row.

void TblSetRowData (TableType *tableP, Int16 row, UInt32
data)

✦ TblSetRowHeight: Sets the height in pixels of a given row.

void TblSetRowHeight (TableType *tableP, Int16 row,
Coord height)

✦ TblSetRowID: Sets the ID of a given row.

void TblSetRowID (TableType *tableP, Int16 row, UInt16 id)

✦ TblSetRowMasked: Masks or unmasks a given row.

void TblSetRowMasked (TableType *tableP, Int16 row,
Boolean masked)

Available only on Palm OS 3.5 or later.

✦ TblSetRowSelectable: Sets whether a row highlights when tapped.

void TblSetRowSelectable (TableType *tableP, Int16 row,
Boolean selectable)

✦ TblSetRowStaticHeight: Sets a row’s static height attribute.

void TblSetRowStaticHeight (TableType *tableP, Int16 row,
Boolean staticHeight)

Available only on Palm OS 2.0 or later.

✦ TblSetRowUsable: Sets a given row to usable or unusable.

void TblSetRowUsable (TableType *tableP, Int16 row,
Boolean usable)

✦ TblSetSaveDataProcedure: Sets a callback function for saving data from the
text fields in a given column.

void TblSetSaveDataProcedure (TableType *tableP, Int16 column,
TableSaveDataFuncPtr saveDataCallback)

✦ TblUnhighlightSelection: Unhighlights the currently selected table item.

void TblUnhighlightSelection (TableType *tableP)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 773

774 Appendixes

Table Structures
✦ TableAttrType: Bit field that defines a table’s attributes.

typedef struct {
UInt16 visible :1;
UInt16 editable :1;
UInt16 editing :1;
UInt16 selected :1;
UInt16 hasScrollBar :1;
UInt16 reserved :11;

} TableAttrType;

✦ TableColumnAttrType: Bit field that defines a column’s attributes.

typedef struct {
Coord width;

UInt16 reserved1 :5;
UInt16 masked :1;
UInt16 editIndicator :1;
UInt16 usable :1;
UInt16 reserved2 :8;

Coord spacing;
TableDrawItemFuncPtr drawCallback;
TableLoadDataFuncPtr loadDataCallback;
TableSaveDataFuncPtr saveDataCallback;

} TableColumnAttrType;

✦ TableItemStyleType: Specifies the different styles available for table items.

typedef enum {
checkboxTableItem,
customTableItem,
dateTableItem,
labelTableItem,
numericTableItem,
popupTriggerTableItem,
textTableItem,
textWithNoteTableItem,
timeTableItem,
narrowTextTableItem

} tableItemStyles;

✦ TableItemType: Defines a table item.

typedef struct {
TableItemStyleType itemType;
FontID fontID;
Int16 intValue;
Char *ptr;

} TableItemType;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 774

775Appendix A ✦ Palm OS API Quick Reference

✦ TableRowAttrType: Bit field that defines a row’s attributes.

typedef struct {
UInt16 id;
Coord height;
UInt32 data;

UInt16 reserved1 :7;
UInt16 usable :1;
UInt16 reserved2 :4;
UInt16 masked :1;
UInt16 invalid :1;
UInt16 staticHeight :1;
UInt16 selectable :1;

UInt16 reserved3;

} TableRowAttrType;

✦ TableType: Defines a table object.

typedef struct {
UInt16 id;
RectangleType bounds;
TableAttrType attr;
Int16 numColumns;
Int16 numRows;
Int16 currentRow;
Int16 currentColumn;
Int16 topRow;
TableColumnAttrType *columnAttrs;
TableRowAttrType *rowAttrs;
TableItemPtr items;
FieldType currentField;

} TableType;

Text Manager Functions
The Text Manager functions manipulate text in a localization-friendly manner.

✦ TxtByteAttr: Retrieves the possible positions of a given byte within a multi-
byte character.

UInt8 TxtByteAttr (UInt8 inByte)

Available only if the International Feature Set is present.

✦ TxtCaselessCompare: Performs a case-insensitive comparison of two text
buffers.

Int16 TxtCaselessCompare (const Char *s1, UInt16 s1Len,
UInt16 *s1MatchLen, const Char *s2, UInt16 s2Len,
UInt16 *s2MatchLen)

Available only if the International Feature Set is present.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 775

776 Appendixes

✦ TxtCharAttr: Returns a bit field containing a character’s attributes.

UInt16 TxtCharAttr (WChar inChar)

Available only if the International Feature Set is present.

✦ TxtCharBounds: Retrieves the beginning and ending positions, within a text
buffer, of the multi-byte character that contains a given byte.

WChar TxtCharBounds (const Char *inText, UInt32 inOffset,
UInt32 *outStart, UInt32 *outEnd)

Available only if the International Feature Set is present.

✦ TxtCharEncoding: Returns the minimum encoding system required to repre-
sent a given character.

CharEncodingType TxtCharEncoding (WChar inChar)

Available only if the International Feature Set is present.

✦ TxtCharIsAlNum: Macro that returns true if a given character is
alphanumeric.

TxtCharIsAlNum (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsAlpha: Macro that returns true if a given character is a letter in an
alphabet.

TxtCharIsAlpha (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsCntrl: Macro that returns true if a given character is a control
character.

TxtCharIsCntrl (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsDelim: Macro that returns true if a given character is a delimiter.

TxtCharIsDelim (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsDigit: Macro that returns true if a given character is a decimal digit.

TxtCharIsDigit (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsGraph: Macro that returns true if a given character is a graphic
character. Graphic characters are those that actually write something to the
screen, as opposed to whitespace and control characters.

TxtCharIsGraph (ch)

Available only if the International Feature Set is present.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 776

777Appendix A ✦ Palm OS API Quick Reference

✦ TxtCharIsHardKey: Macro that returns true if a given character is one of the
hardware buttons on the handheld.

TxtCharIsHardKey (m, ch)

Available only if the International Feature Set is present.

✦ TxtCharIsHex: Macro that returns true if a given character is a hexadecimal
digit.

TxtCharIsHex (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsLower: Macro that returns true if a given character is a lowercase
letter.

TxtCharIsLower (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsPrint: Macro that returns true if a given character is printable.

TxtCharIsPrint (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsPunct: Macro that returns true if a given character is a punctuation
character.

TxtCharIsPunct (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsSpace: Macro that returns true if a given character is a whitespace
character.

TxtCharIsSpace (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsUpper: Macro that returns true if a given character is an uppercase
letter.

TxtCharIsUpper (ch)

Available only if the International Feature Set is present.

✦ TxtCharIsValid: Returns true if a given character is a valid character in the
current character encoding.

Boolean TxtCharIsValid (WChar inChar)

Available only if the International Feature Set is present.

✦ TxtCharSize: Returns the number of bytes required to represent a character.

UInt16 TxtCharSize (WChar inChar)

Available only if the International Feature Set is present.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 777

778 Appendixes

✦ TxtCompare: Performs a case-sensitive comparison of two text buffers.

Int16 TxtCompare (const Char *s1, UInt16 s1Len,
UInt16 *s1MatchLen, const Char *s2, UInt16 s2Len,
UInt16 *s2MatchLen)

Available only if the International Feature Set is present.

✦ TxtEncodingName: Returns a string containing the official name of a given
character encoding.

const Char *TxtEncodingName (CharEncodingType inEncoding)

Available only if the International Feature Set is present.

✦ TxtFindString: Performs a case-insensitive search to find one string within
another.

Boolean TxtFindString (const Char *inSourceStr,
const Char *inTargetStr, UInt32 *outPos, UInt16 *outLength)

Available only if the International Feature Set is present.

✦ TxtGetChar: Returns the character at a given offset within a text buffer.

WChar TxtGetChar (const Char *inText, UInt32 inOffset)

Available only if the International Feature Set is present.

✦ TxtGetNextChar: Retrieves the character at a given offset within a text buffer
and returns the size of the character in bytes.

UInt16 TxtGetNextChar (const Char *inText, UInt32 inOffset,
WChar *outChar)

Available only if the International Feature Set is present.

✦ TxtGetPreviousChar: Retrieves the character before a given offset within a
text buffer and returns the size of the character in bytes.

UInt16 TxtGetPreviousChar (const Char *inText, UInt32 inOffset,
WChar *outChar)

Available only if the International Feature Set is present.

✦ TxtGetTruncationOffset: Returns the offset for truncating a text buffer so it
is at most a given number of bytes in size.

UInt32 TxtGetTruncationOffset (const Char *inText,
UInt32 inOffset)

Available only if the International Feature Set is present.

✦ TxtMaxEncoding: Returns the higher of two character encodings.

CharEncodingType TxtMaxEncoding (CharEncodingType a,
CharEncodingType b)

Available only if the International Feature Set is present.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 778

779Appendix A ✦ Palm OS API Quick Reference

✦ TxtNextCharSize: Returns the size in bytes of the character at a given offset
within a text buffer.

TxtNextCharSize (inText, inOffset)

Available only if the International Feature Set is present.

✦ TxtPreviousCharSize: Returns the size in bytes of the character before a
given offset within a text buffer.

TxtPreviousCharSize (inText, inOffset)

Available only if the International Feature Set is present.

✦ TxtSetNextChar: Replaces a character at a given offset within a text buffer
with another character and returns the size in bytes of the new character.

UInt16 TxtSetNextChar (Char *ioText, UInt32 inOffset,
WChar inChar)

Available only if the International Feature Set is present.

✦ TxtStrEncoding: Returns the character encoding required to represent a string.

CharEncodingType TxtStrEncoding (const Char *inStr)

Available only if the International Feature Set is present.

✦ TxtTransliterate: Performs a transliteration on a given number of bytes within
a text buffer.

Err TxtTransliterate (const Char *inSrcText,
UInt16 inSrcLength, Char *outDstText, UInt16

*ioDstLength,
TranslitOpType inOp)

Available only if the International Feature Set is present.

✦ TxtWordBounds: Retrieves the beginning and ending positions, within a text
buffer, of the word of text that contains a given byte.

Boolean TxtWordBounds (const Char *inText, UInt32 inLength,
UInt32 inOffset, UInt32 *outStart, UInt32 *outEnd)

Available only if the International Feature Set is present.

Text Manager Structure
The Text Manager uses an enumerated type to identify character encodings.

✦ CharEncodingType: Specifies the available character encodings.

typedef enum {
charEncodingUnknown = 0,

charEncodingAscii,
charEncodingISO8859_1,

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 779

780 Appendixes

charEncodingPalmLatin,
charEncodingShiftJIS,
charEncodingPalmSJIS,
charEncodingUTF8,
charEncodingCP1252,
charEncodingCP932

} CharEncodingType;

Available only if the International Feature Set is present.

Time Manager Functions
The Time Manager functions deal with the system clock and converting between
different units of time.

✦ DateAdjust: Returns a date that is a given number of days before or after a
specific date.

void DateAdjust (DatePtr dateP, Int32 adjustment)

✦ DateDaysToDate: Retrieves the date, given the number of days since
January 1, 1904.

void DateDaysToDate (UInt32 days, DatePtr date)

✦ DateSecondsToDate: Retrieves the date, given the number of seconds since
12:00 AM on January 1, 1904.

void DateSecondsToDate (UInt32 seconds, DatePtr date)

✦ DateTemplateToAscii: Converts a date to a string, using a given template.

UInt16 DateTemplateToAscii(const Char *templateP, UInt8 months,
UInt8 days, UInt16 years, Char*stringP, Int16 stringLen)

Available only on Palm OS 3.5 or later.

✦ DateToAscii: Converts a date to a string, using a given format.

void DateToAscii (UInt8 months, UInt8 days, UInt16 years,
DateFormatType dateFormat, Char *pString)

✦ DateToDays: Returns the number of days since January 1, 1904, for a
specific date.

UInt32 DateToDays (DateType date)

✦ DateToDOWDMFormat: Converts a date to a string in a given format, includ-
ing the day of the week.

void DateToDOWDMFormat (UInt8 month, UInt8 day, UInt16 year,
DateFormatType dateFormat, Char *pString)

✦ DayOfMonth: Returns a value indicating the day of the month for a given date;
for example, the date January 28, 2001, returns the constant domLastSun, for
the last Sunday in the month.

Int16 DayOfMonth (Int16 month, Int16 day, Int16 year)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 780

781Appendix A ✦ Palm OS API Quick Reference

✦ DayOfWeek: Returns an integer from 0 to 6 representing the day of the week
for a given date; 0 represents Sunday.

Int16 DayOfWeek (Int16 month, Int16 day, Int16 year)

✦ DaysInMonth: Returns the number of days in a month.

Int16 DaysInMonth (Int16 month, Int16 year)

✦ TimAdjust: Returns a date that is a given number of seconds before or after
a specific date and time.

void TimAdjust (DateTimePtr dateTimeP, Int32 adjustment)

✦ TimDateTimeToSeconds: Returns the number of seconds since January 1,
1904, for a given date and time.

UInt32 TimDateTimeToSeconds (DateTimePtr dateTimeP)

✦ TimeToAscii: Converts a given time of day to a formatted string.

void TimeToAscii (UInt8 hours, UInt8 minutes,
TimeFormatType timeFormat, Char *pString)

✦ TimGetSeconds: Returns the handheld clock’s current time, expressed as
the number of seconds since 12:00 AM on January 1, 1904.

UInt32 TimGetSeconds (void)

✦ TimGetTicks: Returns the number of system ticks since the user last per-
formed a soft or hard reset.

UInt32 TimGetTicks (void)

✦ TimSecondsToDateTime: Retrieves the date and time, given the number of
seconds since 12:00 AM on January 1, 1904.

void TimSecondsToDateTime (UInt32 seconds,
DateTimePtr dateTimeP)

✦ TimSetSeconds: Sets the handheld’s clock, given a date and time expressed
as the number of seconds since 12:00 AM on January 1, 1904.

void TimSetSeconds (UInt32 seconds)

Time Manager Structures
✦ DateFormatType: Specifies the different date formats available to the

DateToAscii and DateToDOWDMFormat functions.

typedef enum {
dfMDYWithSlashes, // 12/31/95
dfDMYWithSlashes, // 31/12/95
dfDMYWithDots, // 31.12.95
dfDMYWithDashes, // 31-12-95
dfYMDWithSlashes, // 95/12/31
dfYMDWithDots, // 95.12.31
dfYMDWithDashes, // 95-12-31

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 781

782 Appendixes

dfMDYLongWithComma, // Dec 31, 1995
dfDMYLong, // 31 Dec 1995
dfDMYLongWithDot, // 31. Dec 1995
dfDMYLongNoDay, // Dec 1995
dfDMYLongWithComma, // 31 Dec, 1995
dfYMDLongWithDot, // 1995.12.31
dfYMDLongWithSpace, // 1995 Dec 31

dfMYMed, // Dec ‘95
dfMYMedNoPost // Dec 95

} DateFormatType;

✦ DateTimeType: Defines a date and time value.

typedef struct {
Int16 second;
Int16 minute;
Int16 hour;
Int16 day;
Int16 month;
Int16 year;
Int16 weekDay; // Days since Sunday (0 to 6)

} DateTimeType;

✦ DateType: Defines a date value.

typedef struct {
UInt16 year :7; // years since 1904 (MAC format)
UInt16 month :4;
UInt16 day :5;

} DateType;

✦ DaylightSavingsTypes: Specifies different styles of calculating Daylight
Savings Time for different locales.

typedef enum {
dsNone, // DST not observed
dsUSA, // United States DST
dsAustralia, // Australian DST
dsWesternEuropean, // Western European DST
dsMiddleEuropean, // Middle European DST
dsEasternEuropean, // Eastern European DST
dsGreatBritain, // Great Britain and Eire DST
dsRumania, // Rumanian DST
dsTurkey, // Turkish DST
dsAustraliaShifted // Australian DST with shift in 1986

} DaylightSavingsTypes;

✦ DayOfWeekType: Specifies the return values for the DayOfMonth function.

typedef enum {
dom1stSun, dom1stMon, dom1stTue, dom1stWen, dom1stThu,

dom1stFri, dom1stSat,
dom2ndSun, dom2ndMon, dom2ndTue, dom2ndWen, dom2ndThu,

dom2ndFri, dom2ndSat,
dom3rdSun, dom3rdMon, dom3rdTue, dom3rdWen, dom3rdThu,

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 782

783Appendix A ✦ Palm OS API Quick Reference

dom3rdFri, dom3rdSat,
dom4thSun, dom4thMon, dom4thTue, dom4thWen, dom4thThu,

dom4thFri, dom4thSat,
domLastSun, domLastMon, domLastTue, domLastWen,

domLastThu,
domLastFri, domLastSat

} DayOfWeekType;

✦ TimeFormatType: Specifies time formats for the TimeToAscii function.

typedef enum {
tfColon,
tfColonAMPM, // 1:00 pm
tfColon24h, // 13:00
tfDot,
tfDotAMPM, // 1.00 pm
tfDot24h, // 13.00
tfHoursAMPM, // 1 pm
tfHours24h, // 13
tfComma24h // 13,00

} TimeFormatType;

✦ TimeType: Defines a time value.

typedef struct {
UInt8 hours;
UInt8 minutes;

} TimeType;

UI Color List Functions
The UI Color List function group allows an application to set and retrie user inter-
face colors.

✦ UIColorGetTableEntryIndex: Returns the color index in the current palette
for a given user interface color.

IndexedColorType UIColorGetTableEntryIndex
(UIColorTableEntries which)

Available only on Palm OS 3.5 or later.

✦ UIColorGetTableEntryRGB: Retrieves the RGB value for a given user interface
color.

void UIColorGetTableEntryRGB
(UIColorTableEntries which, RGBColorType *rgbP)

Available only on Palm OS 3.5 or later.

✦ UIColorSetTableEntry: Sets a user interface color.

Err UIColorSetTableEntry (UIColorTableEntries which,
const RGBColorType *rgbP)

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 783

784 Appendixes

UI Color List Structure
The UI color list functions use an enumerated type to identify the colors that may
be assigned to different user interface elements.

✦ UIColorTableEntries: Specifies the color values that the system uses to
draw various user interface objects.

typedef enum UIColorTableEntries {
UIObjectFrame = 0,
UIObjectFill,
UIObjectForeground,
UIObjectSelectedFill,
UIObjectSelectedForeground,

UIMenuFrame,
UIMenuFill,
UIMenuForeground,
UIMenuSelectedFill,
UIMenuSelectedForeground,

UIFieldBackground,
UIFieldText,
UIFieldTextLines,
UIFieldCaret,
UIFieldTextHighlightBackground,
UIFieldTextHighlightForeground,
UIFieldFepRawText,
UIFieldFepRawBackground,
UIFieldFepConvertedText,
UIFieldFepConvertedBackground,
UIFieldFepUnderline,

UIFormFrame,
UIFormFill,

UIDialogFrame,
UIDialogFill,

UIAlertFrame,
UIAlertFill,

UIOK,
UICaution,
UIWarning,

UILastColorTableEntry
} UIColorTableEntries;

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 784

785Appendix A ✦ Palm OS API Quick Reference

UI Control Functions
The UI Control functions display various dialogs for changing user interface set-
tings, such as brightness, contrast, and color.

✦ UIBrightnessAdjust: Displays a dialog for adjusting the screen’s brightness
level.

void UIBrightnessAdjust()

Available only on Palm OS 3.5 or later.

✦ UIContrastAdjust: Displays a dialog for adjusting the screen’s contrast.

void UIContrastAdjust()

Available only on Palm OS 3.1 or later.

✦ UIPickColor: Displays a dialog for picking a color.

Boolean UIPickColor (IndexedColorType *indexP,
RGBColorType *rgbP, UIPickColorStartType start,
const Char *titleP, const Char *tipP)

Available only on Palm OS 3.5 or later.

Windows Functions
The Windows functions handle display and manipulation of windows, as well as
drawing in those windows.

✦ WinCreateWindow: Creates a new window and adds it to the window list.

WinHandle WinCreateWindow (RectangleType *bounds,
FrameType frame, Boolean modal, Boolean focusable,
UInt16 *error)

✦ WinDeleteWindow: Frees the memory used by a window and removes the
window from the window list.

void WinDeleteWindow (WinHandle winHandle, Boolean eraseIt)

✦ WinDrawBitmap: Draws a bitmap at a given set of coordinates.

void WinDrawBitmap (BitmapPtr bitmapP, Coord x, Coord y)

✦ WinDrawChar: Draws a given character in the foreground color.

void WinDrawChar (WChar theChar, Coord x, Coord y)

✦ WinDrawChars: Draws a string of characters in the foreground color.

void WinDrawChars (const Char *chars, Int16 len, Coord x,
Coord y)

✦ WinDrawGrayLine: Draws a dotted line in the foreground color.

void WinDrawGrayLine (Coord x1, Coord y1, Coord x2, Coord y2)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 785

786 Appendixes

✦ WinDrawGrayRectangleFrame: Draws a dotted rectangle frame in the fore-
ground color.

void WinDrawGrayRectangleFrame (FrameType frame,
RectangleType *rP)

✦ WinDrawInvertedChars: Draws a string of characters with their foreground
and background colors reversed.

void WinDrawInvertedChars (const Char *chars, Int16 len,
Coord x, Coord y)

✦ WinDrawLine: Draws a line in the foreground color.

void WinDrawLine (Coord x1, Coord y1, Coord x2, Coord y2)

✦ WinDrawPixel: Draws a single pixel in the foreground color.

void WinDrawPixel (Coord x, Coord y)

Available only on Palm OS 3.5 or later.

✦ WinDrawRectangle: Draws a solid rectangle in the foreground color.

void WinDrawRectangle (RectangleType *rP, UInt16 cornerDiam)

✦ WinDrawRectangleFrame: Draws a rectangle frame in the foreground color.

void WinDrawRectangleFrame (FrameType frame, RectangleType *rP)

✦ WinDrawTruncChars: Draws a string of characters in the foreground color,
truncating them to a given width in pixels.

void WinDrawTruncChars (const Char *chars, Int16 len, Coord x,
Coord y, Coord maxWidth)

Available only on Palm OS 3.1 or later.

✦ WinEraseChars: Erases characters from the display.

void WinEraseChars (const Char *chars, Int16 len, Coord x,
Coord y)

✦ WinEraseLine: Draws a line in the background color.

void WinEraseLine (Coord x1, Coord y1, Coord x2, Coord y2)

✦ WinErasePixel: Draws a pixel in the background color.

void WinErasePixel (Coord x, Coord y)

Available only on Palm OS 3.5 or later.

✦ WinEraseRectangle: Draws a solid rectangle in the background color.

void WinEraseRectangle (RectangleType *rP, UInt16 cornerDiam)

✦ WinEraseRectangleFrame: Draws a rectangle frame in the background color.

void WinEraseRectangleFrame (FrameType frame,
RectangleType *rP)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 786

787Appendix A ✦ Palm OS API Quick Reference

✦ WinEraseWindow: Erases the contents of the draw window.

void WinEraseWindow (void)

✦ WinFillLine: Draws a line in the current fill pattern.

void WinFillLine (Coord x1, Coord y1, Coord x2, Coord y2)

✦ WinFillRectangle: Draws a solid rectangle in the current fill pattern.

void WinFillRectangle (RectangleType *rP, UInt16 cornerDiam)

✦ WinGetDisplayExtent: Retrieves the width and height of the display.

void WinGetDisplayExtent (Coord *extentX, Coord *extentY)

✦ WinGetDrawWindow: Returns a handle to the current draw window.

WinHandle WinGetDrawWindow (void)

✦ WinGetFramesRectangle: Retrieves a rectangle that includes both a given
rectangle frame and the area within that frame.

void WinGetFramesRectangle (FrameType frame, RectangleType *rP,
RectangleType *obscuredRectP)

✦ WinGetPattern: Retrieves the current fill pattern.

void WinGetPattern (CustomPatternType *patternP)

✦ WinGetPatternType: Returns the current pattern type.

PatternType WinGetPatternType (void)

Available only on Palm OS 3.5 or later.

✦ WinGetPixel: Returns the color index of a given pixel.

IndexedColorType WinGetPixel (Coord x, Coord y)

Available only on Palm OS 3.5 or later.

✦ WinGetWindowBounds: Retrieves a rectangle defining the bounds of the
current draw window in display-relative coordinates.

void WinGetWindowBounds (RectangleType *rP)

✦ WinGetWindowExtent: Retrieves the width and height of the current draw
window.

void WinGetWindowExtent (Coord *extentX, Coord *extentY)

✦ WinGetWindowFrameRect: Retrieves a rectangle defining the area of the
current draw window and its frame.

void WinGetWindowFrameRect (WinHandle winHandle,
RectangleType *r)

✦ WinIndexToRGB: Converts a color index in the current palette to an RGB
value.

void WinIndexToRGB (IndexedColorType i, RGBColorType *rgbP)

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 787

788 Appendixes

✦ WinInvertChars: Inverts a number of characters.

void WinInvertChars (const Char *chars, Int16 len, Coord x,
Coord y)

✦ WinInvertLine: Inverts a line.

void WinInvertLine (Coord x1, Coord y1, Coord x2, Coord y2)

✦ WinInvertPixel: Inverts a pixel.

void WinInvertPixel (Coord x, Coord y)

Available only on Palm OS 3.5 or later.

✦ WinInvertRectangle: Inverts a rectangle.

void WinInvertRectangle (RectangleType *rP, UInt16
cornerDiam)

✦ WinInvertRectangleFrame: Inverts a rectangle frame.

void WinInvertRectangleFrame (FrameType frame,
RectangleType *rP)

✦ WinModal: Returns true if a given window is modal.

Boolean WinModal (WinHandle winHandle)

✦ WinPaintBitmap: Draws a bitmap in the current draw state.

void WinPaintBitmap (BitmapType *bitmapP, Coord x, Coord y)

Available only on Palm OS 3.5 or later.

✦ WinPaintChar: Draws a character in the current draw state.

void WinPaintChar (WChar theChar, Coord x, Coord y)

Available only on Palm OS 3.5 or later.

✦ WinPaintChars: Draws a number of characters in the current draw state.

void WinPaintChars (const Char *chars, Int16 len, Coord x,
Coord y)

Available only on Palm OS 3.5 or later.

✦ WinPaintLine: Draws a line in the current draw state.

void WinPaintLine (Coord x1, Coord y1, Coord x2, Coord y2)

Available only on Palm OS 3.5 or later.

✦ WinPaintLines: Draws a number of lines in the current draw state.

void WinPaintLines (UInt16 numLines, WinLineType lines[])

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 788

789Appendix A ✦ Palm OS API Quick Reference

✦ WinPaintPixel: Draws a pixel in the current draw state.

void WinPaintPixel (Coord x, Coord y)

Available only on Palm OS 3.5 or later.

✦ WinPaintPixels: Draws a number of pixels in the current draw state.

void WinPaintPixels (UInt16 numPoints, PointType pts[])

Available only on Palm OS 3.5 or later.

✦ WinPaintRectangle: Draws a solid rectangle in the current draw state.

void WinPaintRectangle (RectangleType *rP, UInt16 cornerDiam)

Available only on Palm OS 3.5 or later.

✦ WinPaintRectangleFrame: Draws a rectangle frame in the current draw state.

void WinPaintRectangleFrame (FrameType frame,
RectangleType *rP)

Available only on Palm OS 3.5 or later.

✦ WinPalette: Sets or retrieves the draw window’s palette.

Err WinPalette (UInt8 operation, Int16 startIndex,
UInt16 paletteEntries, RGBColorType *tableP)

Available only on Palm OS 3.5 or later.

✦ WinPopDrawState: Retrieves the draw state most recently saved to the stack
by WinPushDrawState.

void WinPopDrawState (void)

Available only on Palm OS 3.5 or later.

✦ WinPushDrawState: Pushes the current draw state onto a stack, for later
retrieval by WinPopDrawState.

void WinPushDrawState (void)

Available only on Palm OS 3.5 or later.

✦ WinRestoreBits: Copies the contents of a given window to the draw window
and deletes the passed window.

void WinRestoreBits (WinHandle winHandle, Coord destX,
Coord destY)

✦ WinRGBToIndex: Converts an RGB color value to the index of the closest
color in the current palette.

IndexedColorType WinRGBToIndex (const RGBColorType *rgbP)

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 789

790 Appendixes

✦ WinSaveBits: Saves a rectangular region of the screen to an offscreen window
and returns the new window’s handle.

WinHandle WinSaveBits (RectangleType *sourceP, UInt16 *error)

✦ WinScreenMode: Sets or retrieves display parameters.

Err WinScreenMode (WinScreenModeOperation operation,
UInt32 *widthP, UInt32 *heightP, UInt32 *depthP,
Boolean *enableColorP)

Available only on Palm OS 3.5 or later.

✦ WinScrollRectangle: Scrolls a rectangular region of the draw window.

void WinScrollRectangle (RectangleType *rP,
WinDirectionType direction, Coord distance,
RectangleType *vacatedP)

✦ WinSetActiveWindow: Makes a window the active window.

void WinSetActiveWindow (WinHandle winHandle)

✦ WinSetBackColor: Sets the background color.

IndexedColorType WinSetBackColor (IndexedColorType backColor)

Available only on Palm OS 3.5 or later.

✦ WinSetDrawMode: Sets the drawing transfer mode.

WinDrawOperation WinSetDrawMode (WinDrawOperation newMode)

Available only on Palm OS 3.5 or later.

✦ WinSetDrawWindow: Makes a window the current draw window.

WinHandle WinSetDrawWindow (WinHandle winHandle)

✦ WinSetForeColor: Sets the foreground color.

IndexedColorType WinSetForeColor (IndexedColorType foreColor)

Available only on Palm OS 3.5 or later.

✦ WinSetPattern: Sets the current fill pattern.

void WinSetPattern (const CustomPatternType *patternP)

✦ WinSetPatternType: Sets the current fill pattern type.

void WinSetPatternType (PatternType newPattern)

Available only on Palm OS 3.5 or later.

✦ WinSetTextColor: Sets the color to use for drawing characters.

IndexedColorType WinSetTextColor (IndexedColorType textColor)

Available only on Palm OS 3.5 or later.

✦ WinSetUnderlineMode: Enables or disables underlining of drawn characters.

UnderlineModeType WinSetUnderlineMode (UnderlineModeType mode)

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 790

791Appendix A ✦ Palm OS API Quick Reference

Windows Structures
✦ CustomPatternType: Defines a custom fill pattern.

typedef UInt8 CustomPatternType [8];

✦ DrawStateType: Defines the current draw state.

typedef struct DrawStateType {
WinDrawOperation transferMode;
PatternType pattern;
UnderlineModeType underlineMode;
FontID fontId;
FontPtr font;
CustomPatternType patternData;
IndexedColorType foreColor;
IndexedColorType backColor;
IndexedColorType textColor;
UInt8 reserved;

} DrawStateType;

Available only on Palm OS 3.5 or later.

✦ FrameBitsType: Defines a window frame.

typedef union FrameBitsType {
struct {

UInt16 cornerDiam :8;
UInt16 reserved_3 :3;
UInt16 threeD :1;
UInt16 shadowWidth :2;
UInt16 width :2;

} bits;
UInt16 word;

} FrameBitsType;

✦ FrameType: Defines a window frame.

typedef UInt16 FrameType;

✦ IndexedColorType: Defines a color index in a palette.

typedef UInt8 IndexedColorType;

Available only on Palm OS 3.5 or later.

✦ PatternType: Specifies specific types of patterns.

typedef enum {
blackPattern,
whitePattern,
grayPattern,
customPattern

} PatternType;

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 791

792 Appendixes

✦ UnderlineModeType: Specifies different types of text underlining.

typedef enum {
noUnderline,
grayUnderline,
solidUnderline,
colorUnderline

} UnderlineModeType;

✦ WindowFlagsType: Bit field that defines attributes for a window.

typedef struct WindowFlagsType {
UInt16 format:1;
UInt16 offscreen:1;
UInt16 modal:1;
UInt16 focusable:1;
UInt16 enabled:1;
UInt16 visible:1;
UInt16 dialog:1;
UInt16 freeBitmap:1;
UInt16 reserved :8;

} WindowFlagsType;

✦ WindowType: Defines a window.

typedef struct WindowType {
Coord displayWidthV20;
Coord displayHeightV20;
void *displayAddrV20;
WindowFlagsType windowFlags;
RectangleType windowBounds;
AbsRectType clippingBounds;
BitmapPtr bitmapP;
FrameBitsType frameType;
DrawStateType *drawStateP;
struct WindowType *nextWindow;

} WindowType;

✦ WinDrawOperation: Specifies different transfer modes for color drawing.

typedef enum {
winPaint,
winErase,
winMask,
winInvert,
winOverlay,
winPaintInverse,
winSwap

} WinDrawOperation;

Available only on Palm OS 3.5 or later.

✦ WinLineType: Defines a line.

typedef struct WinLineType {
Coord x1;
Coord y1;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 792

793Appendix A ✦ Palm OS API Quick Reference

Coord x2;
Coord y2;

} WinLineType;

Available only on Palm OS 3.5 or later.

Events
The Palm OS identifies an event using a constant value from the enumEvents enu-
merated type. Also, the system defines each event with an EventType structure,
which contains some data common to all events, as well as a union containing data
specific to different types of events. This section of Appendix A lists the declara-
tions of both enumEvents and EventType, followed by a quick guide to each of the
events.

✦ enumEvents: The enumEvents enumerated type provides constants for all of
the events available in the Palm OS:

typedef enum {
nilEvent = 0, // system level
penDownEvent, // system level
penUpEvent, // system level
penMoveEvent, // system level
keyDownEvent, // system level
winEnterEvent, // system level
winExitEvent, // system level
ctlEnterEvent,
ctlExitEvent,
ctlSelectEvent,
ctlRepeatEvent,
lstEnterEvent,
lstSelectEvent,
lstExitEvent,
popSelectEvent,
fldEnterEvent,
fldHeightChangedEvent,
fldChangedEvent,
tblEnterEvent,
tblSelectEvent,
daySelectEvent,
menuEvent,
appStopEvent = 22, // system level
frmLoadEvent,
frmOpenEvent,
frmGotoEvent,
frmUpdateEvent,
frmSaveEvent,
frmCloseEvent,
frmTitleEnterEvent,
frmTitleSelectEvent,
tblExitEvent,

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 793

794 Appendixes

sclEnterEvent,
sclExitEvent,
sclRepeatEvent,
tsmConfirmEvent = 35, // system level
tsmFepButtonEvent, // system level
tsmFepModeEvent, // system level

// Add future UI level events in this numeric space
// to save room for new system level events
menuCmdBarOpenEvent = 0x0800,
menuOpenEvent,
menuCloseEvent,
frmGadgetEnterEvent,
frmGadgetMiscEvent,

// Library events
firstINetLibEvent = 0x1000,
firstWebLibEvent = 0x1100,

// First available user event
firstUserEvent = 0x6000

} eventsEnum;

✦ EventType: The EventType structure contains the data for each individual
event.

typedef struct EventType {
eventsEnum eType;
Boolean penDown;
UInt8 tapCount;
Int16 screenX;
Int16 screenY;
union {

struct _GenericEventType generic;
struct _PenUpEventType penUp;
struct _KeyDownEventType keyDown;
struct _WinEnterEventType winEnter;
struct _WinExitEventType winExit;
struct _TSMConfirmType tsmConfirm;
struct _TSMFepButtonType tsmFepButton;
struct _TSMFepModeEventType tsmFepMode;

struct ctlEnter {
UInt16 controlID;
struct ControlType *pControl;

} ctlEnter;

struct ctlSelect {
UInt16 controlID;
struct ControlType *pControl;
Boolean on;
UInt8 reserved1;
UInt16 value; // used for slider controls only

} ctlSelect;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 794

795Appendix A ✦ Palm OS API Quick Reference

struct ctlRepeat {
UInt16 controlID;
struct ControlType *pControl;
UInt32 time;
UInt16 value; // used for slider controls only

} ctlRepeat;

struct fldEnter {
UInt16 fieldID;
struct FieldType *pField;

} fldEnter;

struct fldHeightChanged {
UInt16 fieldID;
struct FieldType *pField;
Int16 newHeight;
UInt16 currentPos;

} fldHeightChanged;

struct fldChanged {
UInt16 fieldID;
struct FieldType *pField;

} fldChanged;

struct fldExit {
UInt16 fieldID;
struct FieldType *pField;

} fldExit;

struct lstEnter {
UInt16 listID;
struct ListType *pList;
Int16 selection;

} lstEnter;

struct lstExit {
UInt16 listID;
struct ListType *pList;

} lstExit;

struct lstSelect {
UInt16 listID;
struct ListType *pList;
Int16 selection;

} lstSelect;

struct tblEnter {
UInt16 tableID;
struct TableType *pTable;
Int16 row;
Int16 column;

} tblEnter;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 795

796 Appendixes

struct tblExit {
UInt16 tableID;
struct TableType *pTable;
Int16 row;
Int16 column;

} tblExit;

struct tblSelect {
UInt16 tableID;
struct TableType *pTable;
Int16 row;
Int16 column;

} tblSelect;

struct frmLoad {
UInt16 formID;

} frmLoad;

struct frmOpen {
UInt16 formID;

} frmOpen;

struct frmGoto {
UInt16 formID;
UInt16 recordNum;
UInt16 matchPos;
UInt16 matchLen;
UInt16 matchFieldNum;
UInt32 matchCustom;

} frmGoto;

struct frmClose {
UInt16 formID;

} frmClose;

struct frmUpdate {
UInt16 formID;
UInt16 updateCode;

} frmUpdate;

struct frmTitleEnter {
UInt16 formID;

} frmTitleEnter;

struct frmTitleSelect {
UInt16 formID;

} frmTitleSelect;

struct daySelect {
struct DaySelectorType *pSelector;
Int16 selection;
Boolean useThisDate;
UInt8 reserved1;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 796

797Appendix A ✦ Palm OS API Quick Reference

} daySelect;

struct menu {
UInt16 itemID;

} menu;

struct popSelect {
UInt16 controlID;
struct ControlType *controlP;
UInt16 listID;
struct ListType *listP;
Int16 selection;
Int16 priorSelection;

} popSelect;

struct sclEnter {
UInt16 scrollBarID;
struct ScrollBarType *pScrollBar;

} sclEnter;

struct sclExit {
UInt16 scrollBarID;
struct ScrollBarType *pScrollBar;
Int16 value;
Int16 newValue;

} sclExit;

struct sclRepeat {
UInt16 scrollBarID;
struct ScrollBarType *pScrollBar;
Int16 value;
Int16 newValue;
Int32 time;

} sclRepeat;

struct menuCmdBarOpen {
Boolean preventFieldButtons;
UInt8 reserved;

} menuCmdBarOpen;

struct menuOpen {
UInt16 menuRscID;
Int16 cause;

} menuOpen;

struct gadgetEnter {
UInt16 gadgetID;
struct FormGadgetType *gadgetP;

} gadgetEnter;

struct gadgetMisc {
UInt16 gadgetID;
struct FormGadgetType *gadgetP;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 797

798 Appendixes

UInt16 selector;
void *dataP;

} gadgetMisc;

} data;

} EventType;

Guide to Events
The most commonly used events are listed here in alphabetical order. If an event
contains its own special data within the EventType structure’s data union, the
description of the event begins with the event’s unique data structure.

✦ appStopEvent: This event is a request to the current application to quit. If an
application does not respond to this event by exiting, the system cannot start
another application.

✦ ctlEnterEvent

struct ctlEnter {
UInt16 controlID;
struct ControlType *pControl;

} ctlEnter;

The CtlHandleEvent routine queues this event when it receives a penDown
Event within the borders of a control. The ctlEnter structure’s fields have
the following meanings:

• controlID: ID of the control.

• pControl: Pointer to the control object.

✦ ctlExitEvent: The CtlHandleEvent routine queues this event if, after the
user sets the stylus down within a control’s bounds, the user then moves the
stylus out of the control and lifts the stylus from the screen.

✦ ctlRepeatEvent

struct ctlRepeat {
UInt16 controlID;
struct ControlType *pControl;
UInt32 time;
UInt16 value;

} ctlRepeat;

The CtlHandleEvent function queues this event once for every half second
that the stylus remains down inside a repeating control’s bounds. The
ctlRepeat structure’s fields have the following meanings:

• controlID: ID of the control.

• pControl: Pointer to the control object.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 798

799Appendix A ✦ Palm OS API Quick Reference

• time: System ticks count of the time when the event is added to the
queue.

• value: Current value if the control is a feedback slider.

✦ ctlSelectEvent

struct ctlSelect {
UInt16 controlID;
struct ControlType *pControl;
Boolean on;
UInt8 reserved1;
UInt16 value; // used for slider controls only

} ctlSelect;

The CtlHandleEvent routine queues this event if the user taps and lifts the
stylus within the bounds of a control. The ctlSelect structure’s fields have
the following meanings:

• controlID: ID of the control.

• pControl: Pointer to the control object.

• on: true if the control is selected.

• reserved1: Unused.

• value: Current value if the control is a slider or feedback slider.

✦ fldChangedEvent

struct fldChanged {
UInt16 fieldID;
struct FieldType *pField;

} fldChanged;

The FldHandleEvent routine queues this event when the user scrolls a field
by dragging the stylus across its text. The fldChanged structure’s fields have
the following meanings:

• fieldID: ID of the field.

• pField: Pointer to the field object.

✦ fldEnterEvent

struct fldEnter {
UInt16 fieldID;
struct FieldType *pField;

} fldEnter;

The FldHandleEvent routine queues this event when it receives a
penDownEvent within the borders of a field. The fldEnter structure’s
fields have the following meanings:

• fieldID: ID of the field.

• pField: Pointer to the field object.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 799

800 Appendixes

✦ fldHeightChangedEvent

struct fldHeightChanged {
UInt16 fieldID;
struct FieldType *pField;
Int16 newHeight;
UInt16 currentPos;

} fldHeightChanged;

The FldHandleEvent routine queues this event when a dynamically resizable
text field’s height changes because of the addition of text to or removal of it
from the field. The fldHeightChange structure’s fields have the following
meanings:

• fieldID: ID of the field.

• pField: Pointer to the field object.

• newHeight: New number of visible lines in the field.

• currentPos: Current insertion point position.

✦ frmCloseEvent

struct frmClose {
UInt16 formID;

} frmClose;

The FrmGotoForm and FrmCloseAllForms routines queue this event. If appli-
cation code does not handle frmCloseEvent, the FrmHandleEvent routine
handles it by erasing the specified form and freeing any memory allocated for
the form. If your application does handle a frmCloseEvent, it is still a good
idea to return false from the event handler and allow FrmHandleEvent to
perform its regular cleanup duties. The frmCloseEvent structure’s field has
the following meaning:

• formID: ID of the form to close.

✦ frmGadgetEnterEvent

struct gadgetEnter {
UInt16 gadgetID;
struct FormGadgetType *gadgetP;

} gadgetEnter;

The FrmHandleEvent routine queues this event when there is a penDownEvent
within the bounds of an extended gadget. The callback event handling function
installed for the gadget should handle this event. The gadgetEnter structure’s
fields have the following meanings:

• gadgetID: ID of the gadget.

• gadgetP: Pointer to the gadget object.

Available only on Palm OS 3.5 or later.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 800

801Appendix A ✦ Palm OS API Quick Reference

✦ frmGadgetMiscEvent

struct gadgetMisc {
UInt16 gadgetID;
struct FormGadgetType *gadgetP;
UInt16 selector;
void *dataP;

} gadgetMisc;

An application may choose to queue a frmGadgetMiscEvent, which the
FrmHandleEvent routine passes along to the callback event handling function
installed for an extended gadget. The gadgetMisc structure’s fields have the
following meanings:

• gadgetID: ID of the gadget.

• gadgetP: Pointer to the gadget object.

• selector: An integer value to pass to the gadget’s event handler.

• dataP: A pointer to additional data to pass to the gadget’s event handler.

Available only on Palm OS 3.5 or later.

✦ frmGotoEvent

struct frmGoto {
UInt16 formID;
UInt16 recordNum;
UInt16 matchPos;
UInt16 matchLen;
UInt16 matchFieldNum;
UInt32 matchCustom;

} frmGoto;

A frmGotoEvent is a request to an application to initialize and draw a form,
with extra data specifying a text string from one of the application’s records
that should be highlighted on the screen. Applications can send this event to
themselves when handling a sysAppLaunchCmdGoto event as part of imple-
menting the global find feature. The frmGoto structure’s fields have the fol-
lowing meanings:

• formID: ID of the form to open.

• recordNum: Index of the record to display.

• matchPos: Position within the string to start highlighting text.

• matchLen: Length of the matching text to highlight.

• matchFieldNum: Number of the field within a record that contains the
matching text.

• matchCustom: Extra parameter for application-defined information.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 801

802 Appendixes

✦ frmLoadEvent

struct frmLoad {
UInt16 formID;

} frmLoad;

The FrmGotoForm and FrmPopupForm routines queue this event to request
that an application load a particular form into memory. An application is
responsible for handling this event, since none of the default event handlers
takes care of it. The frmLoad structure’s field has the following meaning:

• formID: ID of the form to load.

✦ frmOpenEvent

struct frmOpen {
UInt16 formID;

} frmOpen;

The FrmGotoForm and FrmPopupForm routines queue this event to request
that an application initialize and draw a particular form. An application is
responsible for handling this event, since none of the default event handlers
takes care of it. The frmLoad structure’s field has the following meaning:

• formID: ID of the form to draw.

✦ frmSaveEvent: The FrmSaveAllForms routine queues this event, which is a
request that an application save any data stored in one of its forms. An appli-
cation is responsible for handling this event, since none of the default event
handlers takes care of it.

✦ frmTitleEnterEvent

struct frmTitleEnter {
UInt16 formID;

} frmTitleEnter;

The FrmHandleEvent routine queues this event when the stylus first comes
down within the bounds of a form’s title. The frmTitleEnter structure’s field
has the following meaning:

• formID: ID of the form.

✦ frmTitleSelectEvent

struct frmTitleSelect {
UInt16 formID;

} frmTitleSelect;

The FrmHandleEvent routine queues this event when the user taps and lifts
the stylus within a form title’s bounds. The frmTitleSelectEvent struc-
ture’s field has the following meaning:

• formID: ID of the form.

✦ frmUpdateEvent

struct frmUpdate {
UInt16 formID;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 802

803Appendix A ✦ Palm OS API Quick Reference

UInt16 updateCode;
} frmUpdate;

The FrmUpdateForm and FrmEraseForm routines queue this event, which is
a request to redraw some or all of a form. An application may define its own
updateCode values; this is useful for communicating changes made in one
form to another form. If your application has one or more gadgets on a form,
the application should handle a frmUpdateEvent by drawing the form first,
and then call any gadget-drawing routines. The form event handler should then
return true to prevent the system from performing its usual drawing behavior,
which could draw over the top of the form’s gadgets. The frmUpdate struc-
ture’s fields have the following meanings:

• formID: ID of the form to update.

• updateCode: The reason for redrawing the form; FrmEraseForm sends
the constant frmRedrawUpdateCode to indicate that the entire form
needs to be redrawn.

✦ keyDownEvent

struct _KeyDownEventType {
WChar chr;
UInt16 keyCode;
UInt16 modifiers;

};
struct _KeyDownEventType keyDown;

The system queues this event when the user enters a character via Graffiti,
presses a hardware button, or taps one of the silkscreen buttons. The
_KeyDownEventType structure’s fields have the following meanings:

• chr: Character code.

• keyCode: Unused.

• modifiers: One or more modifiers.

✦ lstEnterEvent

struct lstEnter {
UInt16 listID;
struct ListType *pList;
Int16 selection;

} lstEnter;

The LstHandleEvent routine queues this event when it receives a penDown
Event within the bounds of a list object. The lstEnter structure’s fields have
the following meanings:

• listID: ID of the list.

• pList: Pointer to the list object.

• selection: Unused.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 803

804 Appendixes

✦ lstExitEvent

struct lstExit {
UInt16 listID;
struct ListType *pList;

} lstExit;

The LstHandleEvent routine queues this event if, after the user sets the stylus
down within a list’s bounds, the user then moves the stylus out of the list and
lifts the stylus from the screen. The lstExit structure’s fields have the fol-
lowing meanings:

• listID: ID of the list.

• pList: Pointer to the list object.

✦ lstSelectEvent

struct lstSelect {
UInt16 listID;
struct ListType *pList;
Int16 selection;

} lstSelect;

The LstHandleEvent routine queues this event when the user taps and lifts
the stylus within a list’s bounds. The lstSelect structure’s fields have the
following meanings:

• listID: ID of the list.

• pList: Pointer to the list object.

• selection: Index of the selected list item.

✦ menuCmdBarOpenEvent

struct menuCmdBarOpen {
Boolean preventFieldButtons;
UInt8 reserved;

} menuCmdBarOpen;

The menuCmdBarOpenEvent structure is available only on Palm OS 3.5 or later.
The MenuHandleEvent routine queues this event when the user enters the
command shortcut Graffiti stroke, which causes the command toolbar to
appear at the bottom of the screen. An application might respond to this
event by calling MenuCmdBarAddButton to add a button to the toolbar.
The menuCmdBarOpen structure’s fields have the following meanings:

• preventFieldButtons: If true, prevents the system from adding
standard cut, copy, paste, and undo buttons to the toolbar.

• reserved: Unused.

✦ menuEvent

struct menu {
UInt16 itemID;

} menu;

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 804

805Appendix A ✦ Palm OS API Quick Reference

The MenuHandleEvent routine queues this event when the user selects an
item from a menu, executes a menu command via Graffiti command shortcut,
or taps a button in the command toolbar. The menu structure’s field has the
following meaning:

• itemID: ID of the selected menu command.

✦ menuOpenEvent

struct menuOpen {
UInt16 menuRscID;
Int16 cause;

} menuOpen;

The MenuHandleEvent routine queues this event when a new menu is initial-
ized, which happens when the user taps the Menu silkscreen button or a
form’s title to open a menu. Menus remain active until FrmSetMenu changes
a form’s active menu, or a new form becomes active. The menuOpenEvent
structure’s fields have the following meanings:

• menuRscID: Resource ID of the menu.

• cause: Reason for opening the menu. There are two possible reasons
for opening a menu: menuButtonCause and menuCommandCause. The
menuButtonCause constant indicates that the user tapped the Menu
silkscreen button or a form’s title. The menuCommandCause constant
specifies that the user entered the Graffiti command shortcut, which
makes the menu active without displaying it.

✦ nilEvent: If EvtGetEvent is unable to return an event within the time speci-
fied in its timeout parameter, it returns a nilEvent.

✦ penDownEvent: The event manager queues this event when the stylus first
touches the screen.

✦ penMoveEvent: The Event Manager queues this event when the user drags
the stylus across the screen.

✦ penUpEvent

struct _PenUpEventType {
PointType start;
PointType end;

};
struct _PenUpEventType penUpEvent;

The Event Manager queues this event when the user lifts the stylus from the
screen. The _PenUpEventType structure’s fields have the following meanings:

• start: Display-relative coordinates where the stylus first touched the
screen.

• end: Display-relative coordinates where the user lifted the stylus from
the screen.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 805

806 Appendixes

✦ popSelectEvent

struct popSelect {
UInt16 controlID;
struct ControlType *controlP;
UInt16 listID;
struct ListType *listP;
Int16 selection;
Int16 priorSelection;

} popSelect;

The FrmHandleEvent routine queues this event when the user selects a pop-
up list item. You application may need to override this event if a list item’s
field happens to be empty, as can happen when populating a list from a
database. The popSelect structure’s fields have the following meanings:

• controlID: ID of the pop-up trigger.

• pControl: Pointer to the pop-up trigger object.

• listID: ID of the list.

• listP: Pointer to the list object.

• selection: Index of the newly selected list item.

• priorSelection: Index of the selected list item before the user selected
a new one.

✦ sclEnterEvent

struct sclEnter {
UInt16 scrollBarID;
struct ScrollBarType *pScrollBar;

} sclEnter;

The SclHandleEvent routine queues this event when it receives a penDown
Event within the borders of a scroll bar. The sclEnter structure’s fields have
the following meanings:

• scrollBarID: ID of the scroll bar.

• pScrollBar: Pointer to the scroll bar object.

✦ sclExitEvent

struct sclExit {
UInt16 scrollBarID;
struct ScrollBarType *pScrollBar;
Int16 value;
Int16 newValue;

} sclExit;

The SclHandleEvent routine queues this event if, after the user set the stylus
down within a scroll bar’s bounds, the user then moved the stylus out of the
scroll bar and lifted the stylus from the screen. Applications using scroll bars

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 806

807Appendix A ✦ Palm OS API Quick Reference

for nondynamic scrolling should handle this event and use its value and
newValue fields to determine how far the bar was scrolled. Applications that
implement dynamic scrolling can ignore this event in favor of sclRepeatEvent.
The sclExit structure’s fields have the following meanings:

• scrollBarID: ID of the scroll bar.

• pScrollBar: Pointer to the scroll bar object.

• value: Initial value of the scroll bar.

• newValue: New value of the scroll bar.

✦ sclRepeatEvent

struct sclRepeat {
UInt16 scrollBarID;
struct ScrollBarType *pScrollBar;
Int16 value;
Int16 newValue;
Int32 time;

} sclRepeat;

The SclHandleEvent routine sends this event repeatedly while the user holds
the stylus down on a scroll bar control. Applications that implement dynamic
scrolling should watch for this event and respond accordingly. The sclRepeat
structure’s fields have the following meanings:

• scrollBarID: ID of the scroll bar.

• pScrollBar: Pointer to the scroll bar object.

• value: Initial value of the scroll bar.

• newValue: New value of the scroll bar.

• time: System ticks count when the event is added to the queue.

✦ tblEnterEvent

struct tblEnter {
UInt16 tableID;
struct TableType *pTable;
Int16 row;
Int16 column;

} tblEnter;

The TblHandleEvent routine queues this event when it receives a penDown
Event within the borders of a table. The tblEnter structure’s fields have the
following meanings:

• tableID: ID of the table.

• pTable: Pointer to the table object.

• row: Row where the stylus entered the table.

• column: Column where the stylus entered the table.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 807

808 Appendixes

✦ tblExitEvent

struct tblExit {
UInt16 tableID;
struct TableType *pTable;
Int16 row;
Int16 column;

} tblExit;

The TblHandleEvent routine queues this event if, after the user sets the sty-
lus down within a table’s bounds, the user then moves the stylus out of the
table item where the stylus came down and lifts the stylus from the screen.
The tblExit structure’s fields have the following meanings:

• tableID: ID of the table.

• pTable: Pointer to the table object.

• row: Row where the stylus entered the table.

• column: Column where the stylus entered the table.

✦ tblSelectEvent

struct tblSelect {
UInt16 tableID;
struct TableType *pTable;
Int16 row;
Int16 column;

} tblSelect;

The TblHandleEvent routine queues this event when the user taps and lifts
the stylus within a table item. The tblSelect structure’s fields have the
following meanings:

• tableID: ID of the table.

• pTable: Pointer to the table object.

• row: Row of the selected table item.

• column: Column of the selected table item.

✦ winEnterEvent

struct _WinEnterEventType {
WinHandle enterWindow;
WinHandle exitWindow;

};
struct _WinEnterEventType winEnterEvent;

The Event Manager queues this event when a window becomes the active win-
dow, which happens as a result of a call to WinSetActiveWindow, or when the
user taps within the bounds of a window that is not the active window. The
_WinEnterEventType structure’s fields have the following meanings:

• enterWindow: Handle to the newly active window.

• exitWindow: Handle to the formerly active window.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 808

809Appendix A ✦ Palm OS API Quick Reference

✦ winExitEvent

struct _WinExitEventType {
WinHandle enterWindow;
WinHandle exitWindow;

};
struct _WinExitEventType winExitEvent;

The Event Manager queues this event when a window ceases to be the
active window. The _WinExitEventType structure’s fields have the follow-
ing meanings:

• enterWindow: Handle to the newly active window.

• exitWindow: Handle to the formerly active window.

Launch Codes
This section describes the launch codes available in the Palm OS.

✦ sysAppLaunchCmdAddRecord: This launch code allows an application to add
a record to its database. On a Palm VII, you can use this launch code to add a
new message to the Mail or iMessenger applications’ outboxes. This launch
code is available for Mail only on Palm OS 3.0 or later, and available for
iMessenger only if the Wireless Internet Feature Set is present.

✦ sysAppLaunchCmdAlarmTriggered: This launch code allows an application
to perform a quick action such as scheduling another alarm or playing a
sound. The system sends this launch code right after an alarm is triggered.

✦ sysAppLaunchCmdCountryChange: This launch code allows an application to
respond to a change in country settings on the handheld.

✦ sysAppLaunchCmdDisplayAlarm: This launch code allows an application to
perform a long action in response to a triggered alarm, such as displaying an
alarm dialog.

✦ sysAppLaunchCmdExgAskUser: The Exchange Manager sends this launch
code to an application when incoming data is available for the application.
This launch code allows an application to display its own custom dialog to
prompt the user to select a category in which to store incoming data, or to
skip showing a dialog entirely.

✦ sysAppLaunchCmdExgReceiveData: The Exchange Manager sends this
launch code to an application when incoming data is available for the applica-
tion, right after sending a sysAppLaunchCmdExgAskUser launch code. This
launch code gives the application an opportunity to actually receive the data.
This launch code is available only on Palm OS 3.0 or later.

✦ sysAppLaunchCmdFind: The system sends this launch code to each applica-
tion during a global find. Applications may support the global find feature by
responding to this launch code, along with sysAppLaunchCmdGoto and
sysAppLaunchCmdSaveData.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 809

810 Appendixes

✦ sysAppLaunchCmdGoto: The system sends this launch code along with sysApp
LaunchCmdFind or sysAppLaunchCmdExgReceiveData to ask an application
to display a specific record from its database. Global variables are available to
an application when this launch code is received.

✦ sysAppLaunchCmdGoToURL: Sending this launch code to the Clipper applica-
tion causes Clipper to display a specific URL. This launch code is available
only if the Wireless Internet Feature Set is present.

✦ sysAppLaunchCmdInitDatabase: The Desktop Link server sends this launch
code in response to a request to create a database. This launch code gives an
application an opportunity to initialize the database before the HotSync
Manager begins populating the new database with records.

✦ sysAppLaunchCmdLookup: The system or an application can send this launch
code to request information from another application. The built-in Address
Book application responds to this launch code by looking up a phone number
and returning an appropriate address book entry. This launch code is similar
to sysAppLaunchCmdGoto, but instead of launching itself and displaying a cer-
tain record, an application that responds to sysAppLaunchCmdLookup should
provide a level of indirection, returning something from its database based on
the requested information.

✦ sysAppLaunchCmdNotify: This launch code notifies applications that an
event has occurred. You can use this launch code to implement your own
notifications, or you can use it to respond to notifications from the system.
Unlike most launch codes, which are broadcast to all the applications on the
device, an application must register to receive specific
sysAppLaunchCmdNotify launch codes before it will receive any. This launch
code is available only if the Notification Feature Set is present.

✦ sysAppLaunchCmdOpenDB: Sending this launch code to the Clipper applica-
tion causes it to open and display a query application. This launch code is
available only if the Wireless Internet Feature Set is present.

✦ sysAppLaunchCmdPanelCalledFromApp: An application can send this launch
code to a panel in the system Preferences application to pop up the panel,
allow the user to make changes to some settings, and then return to the appli-
cation. A panel should respond to this launch code by displaying a “Done”
button and by not displaying the pop-up list of preference panels. This launch
code is available only on Palm OS 2.0 or later.

✦ sysAppLaunchCmdReturnFromPanel: This launch code lets an application
know that the user is done with a preferences panel that was launched from
within an application. This launch code is available only on Palm OS 2.0 or
later.

✦ sysAppLaunchCmdSaveData: This launch code tells an application to save
any unsaved data. Usually, an application needs to respond to this event only
when it is currently running, since at other times it does not have any data
that has not been saved to storage yet. Applications that implement the global
find facility should respond to this launch code.

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 810

811Appendix A ✦ Palm OS API Quick Reference

✦ sysAppLaunchCmdSyncNotify: This launch code allows applications to
respond to a HotSync operation. The system sends this launch code only to
applications whose databases were changed during the HotSync operation,
which includes newly installed applications. This launch code is available
only on Palm OS 2.0 or later.

✦ sysAppLaunchCmdSystemLock: The system security application responds to
this launch code when the user chooses to lock the handheld. Only applica-
tions designed to replace the internal security application need to handle this
launch code. This launch code is available only on Palm OS 2.0 or later.

✦ sysAppLaunchCmdSystemReset: The system sends this launch code to every
application after a hard or soft system reset.

✦ sysAppLaunchCmdTimeChange: When the user changes the time or date, the
system sends this launch code to every application. Any application that han-
dles alarms should respond to this launch code by rescheduling its current
alarm.

✦ sysAppLaunchCmdURLParams: The Clipper application sends this launch code
to launch another application, supplying that application with a pointer to a
special URL string. This launch code is implemented only if the Wireless
Internet Feature Set is present.

✦ ✦ ✦

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 811

4676-7 AppA.f.qc 9/29/00 1:05 PM Page 812

Finding
Resources
for Palm OS
Development

The Palm OS is large and complex, but fortunately a lot of
resources are available to help Palm OS developers. This

appendix is a guide to useful sources of information about
Palm OS programming.

On the Web
A wealth of information about Palm OS programming is avail-
able on the World Wide Web.

Palm OS Programming Bible Site
The Web site for this book, maintained by the author, is at:

http://www.palmosbible.com

At this site, you can find errata for the book’s text and source
code, useful development tips, and up-to-date links to Palm
OS development resources on the Web.

If you have any questions or comments for the author, feel
free to send them to:

author@palmosbible.com

BBA P P E N D I X

✦ ✦ ✦ ✦

4676-7 AppB.f.qc 9/29/00 1:05 PM Page 813

814 Appendixes

Official Palm OS Developer Site
Palm Computing offers a fantastic level of support for the Palm OS at the official
Palm OS developer Web site:

http://www.palmos.com/dev

On this Web site, you can find documentation, tools, example source code, techni-
cal support, news, marketing support, and just about anything you could possibly
need for Palm OS application development. In particular, a few parts of the site
merit special attention.

Knowledge Base
The Palm OS Knowledge Base is a searchable repository of technical information
about the Palm OS. To get to the Knowledge Base, select “Knowledge Base” from
the Quick Index in the sidebar of the Palm OS developer site, or go straight to the
following URL:

http://oasis.palm.com/dev/kb

Within the Knowledge Base are FAQs, presentations, white papers, manuals, and
sample code, all available from a quick search form. This is an excellent first place
to look if you have questions about some aspect of Palm OS development.

Creator ID Database
Since each application, shared library, and feature in the Palm OS must have a
unique four-character creator ID, Palm Computing maintains a database of regis-
tered creator ID codes. To get to the Creator ID Database, select “Creator ID” from
the Quick Index in the sidebar of the Palm OS developer site, or go straight to the
following URL:

http://www.palmos.com/dev/tech/palmos/creatorid

From here, you can search for a creator ID to see if it is already taken, or you can
reserve your own creator ID by registering it in the database. One of the first things
you should do when making a new application is to register a creator ID for it.

Developer Tools
The Developer Tools page contains links to the most up-to-date versions of
CodeWarrior for Palm Computing Platform, the PRC-Tools, the Palm OS SDK, the
Palm OS Emulator, the Conduit Development Kits, and Web Clipping tools. You can
get to this page by selecting “Tools” from the Quick Index in the sidebar of the Palm
OS developer site, or by going directly to this URL:

http://www.palmos.com/dev/tech/tools

4676-7 AppB.f.qc 9/29/00 1:05 PM Page 814

815Appendix B ✦ Finding Resources for Palm OS Development

Developer News & Events
This page contains news about updates to the Palm OS developer Web site, devel-
opment tools, and events of interest to Palm OS programmers. To get to the news
page, follow the “News and Events” link in the sidebar of the developer front page,
or enter this URL in your browser:

http://www.palmos.com/dev/news

Check this page regularly to see what is new in Palm OS development.

Palm Solution Provider Program
The Palm Solution Provider Program offers free technical and marketing support for
Palm OS developers. You can find an overview of the program at:

http://www.palmos.com/dev/program

The single most useful part of the program, from a developer’s perspective, is that
the program gives you access to the Provider Pavilion, at:

http://www.palmos.com/dev/pavilion

A members-only part of the developer Web site, the Provider Pavilion offers pre-
release versions of upcoming software, such as new versions of the Palm OS SDK
and the Palm OS Emulator, in the Development Seeding area. In addition, a limited
portion of the Palm OS source code is available for download, which can be invalu-
able when attempting to squash really obscure bugs.

Also, you must be a member of the Solution Provider Program to submit technical
questions to the Development Support team. If you have exhausted all your options
for solving a technical problem, use the link on the following page to contact Palm
Computing developer support:

http://www.palmos.com/dev/tech/support

Platinum Program
Palm Computing offers a certification program to ensure that applications meet
rigid standards of compatibility, quality, and usability. Run by an independent test-
ing company, Product Quality Partners, successful Platinum certification allows you
to put the Platinum Logo on your application, a sign to consumers that the program
meets Palm Computing’s high standards. Platinum certification is not cheap, but it
also provides other benefits like marketing support from Palm Computing. An intro-
duction to the program is available at:

http://www.palmos.com/dev/platinum

4676-7 AppB.f.qc 9/29/00 1:05 PM Page 815

816 Appendixes

Third-party Palm OS Development Sites
The following third-party Web sites offer some helpful resources for Palm OS
developers.

Developer.com
This site offers a lot of random resources. There is a great deal of information here,
but much of it is hard to find.

http://developer.earthweb.com/directories/pages/dir.palm.html

Massena.com
Darrin Massena’s site for free Palm OS development tools, this page contains links
to a number of older tools, as well as source code and a few articles about the guts
of the Palm OS.

http://www.massena.com/darrin/pilot/tanda.htm

Open Palm Group
The Open Palm Group is a group of developers promoting free software develop-
ment for the Palm OS platform. Aside from being a good way to meet other Palm OS
free software developers, this site has an extensive listing of links to free software
projects, which can provide you with an excellent source of sample code from
which to work.

http://www.openhandheld.org

Palm OS Development Resources
This site is an excellent place to look for anyone developing Palm OS software on a
Unix or GNU/Linux system.

http://homepages.enterprise.net/jmarshall/palmos

Wade’s Pilot Programming FAQ
Though a little dated, Wade’s FAQ is still an excellent source of information.

http://www.wademan.com/Pilot/Program/FAQ.htm

4676-7 AppB.f.qc 9/29/00 1:05 PM Page 816

817Appendix B ✦ Finding Resources for Palm OS Development

Third-party Hardware Sites
Many third-party Palm OS hardware developers offer Web sites with resources for
developing software for the nonstandard features included in some third-party
devices.

Handspring Visor
Handspring provides a Web site for developers who wish to take advantage of the
special features of Springboard modules in the Visor line of handhelds.

http://www.handspring.com/developers/index.asp

Kyocera pdQ smartphone
The pdQ smartphone, formerly owned by Qualcomm but more recently bought by
Kyocera, includes a number of telephony features not present in a standard Palm
OS handheld. Kyocera’s developer Web site provides tools and information for
developers to take advantage of the pdQ’s extra features.

http://www.kyocera-wireless.com/devzone/index.html

Sony
If you are interested in developing for the unique features of the Sony handheld,
including Jog Dial and Memory Stick technologies, take a look at Sony’s handheld
developer Web site.

http://www.us.sonypdadev.com

Symbol Palm Terminal
The Symbol Palm Terminal line adds barcode scanning and wireless LAN capabili-
ties to the Palm Computing platform, requiring specialized developer tools and
documentation.

http://www.symbol.com/products/mobile_computers/
mobile_palm_developers_zone.html

TRGPro
TRG Products offers special programming resources for developers who want to
write applications that use the CompactFlash expansion slot and enhanced sound
abilities of the TRGPro Handheld Computer.

http://www.trgpro.com/developer/developer_front.html

4676-7 AppB.f.qc 9/29/00 1:05 PM Page 817

818 Appendixes

Mailing Lists
There are a number of mailing lists you can subscribe to for discussing Palm OS
development with other developers.

Palm Developer Forums
Palm Computing provides a number of developer forums for discussion of Palm OS
development issues. These mailing lists are one of the quickest ways to get answers
to nagging technical questions. To subscribe to these forums, visit the following URL:

http://www.palmos.com/dev/tech/support/forums

prc-tools-devel
The prc-tools-devel list offers highly technical discussion about the internal parts of
the PRC-Tools. For instructions about how to subscribe, take a look at:

http://lists.sourceforge.net/mailman/listinfo/prc-tools-devel

Usenet Newsgroups
Though there are no regular Usenet newsgroups for discussion of Palm OS develop-
ment, there are newsgroups run by other parties.

Developer.com
Earthweb’s Developer.com runs a few newsgroups that may be of interest to Palm
OS developers:

earthweb.palmos.general
earthweb.palmos.conduits
earthweb.palmos.devtools

You can read these newsgroups from the comfort of your favorite browser by going
to the following URL:

http://discussions.earthweb.com/handheld

Massena.com
There are a number of newsgroups for Palm OS discussion at massena.com:

news://news.massena.com/pilot.programmer
news://news.massena.com/pilot.programmer.gcc
news://news.massena.com/pilot.programmer.codewarrior
news://news.massena.com/pilot.programmer.pila
news://news.massena.com/pilot.programmer.jump

4676-7 AppB.f.qc 9/29/00 1:05 PM Page 818

819Appendix B ✦ Finding Resources for Palm OS Development

Palm
Palm pipes its developer forum mailing lists to its own news server at news.
palmos.com. For detailed instructions regarding how to set up your news reader
to read the developer forums, take a look at the following page:

http://www.palmos.com/dev/tech/support/forums/

Tools and Source Code
Sometimes, the easiest way to figure out how to program is to look at someone
else’s code. PalmGear H.Q., a repository for Palm OS software, has an excellent
developer section, full of useful tools and source code that you can pick through.
Also, PalmGear H.Q. is a fantastic place to distribute your application once you
have finished writing it.

http://www.palmgear.com

✦ ✦ ✦

4676-7 AppB.f.qc 9/29/00 1:05 PM Page 819

4676-7 AppB.f.qc 9/29/00 1:05 PM Page 820

Developing
in Other
Environments

The Palm OS is a very popular development platform,
and as with any popular platform, developers have cre-

ated a huge number of tools to support the creation of Palm
OS applications. This book concentrates only on the major
C-based tools supported by Palm Computing: CodeWarrior
for Palm Computing Platform and the GNU PRC-Tools. How-
ever, there are many other tools for Palm OS development
that range from easy to use forms-based development sys-
tems for quickly producing database-linked applications, to
Motorola 68000 assembly compilers for the really hardcore
hacker. There are even a number of tools that allow you to
write and compile Palm OS applications on a Palm OS hand-
held. This chapter serves as an introduction to the bewilder-
ing array of tools and environments available for Palm OS
development.

Forms-based Development
C is a very powerful language, but it has a major drawback in
that C development can be rather slow. Even with an integrated
development environment like CodeWarrior, the process of
writing code, compiling, testing, debugging, and recompiling
can make development progress at a snail’s pace, particularly
for larger applications.

If you are impatient (or your boss is), note that forms-based
development environments offer a much quicker way to cre-
ate applications for the Palm OS. Much as in Constructor, you
can visually design the forms for your application. Unlike
Constructor, you can then directly associate bits of code with
each of the user interface elements without switching to a dif-
ferent development tool. If you have ever used Visual Basic,
this model of development will be very familiar to you.

CCA P P E N D I X

✦ ✦ ✦ ✦

4676-7 AppC.f.qc 9/29/00 1:05 PM Page 821

822 Appendixes

One shortcoming of forms-based environments is that they do not support every fea-
ture of the Palm OS. Forms-based development is ideal for the most common applica-
tions, like data collection and display programs, particularly if you want to integrate a
handheld application with a desktop database. However, if you want to make some-
thing more unusual with the Palm OS, like graphics-intensive games, you will need to
stick with a more traditional development environment.

Compact Applications Solution Language (CASL)
CASL uses a Basic-like language to allow you to build applications for both the Palm
OS and Windows. Applications created in CASL require that a run-time module be
installed on the handheld. One of the most useful features of CASL is that it can com-
pile the same application to run on both the Palm OS and on Windows. With the con-
duit support included in the CASL package, you can easily write a pair of functionally
identical applications that can share data between the desktop and a handheld.

Among the features included in the CASL integrated development environment are
an interactive debugger, source code editor, and drag-and-drop creation of applica-
tion forms. CASL can also make calls to external C functions for routines that
require either more efficient code or features that are not possible from CASL alone.
A more advanced version allows output of C code based on a CASL project, which
you may then compile into a standalone application that does not require that the
CASL run time be installed on the handheld.

On the downside, CASL applications tend to look rather clunky next to normal Palm
OS applications, because the programs that CASL generates tend to ignore Palm OS
user interface guidelines. It is still possible to make a reasonably intuitive program
with CASL, but be aware that its oversized buttons and other somewhat sloppy
interface elements can make a program that is somewhat jarring to the average
Palm OS handheld user.

CASL is shareware for the Windows operating system, and you can find it on the
Web at http://www.caslsoft.com.

You can find the demo version of CASL on the CD-ROM that comes with this book.

Pendragon Forms
Created by Pendragon Software, Pendragon Forms allows you to rapidly create a data
collection program with tight integration to a Microsoft Access database on the desk-
top. Using a special application that must be installed on the handheld, Pendragon
Forms works very well for collecting information to later store in an Access database.
In particular, Pendragon Forms is well suited to collecting survey information.

On the
CD-ROM

4676-7 AppC.f.qc 9/29/00 1:05 PM Page 822

823Appendix C ✦ Developing in Other Environments

The user interface in Pendragon Forms is clean and readable, but it is rather limited.
Pendragon Forms restricts you to building forms on its terms; the most customiza-
tion you can provide is in choosing which fields to include in an application. Also,
Pendragon Forms does not create actual applications but rather individual forms
that must be run from within the Pendragon Forms application on the Palm OS. In
effect, the program allows you to extend data entry forms from Access onto a hand-
held device. If all you need is a portable data collection device, Pendragon Forms
will allow you to get a solution up and running very quickly.

The main reason Pendragon Forms works so well with Access is that Pendragon
Forms actually runs within Access. The full version of Pendragon Forms includes the
Access run-time module, so you can run it without owning the full version of Access,
but to use the trial version, you need to have Access 97 or Access 2000 installed. You
can find Pendragon Forms on the Web at http://www.webfayre.com.

The 14-day evaluation version of Pendragon Forms is on the CD-ROM attached to
this book.

Satellite Forms
The Satellite Forms package, by PUMATECH (formerly Puma Technologies), is a versa-
tile environment for rapidly creating Palm OS applications. Although Satellite Forms
applications are not free-standing (they require that the Satellite Forms Engine be
installed on the handheld), you have a lot of control over how the programs look.
Most forms you can create in a normal Palm OS application are possible in Satellite
Forms. It is quite possible to make a Satellite Forms application that adheres well to
the Palm Computing’s user interface guidelines.

Little or no knowledge of programming is necessary to create a working Satellite
Forms application. After visually designing an application in the Satellite Forms App
Designer, you can add actions to the user interface elements within a form with a
few clicks of the mouse. If the large number of default actions available is not suffi-
cient to your needs, you can set buttons to execute scripts, which are written in a
Basic-like script language.

Behind the scenes in a Satellite Forms application are one or more tables, which
store record information within the application. Each table is similar to a record
database on the Palm OS, and you can connect different user interface elements
directly to table fields, so that editing a value in a form automatically changes the
value in the underlying table. The Satellite Forms conduit synchronizes these tables
with the desktop.

If you need to build a simple database application, Satellite Forms can have a work-
ing application up and running in only a few hours. Where Satellite Forms is less use-
ful is if you have special user interface requirements for an application. You cannot

On the
CD-ROM

4676-7 AppC.f.qc 9/29/00 1:05 PM Page 823

824 Appendixes

edit menus, and regular Palm OS events are not available. Still, with an extension
mechanism that allows you to make custom controls and libraries in C, Satellite
Forms can serve to create a wide variety of applications.

Satellite Forms is commercial software, but a trial version is available to let you try it
out for free. You can find Satellite Forms on the Web at http://www.pumatech.com.

The trial version of Satellite Forms is also included on this book’s CD-ROM.

Developing on a Palm OS Handheld
A number of development environments allow you to write and compile applica-
tions right on a Palm OS handheld, without having to use a desktop computer at all.
Most of these tools require that some sort of runtime component be installed on
the handheld, but some actually allow you to compile real, standalone Palm OS
applications. These development environments are perfect for creating simple
applications, testing algorithms, or proving that you’re geekier than your fellow
developers.

HotPaw Basic
With HotPaw Basic (formerly called cBasPad Pro), you can write Basic applications
from the comfort of your Palm OS handheld, and HotPaw Basic will run them straight
from Memo Pad. HotPaw Basic supports more than 95 percent of the ISO/ANSI Minimal
Basic language standard, along with many additions for the Palm OS, such as support
for serial and IR communication, creation of To Do List and Date Book records, alarm
management, and color drawing under Palm OS 3.5.

HotPaw Basic is a shareware application; you can find HotPaw Basic on the Web at
http://www.hotpaw.com/rhn/hotpaw.

You can also find a free demo of HotPaw Basic on the CD-ROM that accompa-
nies this book.

LispMe
LispMe is a Scheme interpreter that runs under the Palm OS. Distributed as free soft-
ware under the GNU GPL, LispMe supports color drawing on Palm OS 3.5 and sports
its own internal editor that breaks the 4KB limit of the Memo Pad application. Fred
Bayer, the author of LispMe, also provides Parentheses Hack, a HackMaster extension
that makes programming in a parentheses-laden language like Scheme much less
likely to put you in a mental institution. You can find LispMe on the Web at http://
www.lispme.de/lispme/index.html.

On the
CD-ROM

On the
CD-ROM

4676-7 AppC.f.qc 9/29/00 1:05 PM Page 824

825Appendix C ✦ Developing in Other Environments

LispMe is also available on the CD-ROM that comes with this book.

OnBoard C
OnBoard C, by IndiVideo, is a C compiler that builds standard Palm OS applications or
HackMaster hacks, right on the handheld. You can write your code in either Memo Pad
or Doc format, and OnBoard C will compile it into a standalone application. OnBoard C
will even generate a skeleton project in either Memo Pad or Doc format. Writing code in
Doc format requires an editor that can handle Doc, such as QED, SmartDoc, or pedit.

IndiVideo also makes RsrcEdit, a Palm OS resource editor that also runs on the hand-
held. OnBoard C is a free application, but RsrcEdit is distributed as shareware. You
can find OnBoard C on the Web at http://www.individeo.net/OnBoardC.html,
and RsrcEdit at http://www.individeo.net/RsrcEdit.html.

PocketC
PocketC lets you use a variation on standard C to write applications. In order to
run, a PocketC application requires the PocketC run time, which is available for free
to both developers and end users. Most of the features you would expect to see in a
Palm OS application are accessible to PocketC applications, which may be written
in and run from Memo Pad. PocketC is quite popular, and many applications have
been written using this development environment.

If you want to write longer, more complex applications, and your eyesight is starting
to suffer from squinting at a tiny Palm display, note that PocketC also has a desktop
version, which lets you perform all your code entry from the comfort of Windows.
Both the Palm OS and desktop compilers allow you to save an applet in its own .prc
file, though the applet still requires that the PocketC run time be installed. You can
find PocketC, by OrbWorks, on the Web at http://www.orbworks.com. PocketC is
shareware.

Demo copies of both the Palm OS and Windows versions of the PocketC com-
piler are available on the CD-ROM attached to this book.

Quartus Forth
Quartus Forth is easily the most full-featured onboard Palm OS compiler, turning
ISO/ANSI standard Forth code into very tight and efficient free-standing Palm OS
applications. Most of the important parts of the Palm OS are available to a Quartus
Forth application, and the native-code compiler allows you to create right on the

On the
CD-ROM

On the
CD-ROM

4676-7 AppC.f.qc 9/29/00 1:05 PM Page 825

826 Appendixes

handheld applications that you can later distribute to other Palm OS users. The free
evaluation version cannot compile standalone applications, but it can still run Forth
code using its own run time. Like OnBoard C, Quartus Forth can read source code
from Memo Pad records or from Doc format. You can find Quartus Forth on the Web
at http://www.quartus.net.

The evaluation version of Quartus Forth is included on this book’s CD-ROM.

Languages Other Than C
A few development environments for the desktop allow you to write Palm OS appli-
cations in a language other than C.

Alternative Software Development Kit (ASDK)
The ASDK was the first collaborative attempt to create free development tools for
building Palm OS software, and the tools contained in the ASDK form the backbone
upon which later free Palm OS development tools are based. Formerly maintained
by Darrin Massena, the ASDK features the following tools:

✦ Pila, a Motorola 68000 assembler

✦ PilRC, a Palm OS resource compiler that is still used to generate resources for
GNU PRC-Tools projects

✦ Copilot, the predecessor to the Palm OS Emulator

✦ PilDis, which disassembles PRC code resources into 68000 assembly language
instructions

✦ Many other useful small utilities

Although the main focus of Palm OS development in the free software community
has moved away from assembly language programming with the introduction of the
easier-to-use GNU PRC-Tools, the tools in the ASDK may still be useful if you like the
speed (and pain) of assembly programming. These tools also include source code
that can offer some insight into the more obscure inner workings of the Palm OS.
The ASDK is available for both Windows and Unix platforms, and it is distributed
as free software under GNU Public License.

Unfortunately, because the free software community has moved on to other tools,
the ASDK can be a little difficult to obtain. As of this writing, the primary Web site for
the ASDK has not been updated in three years, so you may find that a lot of the links
from the site are broken. Check the official ASDK site at http://www.massena.com/
darrin/pilot/asdk/asdknews.htm, or try the Pilot Development Tools and Articles
page at http://www.massena.com/darrin/pilot/tanda.htm.

On the
CD-ROM

4676-7 AppC.f.qc 9/29/00 1:05 PM Page 826

827Appendix C ✦ Developing in Other Environments

Jump
Written by Greg Hewgill, the same developer who created the Copilot application
that later became the Palm OS Emulator, Jump reads Java .class files and gener-
ates Motorola 68000 assembly code, which you can then compile into a Palm OS
application using Pila from the ASDK. It may sound like an ugly hack, but Jump
actually produces very stable applications, though they tend to be a bit larger
than programs compiled using CodeWarrior or the PRC-Tools. (I am still rather
fond of Jump, because it is the tool I used to make my very first Palm OS applica-
tion.) Jump runs on Windows, and it is free software under the GNU Public License.

You can find Jump on the Web at http://www.hewgill.com/pilot/jump/
index.html.

NS Basic/Palm
NS Basic/Palm allows you to write standard Palm OS applications using the Basic
language. Using the NS Basic/Palm integrated development environment (IDE), you
can create form resources in a graphical setting. Developers have favorably com-
pared the experience of developing applications in NS Basic/Palm to developing
Windows applications using Visual Basic.

The NS Basic/Palm development environment is commercial software, which you
may purchase from the NS Basic Web site at http://www.nsbasic.com/palm.

Pocket Smalltalk
Pocket Smalltalk allows you to create Palm OS applications using the Smalltalk lan-
guage. The Pocket Smalltalk system consists of an integrated development environ-
ment for Windows, which “compiles” a .prc file that bundles the source code with a
Smalltalk virtual machine, in effect creating a standalone program for the Palm OS. As
of the version 1.5 beta, there is still a lot of “fat” in a Pocket Smalltalk program; the
pre-release version adds debugging information, and much of the virtual machine
code still needs to be optimized. However, future versions promise to be much
smaller, requiring only 25KB for a complete Smalltalk interpreter.

Pocket Smalltalk is an open source project; for more information about Pocket
Smalltalk, visit the Web site at http://www.pocketsmalltalk.com.

Waba
Waba, a language very similar to Java, allows you to make programs that run under
the Waba Virtual Machine (WabaVM), which must be installed on a Palm OS hand-
held for Waba applications to run. The makers of Waba, Wabasoft, provide an entire
SDK for Waba development, which can be performed using standard Java develop-
ment tools.

4676-7 AppC.f.qc 9/29/00 1:05 PM Page 827

828 Appendixes

Although the WabaVM does not support the standard Java Class Libraries, you
can still run Waba code as a regular Java application or applet. This kind of cross-
platform development offers some interesting possibilities, such as an application
that runs with an identical interface on both the desktop and a Palm OS handheld.
You can find more information about Waba on the Web at http://www.wabasoft.
com. Waba is free software under the GNU General Public License.

You can find the Waba SDK on the CD-ROM that accompanies this book.

✦ ✦ ✦

On the
CD-ROM

4676-7 AppC.f.qc 9/29/00 1:05 PM Page 828

What’s on the
CD-ROM?

The CD-ROM attached to this book contains a variety of
useful tools, sample code, and documentation to help

you develop applications for the Palm OS. Many of the tools
included are programs that I use for my own Palm OS develop-
ment work, and together, they form a formidable toolkit for
Palm OS programming.

Besides PRC-Tools and various utilities that go with them,
I have attempted to collect as wide a variety of alternative
development tools as I can find. My hope is that the CD-ROM
will serve not only as a toolkit but also as an opportunity to
sample different development environments until you find
one that suits your needs as a Palm OS developer.

A Word About Shareware
Many of the programs included on the CD-ROM are shareware.
The shareware software distribution model allows you to install
a program from a shareware collection CD-ROM, or download
the program from the Internet, and use the application on a
“try before you buy” basis. If you find the application useful,
you are obligated to pay a registration fee to the author of
the program.

There is a common misconception that shareware is inferior to
commercial software. On the contrary, many shareware devel-
opment tools are written by individuals or small companies
who are highly motivated to provide quality programs and
support for the development community. Quite often, share-
ware applications have better support than their commercial
equivalents. Also, most shareware tends to be less expensive
than commercial software, because the overhead spent on of
fancy packaging and marketing is not required for an applica-
tion that may be downloaded from somebody’s Web site.

DDA P P E N D I X

✦ ✦ ✦ ✦

4676-7 AppD.f.qc 9/29/00 1:06 PM Page 829

830 Appendixes

Shareware is not free, however. Somebody put a lot of hard work into creating
a shareware application, and if you choose to use that program, its author deserves
compensation for the effort required to write a good piece of software. The
shareware applications included on this CD-ROM are not registered; as much as
I appreciate your purchasing this book, buying the book does not register these
applications. Each shareware application on the CD-ROM includes clear instruc-
tions about how to go about registering that program with its author. If you find
that you cannot live without one of the shareware applications on this disk,
I heartily recommend that you register it to encourage its author to continue
developing and supporting useful software.

A Word About Free Software
Many of the tools on the CD-ROM are distributed as free software under the GNU
General Public License (GNU GPL), which is included on the disk in the file GNU.txt.
The GNU General Public License was developed by the Free Software Foundation as
a means to promote the development and distribution of free software.

In this context, “free software” does not merely refer to software that you do not
have to pay any money to use. Software that is merely given away may be thought
of as “free, as in beer,” whereas free software under the GNU GPL should be thought
of as “free, as in speech.” Free software is a concept that embodies what the user
of the software is permitted to do with it. Specifically, the user of a free software
program should have the following rights:

✦ Freedom to run the program, for any purpose

✦ Freedom to study how the program works, and adapt it to one’s own needs

✦ Freedom to redistribute copies of the software

✦ Freedom to improve the program and release those improvements to the
public, so that the entire community benefits

The GNU GPL protects these rights through the concept of copyleft, which is a rule
governing distribution of free software. Copyleft states that anyone who distributes
free software, with or without changes, must pass along the freedom to copy and
change the software. In this way, nobody can download a copy of the source for a
free software project and convert it to proprietary software.

Because studying how software works and improving that software both require
the software’s source code, access to source code is a necessary condition for free
software. Access to the source also means that many programmers can contribute
to improving a program, adding their own improvements and releasing them to the
public, comfortable in the knowledge that nobody will be able to steal their code
for use in a proprietary application. As the GNU C++ compiler and GNU/Linux

4676-7 AppD.f.qc 9/29/00 1:06 PM Page 830

831Appendix D ✦ What’s on the CD-ROM?

operating system projects have amply demonstrated, this style of “distributed
development” allows for creation of very feature-rich and stable software.

Recently, there has been an “open source software” movement, based on the very
successful model of allowing many programmers access to an application’s source
code, so they can all offer improvements to the program. As with free software,
many very good pieces of software have come out of the open source movement.
Unfortunately, the licensing schemes used by a number of open source projects
place restrictions on the source code that interfere with the freedoms allowed by
copylefted free software. The people at the Free Software Foundation prefer the
term “free software” to “open source software”, because the “free” in “free soft-
ware” implies the freedoms and liberties associated with software protected by
the GNU GPL.

The entire GNU PRC-Tools development toolkit, as well as other very useful tools
included on the CD-ROM, is distributed under the GNU GPL. These programs are
the work of dozens of talented programmers, working together to produce some
of the finest Palm OS development software available. In many cases, the GNU tools
are easier to use and more powerful than their commercial counterparts. Best of
all, these tools are free software, so you can get under the hood and see what
makes them tick, or modify them to suit your own development needs.

The Contents of the CD-ROM
Here are some highlights of what you will find on the CD-ROM:

✦ Electronic version of Palm OS Programming Bible. The complete (and
searchable) text of this book in Adobe’s Portable Document Format (PDF),
readable with the Adobe Acrobat Reader (also included).

✦ Sample applications and source code. Examples from the text of this book,
as well as several complete sample applications and their source code.

✦ SDKs. Software development kits for third-party Palm OS devices.

✦ Development Tools. Many different tools for developing Palm OS software,
including complete development systems and helpful utilities.

Running the CD-ROM
The CD-ROM contains material for two different operating systems; at the root level of
the CD-ROM are two folders: /unix and \windows. Each of these folders contains all
the operating system–specific material for the appropriate OS, including the sample
code from this book formatted properly for each operating system.

4676-7 AppD.f.qc 9/29/00 1:06 PM Page 831

832 Appendixes

Sample applications and source code
Within both of the /unix and \windows directories is a samples directory. In
the samples directory you will find sample applications and source code from
Palm OS Programming Bible. Samples and sources are arranged in subdirectories
of samples by chapter; for example, the directory \windows\samples\ch11 con-
tains samples from Chapter 11, formatted for Windows. Librarian has its own
directory, samples\librarian, as does Librarian’s conduit application, located
in samples\libconduit.

The CD-ROM programs
Many of the applications and tools in this section are described elsewhere in this
book, but the list that follows contains brief descriptions of each of them, along with
where you may find them on the CD-ROM. All of these programs are also available on
the Web, and URLs for the appropriate Web sites are also listed. Because development
tools tend to evolve much faster than I or the fine people at IDG Books Worldwide can
cram them onto a CD-ROM, you should check the Web sites listed in this section for
newer, improved versions of these tools.

Acrobat Reader (Adobe)
The electronic version of this book, as well as most of the SDK documentation from
Palm and third-party Palm OS developers, is in Adobe Portable Document Format
(PDF). Adobe’s Acrobat Reader is a free PDF reader, available for Windows, Mac OS,
and several flavors of Unix.

Acrobat Reader is in the /unix/acrobat or \windows\acrobat directories. It is
also available on the Web at http://www.adobe.com/acrobat/.

Compact Applications Solution Language (CASL) demo
CASL is a cross-platform development system for creating Palm OS and Windows
CE applications in the Windows environment. A runtime library installed on the
handheld allows an application built by CASL to run the appropriate operating
system. This demo version should give you a good idea of what CASL development
is like.

CASL is in the \windows\casl directory. It is also available on the Web at http://
www.caslsoft.com.

GNU PRC-Tools 2.0
A complete compiler chain for building Palm OS applications, the GNU PRC-Tools are
free software under the GNU General Public License. The PRC-Tools are distributed
as binaries for both Windows and GNU/Linux, and source is available for compila-
tion on other Unix flavors. Best of all, the 2.0 version of the PRC-Tools is officially
supported by Palm. You will also need PilRC (also included on the CD-ROM) to
compile resources.

4676-7 AppD.f.qc 9/29/00 1:06 PM Page 832

833Appendix D ✦ What’s on the CD-ROM?

The PRC-Tools are in the /unix/prctools and \windows\prctools directories.
The /unix/prctools directory also contains an src directory, where the source
code is kept separate from the RPM binaries in the /unix/prctools directory.
The GNU PRC-Tools are also available on the Web at http://www.palmos.
com/dev/tech/tools/.

HotPaw Basic demo
Formerly cbasPad Pro, HotPaw Basic allows you to write and execute small Basic
programs, directly on the handheld. HotPaw Basic is quite versatile, including fea-
tures like forms creation and access to several popular handheld database formats,
such as JFile Pro and HandDBase. The demo version limits you to running up to
four programs. HotPaw Basic requires MathLib (also included on the CD-ROM)
in order to run.

The HotPaw Basic demo is in the /unix/hotpaw and \windows\hotpaw directories.
It is also available on the Web at http://www.hotpaw.com/rhn/hotpaw/.

Kyocera pdQ Software Developer’s Kit
The Kyocera pdQ (formerly Qualcomm pdQ) SDK provides documentation and sup-
port for programming the special phone-related features of the pdQ smartphone.
The SDK and sample applications are available in both zipped and StuffIt formats.

The Kyocera pdQ SDK is in the \windows\pdq directory. It is also available on the
Web at http://www.kyocera-wireless.com/pdq/devzone.html.

LispME (Fred Bayer Informatics)
LispME is an onboard Scheme interpreter that runs entirely on the handheld. The
author, Fred Bayer, provides the application and its source as free software under
the GNU GPL.

LispME is in the /unix/lispme and \windows\lispme directories. It is also available
on the Web at http://www.lispme.de/lispme/index.html.

Pendragon Forms 14-day Evaluation Version
Pendragon Forms allows rapid development of data collection applications for the
Palm OS, which can synchronize with Microsoft Access and ODBC data sources on
the desktop. This trial version gives you two weeks to evaluate Pendragon Forms
on a Windows system with Microsoft Access 97 or later installed.

The Pendragon Forms trial is in \windows\pendragon. It is also available on the
Web at http://www.pendragonsoftware.com/forms.html.

PocketC Compiler 3.5 (OrbWorks)
The PocketC system uses a slightly enhanced C syntax to allow you to write applets
that run under the PocketC runtime. There are compilers for PocketC that run both

4676-7 AppD.f.qc 9/29/00 1:06 PM Page 833

834 Appendixes

on the handheld (allowing development on the handheld itself) and in a Windows
environment (the PocketC Desktop Edition). The runtime module is free for anyone
to download and use to run PocketC applets, and the compilers are shareware.
Numerous PocketC applets are already in existence, and using them is a popular
alternative to regular Palm OS development.

PocketC Compiler for Palm OS is in /unix/pocketc and \windows\pocketc. The
Desktop Edition is in \windows\pocketc\desktop. Both versions are also available
on the Web at http://www.orbworks.com.

Quartus Forth Evaluation Version
Quartus Forth is an onboard ISO/ANSI Standard Forth optimizing native-code compiler
for the Palm OS, allowing you to create freestanding applications on the handheld
itself. The evaluation version cannot compile stand-alone applications, requiring a
runtime library to run, but all of the other features of Quartus Forth are available to
try in the evaluation. Quartus Forth has an impressive array of features, some of
which are hard to find in a good compiler running on a desktop system.

The Quartus Forth Evaluation Version is in /unix/qforth and \windows\qforth.
It is also available on the Web at http://www.quartus.net.

Satellite Forms Trial (Puma Technology)
Satellite Forms is a very easy-to-use forms-based rapid application development
system for creating Palm OS programs. The program features easy “drag-and-drop”
forms creation on Windows, along with a Visual Basic–like syntax for adding smarts
to the forms composing an application. Satellite Forms comes in both Standard
and Enterprise versions, offering a good set of features for small or large projects.
The trial version allows you to compile and load more than 20 sample applications,
which should give you a good idea how well Satellite Forms will work for regular
development.

The Satellite Forms trial is in \windows\satforms. It is also available on the Web
at http://www.pumatech.com/satforms_fam.html.

Symbol Palm Terminal SDK (Symbol Technologies)
Symbol offers a software development kit full of documentation and header files for
developing applications that take advantage of the special features of the Symbol Palm
Terminal 1500 and 1700 lines of handheld computers. There is lots of interesting read-
ing here for anyone who wants to use the added features of the Symbol handhelds,
such as barcode scanning and wireless LAN connectivity. Symbol supports develop-
ment of only these extended features under Metrowerks’ CodeWarrior for Palm
Computing Platform on Windows.

4676-7 AppD.f.qc 9/29/00 1:06 PM Page 834

835Appendix D ✦ What’s on the CD-ROM?

The Symbol Palm Terminal SDK is in \windows\symbol. It is also available on the
Web at http://www.symbol.com/products/mobile_computers/mobile_palm_
developers_zone.html.

TRGPro Development Kit
The TRGPro development kit contains documentation, header files, and sample
applications for making use of the extra features available on the TRGPro hand-
held, including its Compact Flash slot and enhanced sound capabilities. TRG
recommends and supports Metrowerks’ CodeWarrior for Palm Computing Platform
for development of TRGPro-specific features in a Palm OS application, and the sam-
ple applications in the development kit are CodeWarrior projects, but the libraries
for these added functions are distributed as Palm OS shared libraries, so it should
be possible (with a little work) to develop for TRGPro extensions using the GNU
PRC-Tools.

The TRGPro Development Kit is in /unix/trgpro and \windows\trgpro. It is also
available on the Web at http://www.trgpro.com/developer/developer.html.

Waba SDK (Wabasoft)
The Waba Virtual Machine (WabaVM) is a virtual machine for the Palm OS and
Windows CE. Wabasoft provides a complete SDK, including documentation
and tools for programming in “Waba,” a Java-like programming language. Because
of the way the Waba was designed, you can use Java development tools to write
Waba applications, which will also run as Java applications or applets. The Java
Class Libraries will not run on the WabaVM, though. The WabaVM is an interesting
idea because it allows platform-independent development of applications for
different handheld operating systems. Best of all, Waba is free software under
the GNU GPL, available for Windows, GNU/Linux, and Solaris.

The Waba SDK is in /unix/waba and \windows\waba. It is also available on the
Web at http://www.wabasoft.com.

WinZip evaluation version (Nico Mak Computing)
WinZip is a popular archive creation and extraction tool for the Windows operating
system, allowing easy manipulation of compressed zip archives. Many of the applica-
tions and tools on the CD-ROM are distributed as compressed zip archives. WinZip is
shareware; the evaluation version is not crippled in any way, but it is such a mind-
bogglingly useful tool that you will probably want to register it, anyhow.

WinZip is in \windows\winzip. It is also available on the Web at http://www.
winzip.com.

✦ ✦ ✦

4676-7 AppD.f.qc 9/29/00 1:06 PM Page 835

4676-7 AppD.f.qc 9/29/00 1:06 PM Page 836

Glossary

active form Form that receives user input, and where all
drawing occurs. There may be only one active form at a time
in the Palm OS.

active window Window that receives user input. There may
be only one active window at a time in the Palm OS.

alert Modal dialog that presents the user with a short piece
of text information.

anchor Location within an HTML document that may be refer-
enced by a hyperlink. For example, an anchor defined by the
tag may be referenced by the hyperlink tag
. Web clipping applications often contain
anchors within their pages that allow a user to jump quickly
to a specific part of a page without scrolling.

API Application Programming Interface; a set of functions and
data structures that give a developer access to certain features
of an operating system or program.

app info string list Resource that holds the initial category
names for an application.

application info block Structure at the beginning of a Palm
OS database that contains category names and other informa-
tion about the database as a whole, as opposed to information
about the database’s records.

application launcher Program in the Palm OS ROM that allows
users to launch applications installed on a Palm OS handheld.

application preferences See preferences.

archive To mark a record as deleted but leave its data intact.
An archived record may then be stored on the desktop com-
puter by a conduit during the next HotSync operation.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 837

838 Glossary

automatic variable Makefile variable whose value is computed for each rule within
a makefile, based on the rule’s target and dependencies. For example, $< and $@
are automatic variables that represent a rule’s first dependency file and its target
file, respectively.

auto-off timer A timer in the Palm OS that, after a certain time has gone by without
any user input, causes the system to enter sleep mode to conserve power.

autoshifting A feature of text fields that automatically capitalizes the first letter
entered in the field, as well as the first letter after a sentence-ending punctuation
mark (., ?, or !).

backlight A common feature on monochrome Palm OS handheld screens that
allows the screen to be seen in the dark.

backup conduit A default conduit installed as part of the standard Palm Desktop
software that automatically makes desktop backup copies of databases that are not
handled by their own conduits.

base ID Base value for generating menu item resource IDs that Rez uses to create
menu resources. The first menu item in a menu has a resource ID equal to the base
ID, and the resource ID of each menu item after the first increases by one.

baseline Bottom of those characters in a font that do not have descenders. For
example, a and z sit on the baseline, while p and y dip below the baseline.

beaming Transfer of data or applications between two devices via infrared.

binary search Search algorithm that looks for an item in a sorted array by
successively partitioning the array.

big-endian Byte order in which the most significant byte in a multi-byte data type
is stored at the lowest address, or “big end first.” For example, the four-character
sequence byte would be stored as byte on a big-endian system. Many processor
families, including the Motorola 68000 series used in Palm OS devices, use big-
endian byte order. The term big-endian derives from Jonathan Swift’s Gulliver’s
Travels, in which the Big Endians were a political faction that broke their eggs from
the large end (“the primitive way”) and rebelled against the Lilliputian King who
required his subjects (the Little Endians) to break their eggs from the small end.
See also little-endian.

bitmap A resource type that can store an image for display on the Palm OS screen.

bitmap family A resource type containing multiple bitmap images at different
color depths, designed to allow a single image to display properly on handhelds
with different screens.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 838

839Glossary

build-prc PRC-Tools tool that assembles code and resources into a Palm OS
executable, or .prc file.

built-in applications Applications that come pre-installed in a Palm OS handheld’s
ROM. More specifically, this term usually refers to the four major applications: Date
Book, Address Book, To Do List, and Memo Pad.

busy bit A flag which indicates that an application or system process is busy modify-
ing a record. While a record’s busy bit is set, other applications and processes cannot
open the record.

button User interface object useful for launching frequently used commands and
switching between different views in an application.

callback A function passed as an argument to another function, which the second
function calls to perform some sort of task. A number of Palm OS routines take point-
ers to callback functions, which allows a developer to customize how the Palm OS
routine works by changing the implementation of the callback.

CALLBACK_EPILOGUE Macro that restores the state of the A4 register after perform-
ing a callback function. This macro was necessary in older versions of the PRC-Tools
(0.5.0 and earlier), but it is no longer required.

CALLBACK_PROLOGUE Macro that saves the state of the A4 register before perform-
ing a callback function. This macro was necessary in older versions of the PRC-Tools
(0.5.0 and earlier), but it is no longer required.

card A physical memory card within a Palm OS handheld. Currently, only one card
is supported by the Palm OS, but future devices may have more than one card.

catalog resource A resource available from the catalog window in Constructor.

catalog window A window in Constructor offering resources from which to choose.
Resources in the catalog window are all user interface objects that may appear
within a form.

category A user-defined group of records in a Palm OS application. The Palm OS
data manager allows applications to sort records into fifteen categories.

CDK Conduit Development Kit, a set of tools and source code available from Palm
Computing for creating conduits.

CGI Common Gateway Interface, a system used by many Web sites to communicate
data from an HTML form to a script or program on a server.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 839

840 Glossary

character encoding A method of representing text characters as data. Most European
languages may be represented using the ASCII character encoding, where only a single
byte is required to denote a text character. Many other languages, including most
Asian languages, contain more symbols than a byte can hold (a byte is limited to 256
different values), so such languages must use multi-byte character encoding systems.

check box User interface resource that displays a check box and, optionally,
a text string. A check box may have a value of 1 if selected (checked), or 0 if
unselected (empty).

chunk A contiguous memory area. Chunks may be movable, in which case they are
referenced by handles, or fixed, in which case they are referenced by pointers.

Clipper Application on the Palm VII (and other wireless-enabled Palm OS devices)
which displays Palm Query Applications and the Web clippings that such applications
return over the Palm VII handheld’s wireless connection.

clipping An HTML page sent from a server to a handheld over a wireless connection
in response to a query from a Palm Query Application.

code island A small function designed to bridge the gap between functions that are
more than 32KB away from each other in compiled application code. Also called a
jump island.

code section Term used in the PRC-Tools documentation to specify a segment.
See segment.

CodeWarrior IDE and compiler system made by Metrowerks. CodeWarrior for Palm
Computing Platform is the version of CodeWarrior designed specifically for Palm OS
development, though other versions of CodeWarrior exist to create applications for
the Mac OS, Windows, and many other platforms. CodeWarrior for Palm Computing
allows Palm OS application development in C or C++.

color depth The number of bits used to represent a pixel’s color. Different versions
of the Palm OS and different kinds of Palm OS hardware support different color
depths, ranging from 1-bit (monochrome) to 8-bit (256 colors).

color table A count of the number of available colors, followed by an array of
structures that define each individual color’s red, green, and blue values.

command Part of a makefile rule that executes programs or scripts to create the
rule’s target.

command bar See menu command toolbar.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 840

841Glossary

command shortcut A single character assigned to a menu item, which when entered
after a Graffiti command stroke executes the associated menu item as if that item
had been selected from the menu.

conduit A plug-in module called by the HotSync Manager to synchronize a specific
handheld application’s data with the desktop.

Conduit Configuration tool Tool that allows a developer to register and unregister
conduits with the HotSync Manager.

Conduit Switch tool Command-line tool that allows a developer to save and restore
the HotSync Manager’s conduit settings.

Conduit Wizard Tool installed in Microsoft Visual C++ by the Conduit Development
Kit that generates a skeleton conduit project, based on a developer’s specifications.

Constructor Visual resource creation tool that comes with CodeWarrior for Palm
Computing Platform.

control One of several user interface resources in the Palm OS. Controls consist
of buttons, push buttons, check boxes, repeating buttons, sliders, feedback sliders,
pop-up triggers, and selector triggers.

control group A group of mutually exclusive push button or check box controls.
Only one member of a control group may be selected at a time.

Copilot Emulator program created by Greg Hewgill for testing Palm OS applications.
Palm Computing used Copilot as the basis for POSE.

creator ID Four-character code that uniquely identifies a Palm OS application, shared
library, or feature. To ensure that each code is unique, developers must register each
creator ID with Palm Computing.

custom drawing routine An application-defined callback function that draws
individual items within a list, or individual columns within a table.

custom load routine An application-defined callback function assigned to a table
column that loads data into that column’s text fields.

custom save routine An application-defined callback function assigned to a table
column that saves data from that column’s text fields.

database A list of memory chunks in a handheld’s storage RAM, along with some
header information to describe the database itself. Databases may contain either
records or resources.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 841

842 Glossary

date picker System dialog that presents the user with a calendar, from which the
user may select a day, week, or month.

debug ROM See ROM image.

default goal The first rule in a makefile, which make will attempt to process by
default if you do not specify a target.

definition file A text file containing various properties of a PRC-Tools project,
including declarations of different segments that make up an application.

dependency A file or files required by a rule for it to generate its target.

descender The part of a text character that extends below a font’s baseline. The tail
on a q or a y is a descender.

dialog A pop-up form that either presents information to the user or allows the user
to enter some sort of data; the form may be dismissed when the user taps a button.

digitizer The hardware in a Palm OS handheld’s screen that detects pressure from
a stylus. The digitizer hands the coordinates where the stylus contacts the screen
to the operating system, which translates a user’s taps and drags into pen events.

dirty bit A flag that indicates a record was changed and should therefore have its
changes saved to the desktop computer (or the handheld, if the dirty record is on
the desktop computer) during the next HotSync operation.

DLL Dynamic Link Library, a library of functions that may be called from other
Windows applications at run time, without requiring that the functions be statically
linked into an application.

doze mode Power mode that a Palm OS handheld spends most of its time in when it
is “on.” In doze mode, the processor is running but not processing instructions. Doze
mode requires much less power than running mode, but is quicker to start up than
sleep mode.

DragonBall A family of Motorola processors used in Palm OS handhelds. The Palm
OS runs on both the Motorola MC68328 DragonBall and the Motorola MC68EZ328
DragonBall EZ processors.

draw window The window where all drawing occurs. There can be only one draw
window at a time in the Palm OS.

DTMF Dual-Tone Modulated Frequency, a method of sound production required to
generate tones for dialing a TouchTone telephone. With the exception of the TRGPro,
most Palm OS handhelds lack the necessary hardware to generate DTMF tones.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 842

843Glossary

dynamic heap Memory heap where Palm OS applications store their global and
temporary variables.

dynamic RAM Area of a Palm OS handheld’s RAM devoted to implementing the
dynamic heap.

dynamic user interface Method of creating forms and user interface elements at
run time, instead of from resources compiled into an application.

edit mode Mode in which the user is editing a text field in a table.

Edit view Screen in Librarian and the built-in Address Book application that allows
the user to edit the fields and properties of a single record.

EGCS Experimental GNU Compiler System, the basis for the newest versions of the
gcc compiler, a version of which is used in the PRC-Tools.

elliptic-curve encryption Encryption system developed by Certicom and used to
maintain a secure connection between a Palm OS handheld and a wireless network.

enter event Event generated when the user touches the stylus to the screen within
the bounds of a user interface object.

event A structure used to communicate that something has happened between
different parts of the system and an application. An event structure contains infor-
mation about the type of event (for example, entry of a Graffiti character) and
information about that event (for example, the actual character entered).

event handler A system or application function that receives events and responds
to them according to their type and what data they contain. An error handler returns
true if it completely handles an event, or it returns false to allow the event to “fall
through” to another event handler.

event loop Central part of a Palm OS application that retrieves events from the
event queue and dispatches them to the appropriate event handlers.

event queue A first in, first out (FIFO) list of events, which both system and applica-
tions may add to. An application’s event loop retrieves events from the event queue.

exit event Event generated when the user touches the stylus to the screen within
the bounds of a user interface object, drags the stylus outside the object, and then
lifts the stylus.

FastSync Style of record synchronization used by a conduit when a handheld is
being synchronized with the same desktop computer it was synced with during its
previous HotSync operation. A FastSync can reliably use the dirty bit in each record
to determine which records need to be processed, ignoring those records that have
not been modified.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 843

844 Glossary

feature A 32-bit value published by the system or an application to indicate the
presence of a particular software or hardware element.

feature creator The unique creator ID of the application that publishes a particular
feature.

feature memory A special technique for using features to store small amounts of
data that must persist between executions of an application.

feature number An application-defined 16-bit value that distinguishes features that
share a creator ID from one another.

feature set A particular set of Palm OS functions and data structures, the presence
or absence of which may be determined by checking for a particular feature.

feature table A list of registered features. The Palm OS maintains two features
tables: one in ROM for system features, and one in RAM for application-published
features.

feedback slider A slider control that returns events continuously while the user
holds the stylus down on the control.

FEP Front End Processor, a text-entry method used for some languages (like
Japanese) with large, complex character sets.

field A user interface element that displays text and allows the user to edit that text.

file linking An optional conduit feature that, when implemented, allows the conduit
to update data on a handheld from a linked desktop file source.

file stream A block of data with no upper limit on its size that an application may
read data from and write data to by using the file streaming API.

fill pattern An 8 × 8 pixel pattern that may be used by certain Palm OS drawing
functions.

focus The user interface object that receives all key events has the focus. Text
fields that have the focus display a blinking insertion point.

font A particular style for displaying characters on the screen. The Palm OS has
several built-in fonts for displaying normal text, bold text, large text, and symbols,
and application developers can design their own custom fonts.

form A visual and programmatic container for user interface elements. A given
form usually represents a single screen or dialog in an application.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 844

845Glossary

form bitmap A bitmap image that is attached to a specific form.

form layout window A Constructor window that shows a form’s layout and allows
developers to position and edit user interface objects contained within the form.

fragmentation A situation that occurs when very little contiguous memory is
available, because of occupied memory chunks’ being scattered throughout a
memory heap.

frame The border around a button or window. Window frames are always drawn
outside the rectangular region that makes up the window proper.

free software Software distributed with its source code, under a legal agreement
ensuring that any applications made using such source code must also make their
source code available to other developers. Most free software is distributed under
the GNU General Public License, which was written by the Free Software
Foundation.

gadget A customizable user interface object that, while providing little behavior of
its own, gives a developer a framework for a new object that acts differently from
the existing Palm OS user interface elements.

gcc The GNU C/C++ compiler. A version of gcc called m68k-palmos-gcc is included
as part of the PRC-Tools.

gdb The GNU debugger, an interactive source-level debugger. A version of gdb
called m68k-palmos-gdb is included as part of the PRC-Tools.

global find facility A Palm OS feature that allows the user to search for a string of
text in every application on the handheld that supports the find facility.

GNU GNU is Not Unix, a project started by the Free Software Foundation to provide
a free Unix-like operating system and developer tools. The PRC-Tools are based on
work from the GNU project.

GPL General Public License or, more specifically, the GNU General Public License, a
legal license that ensures that developers who base a project on free software must
also make their own source code available to other developers.

Graffiti A software system that converts a special shorthand into text, used on
Palm OS handhelds to allow text data entry.

Graffiti area Region across the bottom of a Palm OS handheld screen dedicated to
receiving Graffiti input. The left side of the Graffiti area is for entering letters, and
the right side is for entering numbers.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 845

846 Glossary

Graffiti shift indicator A small icon, usually located in the lower right corner of
a form, that indicates the current Graffiti shift state, which may be punctuation,
symbol, uppercase shift, or uppercase lock.

Gremlin A facility of the Palm OS Emulator that allows the emulator to randomly
poke at an application in a reproducible manner, a testing technique that can
uncover obscure bugs that might be missed by more structured testing.

Gremlin horde A facility of the Palm OS Emulator that allows a developer to queue
up a whole bunch of Gremlins and assault an unsuspecting application en masse.

hack A small utility program that changes basic Palm OS behavior, such as making
noise whenever a Graffiti character is entered or displaying the time in the title bar
of all applications. See also HackMaster.

HackMaster A utility written by Edward Keyes that manages hacks, allowing some
amount of safety if two hacks should happen to intercept the same Palm OS system
call and making such tricky programming considerably easier for developers.

handle A pointer to a movable chunk of memory. Handle is sometimes also used to
refer to the memory chunk itself.

hard reset A system reset that clears the contents of both dynamic and storage
RAM, usually reserved for recovering from a catastrophic system crash.

hardware button One of the physical buttons on a Palm OS handheld’s case, used
for turning the handheld on and off, scrolling, or launching applications.

heap A contiguous area of memory that contains and manages smaller units of
memory, called chunks.

hierarchy window A Constructor window that shows the hierarchy of objects
within a form, useful for selection of objects that are covered by other objects in
the form layout window.

HotSync log A text file maintained by the HotSync Manager that conduits use to
communicate errors and other useful information to the user.

HotSync Manager Application that runs on the desktop computer and oversees
the process of synchronizing a Palm OS handheld with the desktop, calling conduits
to perform most of the actual synchronization tasks.

HTML HyperText Markup Language, a method of adding formatting to Web pages
so they will display properly in a browser.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 846

847Glossary

HTTP HyperText Transport Protocol, the primary method of transferring data
between clients and servers on the World Wide Web.

i icon See tips icon.

I/O Input/Output, used to describe the flow of data through a connection between
two devices, such as a serial port.

icon A resource holding a small graphic image, used to represent an application in
the application launcher.

icon family A resource type containing multiple icons at different color depths,
designed to allow a single image to display properly on handhelds with different
screens.

IDE Integrated Development Environment, any of a class of programs that combine
source code editors, debuggers, compilers, or other development tools into a single
interface.

increment arrow A repeating button containing an arrow symbol and lacking a
border, usually used to allow scrolling between records in an application.

in-place editing A method of changing text information that allows the text under-
going editing to be stored directly in storage RAM rather than a temporary buffer in
dynamic RAM. In-place editing is ideal for large pieces of text, such as Memo Pad
records or the Note field attached to many application’s records.

insertion point The place in an editable text field where newly entered text
appears, represented on-screen by a blinking cursor.

insertion sort A sorting algorithm optimized for sorting an array that is mostly
sorted already, useful when only a few array members are out of order and need
to be placed in their proper places.

International Feature Set A feature set present in some versions of the Palm OS
that provides functions for manipulating text in a localization-friendly manner, as
well as facilities for dealing with localized date, time, and number formats.

IR Infrared.

IrDA Infrared Data Association, an industry consortium that creates standards for
communicating between devices using infrared beams.

jump island See code island.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 847

848 Glossary

key event An event generated when the user enters a Graffiti character or presses
a hardware button.

label User interface resource that contains static text for display in a form.

large icon The larger of two icon resources an application may have, displayed in
the Icon view of the Palm OS application launcher.

launch code A special code sent to an application’s PilotMain function, requesting
an application to start and display its interface, or to perform some small task and
exit without showing its interface, such as setting an alarm.

Librarian Sample application that maintains a database of books, used throughout
Palm OS Programming Bible to demonstrate Palm OS programming techniques.

link converter class Class used in conduits based on the Palm MFC Base Classes to
convert records from their handheld format to a desktop format, and vice versa.

list User interface object that displays multiple rows of data in a single column,
from which a user may make a selection. Lists come in two varieties: static, which
take up screen space on a form, and pop-up, which are displayed only when the
user taps a pop-up trigger.

list item A single row within a list.

List view Screen in Librarian and the built-in Address Book application that dis-
plays a summary of the records contained in the application’s database. From the
List view, the user may select a record for closer inspection in the Record view.

little-endian Byte order in which the least significant byte in a multi-byte data type
is stored at the lowest address, or “little end first.” For example, the four-character
sequence byte would be stored as ybet on a little-endian system. Some processor
families, including Intel’s CPUs, use little-endian byte order. See also big-endian.

LocalID An offset from the beginning of a memory card to a chunk within that
memory card.

lock count A count of the number of times a particular memory chunk has been
locked. Only when a chunk’s lock count is 0 may the system move that chunk to a
new location.

logical port number A generic identifier for a kind of port on a Palm OS handheld.

m68k-palmos-gcc C/C++ compiler included in the PRC-Tools. The m68k-palmos-gcc
compiler is based on GNU gcc.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 848

849Glossary

m68k-palmos-gdb Source-level debugger included in the PRC-Tools. The m68k-
palmos-gdb debugger is based on GNU gdb.

m68k-palmos-obj-res Tool that breaks the single binary file produced by m68k-
palmos-gcc into separate code resources that may be included in a .prc file. This
tool is included in the PRC-Tools.

make A tool that determines which parts of a program need to be compiled or
recompiled and then issues commands to perform the necessary compilation. The
make tool can avoid recompiling up-to-date source files, instead recompiling only
code that depends on changed files and linking the newly compiled object code
with object code that is already compiled.

makefile The control file that make uses to figure out how to compile and recom-
pile a program. A makefile consists of rules that determine when a file that makes
up a larger project needs to be remade.

masked record A private record that shows up in an application’s list of records
but whose data is obscured by a gray bar. This method of hiding a private record is
available only on Palm OS 3.5 and later.

menu A user interface element that allows a user to launch a command by select-
ing the command from a pop-up list at the top of the screen. Menus may be opened
by tapping the Menu silkscreen button, or on Palm OS 3.5 and later, tapping a form’s
title bar.

menu command toolbar Bar that appears across the bottom of the screen on Palm
OS 3.5 or later when the user enters a command shortcut. A menu command tool-
bar contains buttons that may be tapped to launch the most commonly accessed
menu commands.

menu item A single command listed in a menu.

menu bar Bar across the top of the screen that contains one or more menus. Each
form may have exactly one menu bar.

MFC Microsoft Foundation Classes, a set of C++ classes for building Windows
applications.

MIC Message Integrity Check, a system that detects tampering and transmission
errors in data sent securely from a Palm OS handheld to a wireless network.

MIDI Musical Instrument Digital Interface, a system for encoding both music and
musical instrument definitions.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 849

850 Glossary

MIME Multipurpose Internet Mail Extensions, a system of classifying and encoding
file attachments for e-mail messages.

mirror image synchronization Style of synchronization that allows modification
of records on both the desktop and the handheld, keeping both databases up to
date with each other and resolving conflicts where a record was modified on both
platforms.

modal Describes a form or window that ignores taps outside its borders. Modal
dialogs must be dismissed before the user can do anything else in the current
application. The Select Font dialog available in most of the built-in applications
is a modal dialog.

monitor class Class used in conduits based on the Palm MFC Base Classes to
control the synchronization process.

Motorola 68000 Processor architecture used in Palm OS handhelds. Specifically,
Palm OS devices contain either Motorola MC68328 DragonBall or Motorola
MC68EZ328 DragonBall EZ processors.

multibit icon An icon resource that can contain both monochrome and grayscale
icons.

multi-byte character encoding Method of representing characters in a language
that uses more than one byte to represent each character. Multi-byte character
encoding is essential for many Asian languages that contain more than 256 sym-
bols, the maximum number that may be represented using single-byte encoding.

multigen Tool that generates an assembly language file and linker script necessary
for creating multi-segment applications using the PRC-Tools.

multiline field A text field that allows more than one line of text to be entered.
Typically, multiline fields may be scrolled. The Edit view in the Memo Pad applica-
tion is composed chiefly of a multiline field.

multi-segment application An application composed of multiple code resources, or
segments. Palm OS programs larger than 64K must be multi-segment applications.

native synchronization logic Logic implemented by the Palm OS base conduit
classes to perform mirror image synchronization of records.

no-notification reset A system reset that does not send a sysAppLaunchCmdSystem
Reset launch code to applications to let them know a reset was just performed. No-
notification resets are useful if an application crashes upon receiving the sysApp
LaunchCmdSystemReset launch code, thereby preventing the system from starting
properly after a reset.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 850

851Glossary

notification (both Palm OS and HotSync) In the Palm OS, a mechanism similar to
launch codes but more efficient that allows applications registered to hear about
certain events to receive notice when those events occur. In relation to HotSync
operations, notification is how the HotSync Manager tells a desktop application
when a HotSync operation is about to start and when it has finished, allowing the
desktop application to prevent record modification while the sync is taking place.

notifier DLL A dynamic link library that the HotSync Manager calls to notify a desk-
top application about the start or end of a HotSync operation.

object ID Another name for resource ID. Some Palm documentation also uses object
ID to refer to numbers that Constructor assigns internally to resources that it creates.

object index Sequential number assigned to every user interface object contained
by a form.

one-directional synchronization Synchronization style where data travels only
from the desktop to the handheld, or vice versa.

over-the-air icon Special symbol next to a PQA or Web clipping hyperlink, indicat-
ing to the user that following that link will make a wireless connection, thereby
incurring airtime charges.

palette The range of colors available for drawing on the display.

Palm Generic Conduit Base Classes Set of C++ classes designed to build conduits
that can synchronize a Palm OS application with any arbitrary data source on the
desktop.

Palm Image Checker Tool for checking images to make sure they are acceptable
for PQA and Web clipping use.

Palm MFC Base Classes Set of C++ classes based on the Microsoft Foundation Classes
designed to build conduits that can synchronize a Palm OS application with a data
source on the desktop in MFC serialized format.

Palm OS Emulator A handheld emulator that simulates most aspects of an actual
Palm OS handheld’s hardware and software on the desktop. Also called POSE (and
occasionally Poser), the Palm OS Emulator is an invaluable debugging tool.

Palm OS Simulator A Palm OS handheld emulator that runs only on the Mac OS.

PalmRez A post-linker in CodeWarrior that combines linked object code with other
resources to form a Palm OS executable, or .prc file.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 851

852 Glossary

pattern rule A makefile rule that can use wildcard values to specify more than one
target or dependency file at a time.

PC ID A pseudo-random number generated by the HotSync Manager to uniquely
identify a desktop computer.

PDA Personal Digital Assistant (or Personal Data Assistant), a class of handheld
electronic devices designed to serve as organizers, contact managers, and portable
computers. Palm OS handhelds are PDAs.

.pdb file Desktop form of a Palm OS record database.

pen event An event generated when the user taps on or drags the stylus across
the screen.

Perl Practical Extraction and Report Language (also Pathologically Eclectic Rubbish
Lister), a powerful scripting language commonly used for Unix system administration
and World Wide Web programming.

PilotMain Entry point function for a normal Palm OS application.

PilRC Tool for creating Palm OS resources for use with the PRC-Tools.

PilrcUI Companion to PilRC that shows a visual approximation of what a PilRC
source file’s resources will look like once they are on an actual Palm OS handheld.

pop-up list A list resource, normally hidden, that appears in response to a tap on a
pop-up trigger.

pop-up trigger A space-saving user interface element that displays the current
selection from a hidden pop-up list and, when tapped, displays the list.

port ID A value passed to most New Serial Manager functions to allow them to
identify an open serial port.

POSE See Palm OS Emulator.

PQA Palm Query Application, the client-side interface of a Web clipping applica-
tion. A PQA runs under the Clipper application and is similar to a Web page.

.prc file Desktop form of a Palm OS application or resource database.

PRC-Tools Free Palm OS development tools package based on the work of the GNU
project, allowing development of Palm OS applications using C or C++.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 852

853Glossary

preferences A database maintained by the Palm OS that stores settings for the sys-
tem and applications. System preferences hold settings that control how the oper-
ating system behaves. Application preferences may be used by any application that
needs to store small pieces of data that should persist between invocations of an
application but that are too small to merit being stored in a full-fledged record
database.

private record A record with its secret bit set, which the system can hide or mask,
requiring the user to enter a password to display it.

project The basic unit of application organization in CodeWarrior. A project
contains references to the source files, resources, and settings required to build
an application.

project resource A resource displayed in Constructor’s project window, including
but not limited to forms, alerts, icons, bitmaps, and menus.

project stationery A CodeWarrior template that provides the basic skeleton and
settings required for a particular kind of application.

project window In CodeWarrior, a window that lists all the files, segments, and
targets that make up a project. In Constructor, a window that lists major resources
such as forms and alerts, as well as some application-wide resource settings.

protection count A count maintained for a database to prevent the database from
being deleted, which allows an application to keep a record or resource in the data-
base locked without leaving the database open. When a database’s protection count
reaches 0, the database is no longer protected and may be deleted.

public key cryptography A powerful system of data encryption in which a public
key is used to encrypt data, which can then be decrypted only by the private key that
goes with the public key. Owning the public key does not provide any way to find out
the private key, so the public key may be safely distributed via insecure means.

push button User interface object similar to radio buttons on other platforms,
usually used in a group to allow selection of one and only one item in the group.

Query Application Builder Tool for creating Palm Query Applications from HTML
files, provided free of charge by Palm Computing.

quicksort A sorting algorithm optimized for sorting an array or other data struc-
ture that is completely unsorted. A quicksort works by successively partitioning
the elements of the array.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 853

854 Glossary

RAM Random Access Memory, a type of memory that loses its data when it loses
power. Palm OS handhelds store all of their data in RAM, including third-party
applications and application data.

record A relocatable memory chunk in storage RAM that holds one piece of an
application’s data, such as an address book entry or a memo. Records within a
database may be scattered across a single memory card, allowing the system to
move them around as needed to free up storage memory for other records and
resources.

record class Class used in conduits based on the Palm MFC Base Classes to access
database records.

record database A database containing records, as opposed to a resource
database.

Record view Screen in Librarian and the built-in Address Book that displays a
detailed view of an entry’s fields and properties.

rectangle Structure defining a rectangular screen region, containing the coordinates
of the region’s upper left corner and the region’s width and height in pixels.

rectangle frame Hollow rectangular screen region that surrounds a particular
rectangle. Rectangle frames are always drawn outside the rectangle structure
that defines them.

repeat event Event generated repeatedly while the user holds the stylus down within
the bounds of a repeating user interface object, such as a repeating button. The scroll
arrows in the lower right corner of the built-in applications are repeating buttons that
generate repeat events.

repeating button Button-like user interface object that sends repeat events while
the user holds the stylus on it. Repeating buttons are often used to create incre-
ment arrows.

resource A memory chunk in storage RAM that has a particular type and ID number.
Resources are usually used to store user interface elements like forms and buttons.

resource database A database containing resources, as opposed to a record
database. A Palm OS application is a resource database containing executable
code resources.

resource fork Part of a Mac OS file that contains resources, as opposed to a data
fork, which contains data. On Windows, CodeWarrior mimics the data fork of a file
with an empty file, and then creates the resource fork in a separate directory.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 854

855Glossary

resource ID Application-defined number that identifies a particular resource within
a resource database. Within a resource database, resources that share the same
type must have unique resource ID numbers.

resource type Four-character code that identifies what kind of data a resource
contains, such as tBTN for a button or code for executable code.

Rez CodeWarrior tool that generates resources based on text file resource definitions.

RGB Red, Green, Blue, a numeric value that defines a particular color by specifying
the amounts of red, green, and blue in the color. RGB values are most often expressed
as a six-digit hexadecimal number, where the first pair of digits represents red,
the second pair green, and the last two blue. In this scheme, 0x000000 is black,
0xFFFFFF is white, and 0xFF0000 is bright red, just to name a few of the more than
16 million colors possible using this notation.

ROM Read Only Memory, a type of memory that cannot be written to but that retains
its contents when it loses power (as opposed to RAM). The Palm OS system software
and built-in applications are stored in ROM.

ROM applications See built-in applications.

ROM image A file containing all the data and code packed into the ROM of an actual
Palm OS handheld, in a format suitable for use in the Palm OS Emulator. ROM images
may either be retrieved from an actual Palm OS handheld or downloaded from Palm
Computing. Some ROM images, called debug ROMs, contain special debugging code
that generates warnings when an application does something that goes against Palm
Computing’s coding recommendations. For example, debug ROMs check that you
pass valid pointers to user interface objects.

RS-232 Electronics Industries Association standard that defines how the most com-
mon type of serial port should operate. The serial port on a Palm OS handheld is
compatible with RS-232.

rule Part of a makefile that defines the commands required to create one or more
target files, given one or more required dependency files.

running mode Power mode that a Palm OS handheld enters only briefly when
actually processing instructions.

schema class Class used in conduits based on the Palm MFC Base Classes to serve
as a template for reading records out of a table object.

scroll arrow See increment arrow.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 855

856 Glossary

scroll bar User interface object that allows the user to scroll text fields and tables,
while providing visual feedback about the approximate position of the cursor
within a text field or table.

scroll car A dark bar in a scroll bar that indicates the approximate position within
a text field or table by its vertical position within the scroll bar and indicates how
much of the field or table data is currently visible by its height. Also called a thumb,
the scroll car also allows movement through a field or table when the user drags it
up and down in the scroll bar.

secret record See private record.

segment A single code resource within a Palm OS application. Large, multi-segment
applications may contain several segments.

select event Event generated when the user touches the stylus to the screen within
the bounds of a user interface object, and then lifts the stylus while still within the
object’s bounds.

selection In a list, the highlighted list item. In a table, the table item the user
most recently tapped. In a control group, the push button or check box that is
currently “on.”

selector trigger User interface element that contains text surrounded by a gray
box, which displays a dialog allowing the user to select a new value to display
within the box.

separator bar Special menu item that draws a line between other menu items to
group them visually.

serial port A port for transmission of serial data. Palm OS handhelds use a serial
port to connect to a desktop computer and other devices that support the RS-232
serial standard.

serial receive buffer Buffer that contains incoming serial data.

serial send buffer Buffer that contains outgoing data queued for serial transmission.

silkscreen button One of the buttons printed to the sides of the Graffiti area on a
Palm OS screen. All Palm OS handhelds have Applications, Menu, Calculator, and
Find buttons, and Japanese models have additional buttons to control the FEP.
See also FEP.

single-line field A text field that can contain only a single line of unscrollable text.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 856

857Glossary

skin Custom bitmap image that may be applied to the Palm OS Emulator to make it
look like different pieces of real Palm OS hardware.

sleep mode Power mode that a Palm OS handheld is in when the unit is “off.” Most
systems on the handheld are shut down in sleep mode, including the display, digitizer,
and processor.

slider User interface element similar to a scroll bar, but arranged horizontally.

SlowSync Style of record synchronization used by a conduit when a handheld is
being synchronized with a different desktop computer from the one it was synced
with during its most recent HotSync operation. A SlowSync cannot reliably use the
dirty bit in each record to determine which records need to be processed, so it
compares every desktop record with every handheld record to resolve conflicts
between them.

small icon The smaller of two icon resources an application may have, displayed in
the List view of the Palm OS application launcher.

SMF Standard MIDI File, a musical data format used by some of the Palm OS sound
routines.

soft reset A system reset that clears the contents of dynamic RAM, leaving storage
RAM intact.

sort info block Structure at the beginning of a Palm OS database originally intended
to hold information about how a database’s records should be sorted. Current and
previous implementations of the HotSync Manager do not back up the sort info block,
so sorting information is best stored in the application info block.

source-level debugging Debugging method that allows a developer to step through
a program one line of source code at a time, which makes finding many bugs much
simpler than trying to guess why an application crashes or performs incorrectly.

SSL Secure Sockets Layer, a data security layer in common use on the World Wide
Web for encrypting data that needs to be transmitted securely between a browser
and a server.

storage heap Memory heap containing resources and persistent data.

storage RAM Area of a Palm OS handheld’s RAM devoted to storing applications
and application data.

string list Resource that contains a number of strings, packed together one after
another.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 857

858 Glossary

stylus Blunt, pen-like object that comes with Palm OS handhelds, which allows the
user to interact with applications by tapping and dragging on the screen and by
entering text in the Graffiti area.

switching depth Number of events a particular Gremlin will generate before the
Palm OS Emulator switches to another Gremlin in a Gremlin horde.

Sync Manager API Set of functions and data types used for direct communication
between a conduit and a Palm OS handheld.

system preferences See preferences.

system resource Application resources created by the compiler and linker, such as
executable code resources.

system tick Unit of time used by a Palm OS handheld’s real time clock. The actual
unit is device-dependent, but on most Palm OS handhelds, ticks occur 100 times
per second.

table User interface object well suited to allowing the user to edit values directly
within the table’s columns and rows, capable of containing many other types of
user interface elements, such as text fields and check boxes.

table class Class used in conduits based on the Palm MFC Base Classes to store
records in a linear format.

table item One cell in a table object.

tap Handheld equivalent of a mouse click, where the user “taps” the stylus on the
screen to select a user interface element.

target In CodeWarrior, a particular group of source file and compile settings in a pro-
ject, designed to produce a specific kind of output. This kind of target is often used
for localization, with each country or language having its own target within the same
project file. In a makefile, a target is the file or files generated by a particular rule.

TCP/IP Transmission Control Protocol/Internet Protocol, the basic communication
language of the Internet.

thumb See scroll car.

tick See system tick.

time picker System dialog that allows the user to select a time of day.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 858

859Glossary

tips icon Small “i” in a circle, located in the upper right corner of some modal
dialogs, that when tapped displays a dialog containing help text for the original
dialog.

title bar Region at the top of a form that contains the form’s title.

touch To update the timestamp on a source file, usually in an effort to force it to be
recompiled. Also, a common Unix tool used to touch files.

transaction-based synchronization Style of synchronization where the desktop
computer must perform some sort of processing between each record synchroniza-
tion. For example, a conduit might retrieve data from a Web site and update a hand-
held application’s database from such information.

UART Universal Asynchronous Receiver and Transmitter, a microprocessor that
controls a computer or handheld’s interface to its serial devices.

UDP User Datagram Protocol, a simple and lightweight communication language
used with Internet Protocol (IP) when a transmission does not require the separa-
tion into separate packets performed by Transmission Control Protocol (TCP). The
Palm VII and other wireless-enabled Palm OS handhelds use UDP to communicate
with a wireless network.

UIAS User Interface Application Shell, part of the Palm OS responsible for managing
applications that display a user interface.

usable Descriptive of a form object that allows user interaction and is drawn on
the screen. An unusable object is effectively not there from a user’s perspective,
because it does not appear on the screen and the user cannot do anything with it.

user ID A pseudo–random number generated by the HotSync Manager to uniquely
identify a handheld.

virtual key event Key event that does not contain a regular text character, used to
represent or trigger system events such as turning on the backlight or raising the
antenna on a Palm VII.

Web clipping Process of retrieving data over a wireless connection on properly
equipped Palm OS handhelds (such as the Palm VII), which differs from Web brows-
ing in that it focuses on retrieving a simple response from a specific query instead
of concentrating on hyperlinks between documents.

window A rectangular region, either on screen or off, that can receive pen events
and defines a drawing region. All forms are windows, but not all windows are forms.

4676-7 GL.f.qc 9/29/00 1:06 PM Page 859

860 Glossary

window list A last in, first out (LIFO) stack, containing a linked list of windows. The
most recently created window is first on the stack.

Wireless Internet Feature Set A feature set present in some versions of the Palm
OS that provides functions for manipulating text in a localization-friendly manner,
as well as facilities for dealing with localized date, time, and number formats.

WYSIWYG What You See Is What You Get (pronounced “whizzy-wig”), descriptive
of an HTML or word processing program that shows you approximately what a
finished document will look like while you edit it.

✦ ✦ ✦

4676-7 GL.f.qc 9/29/00 1:06 PM Page 860

GNU General Public License
Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change free software — to make sure the software is free
for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using
it. (Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive
source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to cer-
tain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modi-
fied by someone else and passed on, we want its recipients to know that what they
have is not the original, so that any problems introduced by others will not reflect
on the original authors’ reputations.

4676-7 GNU.f.qc 10/2/00 10:23 AM Page 897

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made it
clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION, AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”, below, refers to any such pro-
gram or work, and a “work based on the Program” means either the Program
or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made
by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appropri-
ately publish on each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License and to the absence
of any warranty; and give any other recipients of the Program a copy of this
License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifica-
tions or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of
this License.

4676-7 GNU.f.qc 10/2/00 10:23 AM Page 898

c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a
copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to con-
trol the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically per-
forming source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b
above.)

4676-7 GNU.f.qc 10/2/00 10:23 AM Page 899

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface defi-
nition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operat-
ing system on which the executable runs, unless that component itself accom-
panies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. How-
ever, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not
accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obliga-
tions under this License and any other pertinent obligations, then as a conse-
quence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all
those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any partic-
ular circumstance, the balance of the section is intended to apply and the sec-
tion as a whole is intended to apply in other circumstances.

4676-7 GNU.f.qc 10/2/00 10:23 AM Page 900

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this sec-
tion has the sole purpose of protecting the integrity of the free software distri-
bution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that system; it is
up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is per-
mitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and “any later version”,
you have the option of following the terms and conditions either of that ver-
sion or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the
Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-

RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

4676-7 GNU.f.qc 10/2/00 10:23 AM Page 901

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

End Of Terms And Conditions

4676-7 GNU.f.qc 10/2/00 10:23 AM Page 902

IDG Books Worldwide, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening
the software packet(s) included with this book (“Book”). This is a license agree-
ment (“Agreement”) between you and IDG Books Worldwide, Inc. (“IDGB”). By open-
ing the accompanying software packet(s), you acknowledge that you have read and
accept the following terms and conditions. If you do not agree and do not want to
be bound by such terms and conditions, promptly return the Book and the
unopened software packet(s) to the place you obtained them for a full refund.

1. License Grant. IDGB grants to you (either an individual or entity) a nonexclu-
sive license to use one copy of the enclosed software program(s) (collectively,
the “Software”) solely for your own personal or business purposes on a single
computer (whether a standard computer or a workstation component of a
multiuser network). The Software is in use on a computer when it is loaded
into temporary memory (RAM) or installed into permanent memory (hard
disk, CD-ROM, or other storage device). IDGB reserves all rights not expressly
granted herein.

2. Ownership. IDGB is the owner of all right, title, and interest, including copy-
right, in and to the compilation of the Software recorded on the disk(s) or
CD-ROM (“Software Media”). Copyright to the individual programs recorded
on the Software Media is owned by the author or other authorized copyright
owner of each program. Ownership of the Software and all proprietary rights
relating thereto remain with IDGB and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival
purposes, or (ii) transfer the Software to a single hard disk, provided
that you keep the original for backup or archival purposes. You may not
(i) rent or lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any computer sub-
scriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.
You may transfer the Software and user documentation on a permanent
basis, provided that the transferee agrees to accept the terms and condi-
tions of this Agreement and you retain no copies. If the Software is an
update or has been updated, any transfer must include the most recent
update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in
Appendix D of this Book. These limitations are also contained in the individual

4676-7 EULA.f.qc 10/2/00 10:23 AM Page 894

license agreements recorded on the Software Media. These limitations may
include a requirement that after using the program for a specified period of
time, the user must pay a registration fee or discontinue use. By opening the
Software packet(s), you will be agreeing to abide by the licenses and restric-
tions for these individual programs that are detailed in Appendix D and on the
Software Media. None of the material on this Software Media or listed in this
Book may ever be redistributed, in original or modified form, for commercial
purposes.

5. Limited Warranty.

(a) IDGB warrants that the Software and Software Media are free from
defects in materials and workmanship under normal use for a period of
sixty (60) days from the date of purchase of this Book. If IDGB receives
notification within the warranty period of defects in materials or work-
manship, IDGB will replace the defective Software Media.

(b) IDGB AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE
PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. IDGB DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFT-
WARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have
other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) IDGB’s entire liability and your exclusive remedy for defects in materials
and workmanship shall be limited to replacement of the Software Media,
which may be returned to IDGB with a copy of your receipt at the follow-
ing address: Software Media Fulfillment Department, Attn.: Palm OS ®

Programming Bible, IDG Books Worldwide, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please allow three to four
weeks for delivery. This Limited Warranty is void if failure of the
Software Media has resulted from accident, abuse, or misapplication.
Any replacement Software Media will be warranted for the remainder of
the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall IDGB or the author be liable for any damages whatso-
ever (including without limitation damages for loss of business profits,
business interruption, loss of business information, or any other pecu-
niary loss) arising from the use of or inability to use the Book or the
Software, even if IDGB has been advised of the possibility of such
damages.

4676-7 EULA.f.qc 10/2/00 10:23 AM Page 895

(c) Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation or
exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software by the U.S. Government is subject to restrictions stated in paragraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause of
DFARS 252.227-7013, and in subparagraphs (a) through (d) of the Commercial
Computer — Restricted Rights clause at FAR 52.227-19, and in similar clauses
in the NASA FAR supplement, when applicable.

8. General. This Agreement constitutes the entire understanding of the parties
and revokes and supersedes all prior agreements, oral or written, between
them and may not be modified or amended except in a writing signed by both
parties hereto that specifically refers to this Agreement. This Agreement shall
take precedence over any other documents that may be in conflict herewith. If
any one or more provisions contained in this Agreement are held by any court
or tribunal to be invalid, illegal, or otherwise unenforceable, each and every
other provision shall remain in full force and effect.

4676-7 EULA.f.qc 10/2/00 10:23 AM Page 896

